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Abstract
An active area of research in the fields ofmachine learning and statistics is the development of causal
discovery algorithms, the purpose of which is to infer the causal relations that hold among a set of
variables from the correlations that these exhibit .We apply some of these algorithms to the correla-
tions that arise for entangled quantum systems.We show that they cannot distinguish correlations
that satisfy Bell inequalities from correlations that violate Bell inequalities, and consequently that they
cannot do justice to the challenges of explaining certain quantum correlations causally. Nonetheless,
by adapting the conceptual tools of causal inference, we can show that any attempt to provide a causal
explanation of nonsignalling correlations that violate a Bell inequalitymust contradict a core principle
of these algorithms, namely, that an observed statistical independence between variables should not be
explained byfine-tuning of the causal parameters. In particular, we demonstrate the need for such
fine-tuning formost of the causalmechanisms that have been proposed to underlie Bell correlations,
including superluminal causal influences, superdeterminism (that is, a denial of freedomof choice of
settings), and retrocausal influenceswhich do not introduce causal cycles.

1. Introduction

A causal relation, unlike a correlation, is an asymmetric relation that can support inferences about the
consequences of interventions and about counterfactuals. The sun rising and the rooster crowing are strongly
correlated, but to say that the first is the cause of the second is to saymore. In particular, it says that forcing the
rooster to crow early will not precipitate an early dawn, whereas causing the sun to rise early (for instance, by
moving the rooster eastward), can lead to some early crowing. Nonetheless, causal structure has implications for
the observed correlations and consequently one canmake inferences about the causal structure based on the
observed correlations. Indeed, there has beenmuch progress in the last 25 years on how tomake such inferences,
progress that has been primarily due to philosophers and researchers in the field ofmachine learning andwhich
is well summarized in the books of Pearl [1] and of Spirtes, Glymour and Scheines (SGS) [2]. Such inference
schemes are known as causal discovery algorithms. In this article, we shall consider the question of what some
prominent causal discovery algorithms have to say about the causal structure thatmight underlie quantum
correlations, in particular those that violate Bell inequalities.

Suppose that one conductsmeasurements on a pair of systems that have been prepared together, and then
removed to distant locations such that the outcome at eachwing of the experiment is outside the future light
cone of themeasurement choice in the other wing. Suppose further that onefinds that the correlations so
obtained violate Bell inequalities. If one insists on a causal explanation of these correlations, then it would seem
that onemust admit that the causesmust propagate faster than the speed of light. But this is in tensionwith the
fact that one cannot send signals faster than the speed of light.We take this tension to be themystery of Bellʼs
theorem: if there are indeed superluminal causes, thenwhy can’t we use them to send superluminal signals? In
this article, wewill show that the principles behind causal discovery algorithms can clarify the nature of this
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tension.We also show that this tension persists inmore exotic proposals for achieving a causal explanation of
Bell inequality violations such as superdeterminism, which is an assumption that at least one of the
measurement settings is influenced by a variable that is a common cause of the outcome on the opposite wing
(and hence this setting variable is not freely chosen), and retrocausation, wherein causes propagate counter to
the standard direction of time.

We consider themost prominent causal discovery algorithms, which take as their input the set of conditional
independence (CI) relations that hold among the observed variables. No other feature of the probability
distribution is relevant for them.Our analysis will reveal that such algorithms do not capture the insights of
Bellʼs theorem. It follows that there is an opportunity for researchers in the field of quantum foundationswith
expertise onBellʼs theorem to improve upon existing causal discovery algorithms. Indeed, in the time since a
preprint of this articlefirst appeared, the process has already begun. Inspired by entropic Bell inequalities and
building on thework of [6], it has recently been shown in [7] that the causal structure implies certain entropic
inequalities on the joint probability distribution.We anticipate that there aremanymore opportunities for
improvements to causal inference based on ideas from thefield of quantum foundations4.

The distinction between causal and inferential concepts is an instance of the distinction between ontic
concepts (those pertaining to reality) and epistemic concepts (those pertaining to our knowledge of reality).
Within the field of statistics, disentangling causal and inferential concepts is notoriously difficult and
controversial, as is the question of when causal claims are supported by the observed correlations. In the
quantum realm,where there is even less agreement aboutwhich parts of the formalism refer to ontic concepts
andwhich refer to epistemic concepts, the problem is compounded [9]. As such, we shall try to present our
analysis in amanner that does not presume any particular interpretation of quantum theory. For instance, given
that different interpretations disagree onwhether quantum theory implies an objective indeterminism in nature
or not, we shall not presume any particular answer to this question. Instead, we simply focus on the operational
predictions of the theory.

Some previous work has already considered Bellʼs theorem from the perspective of causal discovery
algorithms. In particular, the books by Pearl [1] and by SGS [2] comment briefly on the question. They both
assert that Bellʼs theorem forces a dilemma between (i) abandoning a particular notion of locality, that there are
no superluminal causal influences, and (ii) abandoning the assumption that if two variables are statistically
dependent, then this is explained either by the existence of a cause fromone to the other or a common cause
acting on both, or a combination of the twomechanisms. Assumption (ii) underlies what is called the ‘causal
Markov condition’, but wewill refer to it here simply asReichenbachʼs principle; in a slogan, it asserts that
correlationsmust be explained causally 5. One can legitimately quibblewith the claim that Bellʼs theorem forces
such a dilemma on the grounds that there are other assumptions that go into the theorem: the absence of
superdeterminism (an assumption that is often characterized as the existence of freedom in the choice of
settings), and the absence of retrocausal influences, for instance. Nonetheless, this is an improvement over the
standard characterization of Bellʼs theorem as forcing a dilemma between abandoning locality and abandoning
realism. It has always been rather unclear what precisely ismeant by ‘realism’. Norsen has considered various
philosophical notions of realism and concluded that none seem to have the feature that one could hope to save
locality by abandoning them [10]. For instance, if realism is taken to be a commitment to the existence of an
external world, then the notion of locality—that every causal influence between physical systems propagates
subluminally—already presupposes realism. Furthermore, wewill show that the tools of causal inference can also
be used to argue for the implausibility of superdeterminism and retrocausal influences.

Our first conclusion is a relatively straightforward one.Wenote that in the case of a Bell scenario, where a
pair of systems is prepared together then separated and each subjected to ameasurement, all correlations exhibit
the followingCI relations among the observable variables:

1. Marginal independence of themeasurement setting variables,

2. No-signalling, that is, CI of the outcome at one wing of the experiment and the setting at the opposite wing
given the setting at the first wing.

4
Otherwork in thefield ofmachine learning has appealed to statistical features besides CI relations, but not the features of correlations that

are relevant for Bellʼs theorem. Peters et al [8] demonstrate that if one is promised an additive noisemodel, then features of the joint
distribution can often distinguish cause from effect in the case of a distribution on a pair of variables, where there are noCI relations to guide
the analysis. Other approaches have appealed to the complexity of conditional distributions [3–5].
5
Adefining feature of a common cause is that if the statistical dependence between two variables is to be explained entirely by a common

cause, then itmust be the case that conditioning on the common causemakes the variables statistically independent. Aswewill see, this
feature is built into the framework of causalmodels. Statements of Reichenbachʼs principle often assert it explicitly.
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Except for independences that are due to special degeneracies in the quantum state, these are the onlyCIs
arising in Bell scenarios. These independences characterize both the correlations that satisfy all the Bell
inequalities, and the correlations that violate someBell inequality. Therefore, if the causal discovery algorithm
takes as its input not the full distribution but only theCI relations that hold in the distribution (as is the case with
the prominent such algorithms), then this algorithm cannot distinguish correlations that violate Bell inequalities
from correlations that satisfy Bell inequalities. The input to such algorithms is simply too impoverished to see
the difference. It follows that the causal distinctions that do exist between these correlations—those that are
implied by Bellʼs theorem—cannot be recognized by these algorithms. Theymay consequentlymake incorrect
assessments of what causal structure is implied by a given set of correlations.

By explicitly applying the standard causal discovery algorithms to theCI relations that characterize a Bell
scenario, we draw attention to the fact that the output of such algorithmsmust be interpreted with great care, lest
one be led to an incorrect conclusion about the viability of certain causal explanations.We look at both the case
where one presumes that the settings and outcomes are the only causally relevant variables, i.e., the case of no
hidden variables, and the case where one allows hidden variables.

Finally, we set aside the details of existing algorithms and consider simplywhat the core principles
underlying these algorithms imply about the possibility of causal explanations of Bell inequality violations.We
demonstrate that any causalmodel that can hope to explain Bell-inequality-violating correlations (or even to
explain Bell-inequality-satisfying correlationswithout recourse to hidden variables) has the feature that in order
to explain the conditional independencies among the observed variables, in particular the no-signalling
constraints, itmust involve a fine-tuning of the causal parameters.

So, in the end, we obtain a characterization of Bellʼs theorem that is quite far from its standard
characterization as a denial of ‘local realism’. The assumptions that go into this new characterization are: the
framework of causalmodels, which incorporates Reichenbachʼs principle that correlations should be explained
causally, as well as the principle that CI relations should not be explained by fine-tuning. Aswe shall see, the no
fine-tuning principle, applied to the observed independences in a Bell scenario (including the lack of
superluminal signals), implies the lack of superluminal causal influences, which is Bellʼs notion of local
causality. So Bellʼs notion of local causality is derived as one particular consequence of nofine-tuning in this
approach. The real innovation of this approach, however, is that the nofine-tuning principle togetherwith the
observed indepedences also rule out superdeterminism and retrocausal influences that do not introduce causal
cycles. It follows that all three of themain approaches for providing a causal explanation of Bell correlations,
superluminal causes, superdeterminism and retrocausal influences, are unsatisfactory, and they are all
unsatisfactory for the same reason.

Our approach demonstrates that Bellʼs theorem can be understood as a statement about the possibility of a
causal account of quantum correlations. This characterization is an improvement over the standard one for
several reasons. First, we believe that the question of what constitutes a causal explanation of correlations ismore
clearly defined than the question of what constitutes a realist explanation of those correlations. Of course, if one
likes, one can take the notion of causal explanation to be an elucidation of the notion of realism at play in Bellʼs
theorem. In other words, one could take the view that an explanation should be described as realist only if it is
causal. Indeed, the views ofmany proponents of anti-realism in quantum theory are aptly characterized as a
denial of the need to provide a causal explanation of quantum correlations. The second advantage of our
characterization is that the fine-tuning criticism applies to all of the various attempts to provide a causal
explanation of Bell inequality violations. Accounts in terms of superluminal causes, superdeterminism or acyclic
retrocausation are found to fall under a commonumbrella. The conspiratorial flavour of each such account can
be formalized as a need forfine-tuning.

2. Causal structures and causalmodels

Themodern approach to the formal study of causality considers in some detail the significance of interventions
and counterfactuals for defining the notion of a causal relation [1, 2]. There is a large literature onwhether these
sorts of definitions are adequate [11]. Although questions of this sort are relevant to a discussion of Bellʼs
theorem, theywill not be the focus of this article.We begin by describing themathematical formalism that is
relevant for describing the causal discovery algorithms in [1] and [2].We follow the presentation of these
authors.

A causal structure is a set of variablesV and a set of ordered pairs of distinct variables X Y, specifying thatX
is a direct cause ofY relative toV.

Being in a relationship of direct causation is a property that is defined relative to the set of variables being
considered. If one considers a larger set which includesmore variables, thenwhat was a direct causal relation in
thefirst setmight become amediated causal relation in the second.

3
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Such causal structures can be represented conveniently by directed acyclic graphs (DAGs). A directed graphG
corresponds to a set of vertices and a set of directed edges among the vertices (a vertex cannot be connected to
itself). The acyclic property asserts that there are no directed paths in the graph that begin and end at the same
vertex. DAGs represent causal structures in the obviousmanner: every variable inV is represented by a vertex,
and for every pair of variables X Y, , whereX is a direct cause ofY , there is a directed edge in the graph between
the associated vertices6.

As is standard, we use the terminology of family relations in the obviousmanner: ifX is a cause ofY, direct or
mediated, thenX is said to be an ancestor ofY, andY is said to be a descendent ofX. IfX is a direct cause ofY, then
X is said to be a parent ofY. The set of all parents of a variableXwill be denoted Pa(X) and the set of all
nondescendents of a variableXwill be denotedNd(X). The variables in the causal structure that have no parents
will be called exogenous, while thosewith parents will be called endogenous.

A deterministic causal model consists of a causal structure and a setΘ of causal and statistical parameters. The
causal parameters describe the functional relations that fix the values of every variableX given its parents Pa(X)
in the causal structure, that is, for everyX they describe a function f specifying =X f X(Pa( )). The statistical
parameters specify a probability distribution over the exogenous variables, that is, a distribution P(X) for every
exogenousX. An example of a deterministic causalmodel is given infigure 1.

The notion of a general causalmodel (not necessarily deterministic) can be explained as follows.We start
with a deterministic causalmodel andmodify it in a particular way.When an exogenous variableU is the parent
of only a single other variable, sayX (i.e.U is not a common cause of two ormore variables), it is possible to
eliminateU from the causal structure, and to replace the deterministic dependence ofX on its original set of
parents with a probabilistic dependence on its new set of parents. Specifically, if the deterministic causalmodel
specifies that =X f X(Pa( )) for some function f (here Pa(X) includesU) then the new causalmodel specifies a
conditional probability ∣ ′P X X( Pa ( )) (here ′ XPa ( ) are the parents relative to the new causal structure, which
excludesU). Specifically, the conditional probability is defined by δ∣ ′ = ∑ ′P X X P U( Pa ( )) ( )U X f X U, (Pa ( ), ) .

It follows that a general causal model consists of a causal structure and a setΘ of causal–statistical parameters.
The causal–statistical parameters specify a conditional probability distribution for every variable given its causal
parents, ∣P X X( Pa( ))7. Exogenous variables have the null set for their causal parents, so that to condition on

Figure 1.An example of a deterministic causalmodel.

Figure 2.An example of a causalmodel consisting of a causal structure, represented by a directed acyclic graph, and a set of causal–
statistical parameters, specifying the probability of each variable conditioned on its parents.

6
One can imaginemore general notions of causationwherein directed cycles are allowed, butwewill not consider such notions here.

7
Wehave chosen to call the parameters of a general causalmodel ‘causal–statistical’ because if the causalmodel arises from an underlying

deterministic causalmodel, then the conditional probabilities in the causalmodel fold together two different sorts of parameters from the
underlying deterministic causalmodel: functional dependences of variables on their parents, which are causal parameters, and distributions
over the local noise variables, which are statistical parameters.
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their parents is not to condition at all. Consequently, for the exogenous variables, the causal–statistical
parameters simply specify the unconditioned distributions over each of these8.

An example of a general causalmodel is given infigure 2. It can be obtained from the deterministic causal
model offigure 1 by eliminating the exogenous variablesU andV. (Note that one need not eliminate all
exogenous variables from a deterministic causalmodel to obtain a nondeterministic causalmodel—for
instance, S andT have not been eliminated in our example.)

Deterministic causalmodels are clearly a special case of causalmodels where all conditional probabilities
correspond to deterministic functions. It is also clear that for any given causalmodel, one can always view it as
arising froma deterministic causalmodel where some exogenous variables have been excluded. To obtain such a
deterministic extension of a causalmodel, it suffices to add new exogenous variables as parents of every
endogenous variable in themodel. For the rest of the article, wewill focus on the general notion of a causal
model, rather than on deterministic causalmodels.

We pause to discuss briefly the possible interpretation of the probabilities in a causalmodel. One could take a
Bayesian attitude towards these probabilities. In this case, the probability distribution on an exogenous variable
U represents an agentʼs degrees of belief aboutU, and the conditional probability ∣P X X( Pa( )) represents
degrees of belief aboutX given its parents. Another possibility is to take a frequentist attitude towards the
probabilities. This is arguably the position adopted by Pearl, who describes the auxiliary variables appearing in a
deterministic extension of a causalmodel as ‘unmeasurable conditions thatNature governs by some undisclosed
probability function’ ([1], p 44). One could even interpret the probabilities as propensities, indicating an
irreducible randomness in oneʼs theory (an option thatmight be appealing to somewhen considering the
possibility of explaining quantum correlations in terms of causalmodels). Our conclusions herewill be
independent of this choice9.

It is worth noting that the fact that exogenous variables are assumed to be independently distributed, which
is part of the definition of a causalmodel, is a consequence of Reichenbachʼs principle. The principle asserts that
onemust explain all correlations by a causalmechanism, so that if two variables are correlated then either one is
a cause of the other, or there is a common cause acting on both (this is not an exclusive or—it could be that two
variables are related by both a common cause and a cause-effect relation). In other words, the exogenous
variables are by definition the variables that one takes to be uncorrelated.

Consider the following question: given a causalmodel, what sorts of correlations can be observed among the
variables? Clearly, there is a set of joint distributions that are possible, depending on the causal–statistical
parameters that we add to the causal structure to get a causalmodel.

Consider the example from figure 2. The causalmodel predicts that the joint distribution over all the
variables should be

=P X Y S T W P W P S P T P Y T W P X Y S T W( , , , , ) ( ) ( ) ( ) ( , ) ( , , , ). (1)

To see this, it suffices to note that in the deterministic extension of thismodel, depicted infigure 1, we have

δ δ=P X Y S T W U V P U P V P W P S P T( , , , , , , ) ( ) ( ) ( ) ( ) ( ) , (2)Y f T V W X f S T Y U W, ( , , ) , ( , , , , )Y X

where δ denotes theKronecker delta function,δ = 1X Y, if and only ifX=Y, and consequently

∑ δ δ=

=

P X Y S T W P U P V P W P S P T

P W P S P T P Y T W P X Y S T W

( , , , , ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( , ) ( , , , ), (3)
U V

Y f T V W X f S T Y U W

,

, ( , , ) , ( , , , , )Y X

where ∣P Y T W( , ) δ≡ ∑ P V( )V Y f T V W, ( , , )Y
and ∣P X Y S T W( , , , ) δ≡ ∑ P U( )U X f S T Y U W, ( , , , , )X

.

In general, a causalmodel with variables ≡ …X XV { , , }n1 predicts a joint distribution of the form

∏… =
= …

( )( ) ( )P X X P X X, , Pa . (4)n

i n

i i1

1, ,

Essentially, onemultiplies together the conditional probabilities for every variable given its parents, all of which
are specified by the causalmodel. For aDAG that is not a complete graph (i.e. not every pair of nodes is
connected by an edge), the probability distributions that it supports are a subset of the possible distributions over
those variables.

We now turn to another question: what properties do all distributions consistent with a given causal
structure have in common? In otherwords, what are the features of the joint probability distribution that

8
Suchmodels are sometimes calledMarkovian. Amore general sort ofmodel, which allows bi-directed edges representing the existence of

an unobserved common cause for a pair of variables, are called semi-Markovian.
9
Althoughwe ultimately favour the Bayesian interpretation.
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depend only on the causal structure and not on the causal–statistical parameters? CI relations are an example of
such properties, and they are the ones thatmost causal discovery algorithms to date have focussed upon.

Recall that variablesX andY are conditionally independent givenZ, denoted

⊥⊥X Y Z( )

if any of the following three equivalent conditions hold

= ∀ = = >
= ∀ = = >
= ∀ = >

P X Y Z P X Z y z P Y y Z z

P Y X Z P Y Z x z P X x Z z

P X Y Z P X Z P Y Z z P Z z

1. ( , ) ( ) , : ( , ) 0,

2. ( , ) ( ) , : ( , ) 0,

3. ( , ) ( ) ( ) : ( ) 0.

An intuitive account of each of these conditions is as follows: in the context of already knowingZ, (1) learningY
teaches you nothing aboutX (i.e.Y teaches you nothingmore aboutX thanwhat you already could infer from
knowingZ), (2) learningX teaches you nothing aboutY, and (3)X andY are independently distributed.Note
thatmarginal independence ofX andY, where =P X Y P X P Y( , ) ( ) ( ), is simply CI, where the conditioning set is
the null set.

The definition of CI implies that certain logical inferences hold amongCI relations. In other words, in a
complete set of CI relations, theCI relations need not be logically independent of one another. In particular, the
semi-graphoid axioms specify some inferences that can be drawn amongCI relations. They are:

⊥⊥ ⇔ ⊥⊥
⊥⊥ ⇒ ⊥⊥
⊥⊥ ⇒ ⊥⊥
⊥⊥ ⊥⊥ ⇒ ⊥⊥

X Y Z Y X Z

X YW Z X Y Z

X YW Z X Y ZW

X Y Z X W ZY X YW Z

Symmetry: ( ) ( ),

Decomposition: ( ) ( ),

Weak union: ( ) ( ),

Contraction: ( ) and ( ) ( ).

Any set of variables can be considered as a new variable, so each of the variablesX,Y,W andZ appearing in the
axioms should be understood as possibly representing a set of variables. These axioms are quite intuitive.
Decomposition, for instance, states that if, in the context of knowingZ, learningW andY teaches you nothing
about X , then learningWalone teaches you nothing aboutX.

Note that if onewants to specify all the CI relations that hold for a given probability distribution, it suffices to
specify a generating set, defined to be a set fromwhich the rest can be obtained by the semi-graphoid axioms. In
this paper, the CI relationswill typically be specified by a generating set.

With these tools in hand, we can nowdiscuss the central result concerningwhat properties of a joint
probability distribution can be inferred from the causal structure.

Theorem1 (CausalMarkov condition). In the joint distribution induced by a causal structure, every variable X is
conditionally independent of its nondescendants given its parents,

⊥⊥X X X( Nd( ) Pa( )).

This result follows from equation (4) because

∏
∏

=

=

=

∈

∈

P X X X
P X X X

P X X

P X X P Y Y

P Y Y

P X X

( Pa( ), Nd( ))
( , Pa( ), Nd( ))

(Pa( ), Nd( ))
,

( Pa( )) ( Pa( ))

( Pa( ))
,

( Pa( )). (5)

Y X X

Y X X

Pa( ),Nd( )

Pa( ),Nd( )

The causalMarkov condition implies a CI relation for every variable that is not exogenous in the causal
structure. One can then infer additional CI relations from these by the semi-graphoid axioms.

To see these ideas in action, consider again the example from figure 2. It turns out that ⊥⊥ ∣Y S T( ) for this
causal structure, as we nowdemonstrate. Applying the causalMarkov condition toY, one infers that

⊥⊥ ∣Y XS WT( ). Applying it toW, S andT one infers ⊥⊥W ST( ), ⊥⊥S WT( ) and ⊥⊥T WS( ) respectively. By the
decomposition axiom, ⊥⊥ ∣Y XS WT( ) implies ⊥⊥ ∣Y S WT( ). From the contraction axiom, ⊥⊥ ∣Y S WT( ) and

⊥⊥S WT( ) imply ⊥⊥S YWT( ). Finally, fromweak unionwe obtain ⊥⊥ ∣S YW T( ) and then fromdecomposition
againwe have ⊥⊥ ∣S Y T( ), which is equivalent by symmetry to ⊥⊥ ∣Y S T( ).

We see that it can be rather laborious to infer CI relations from the causalMarkov condition and the semi-
graphoid axioms. Fortunately, there is a graphical criterion for identifying such relations, known as d-separation
[1].Wewill not dwell on this notion here, but we present a brief introduction in the appendix.

Note that in addition to theCI relations that are implied by the causal structure, theremay be additional CI
relations that are implied by the particular values of the causal–statistical parameters. Such additional CI
relations are problematic for causal discovery algorithms, as we shall see.
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3. Causal discovery algorithms

Wehave described the correlations that are possible for a given causal structure. Causal discovery algorithms
seek to solve the inverse problem: starting from correlations among observed variables, can one infer which
causal structuresmight account for these correlations? Researchers in this area have indeed devised some
schemes for narrowing down the set of causal structures that can yield a natural explanation of the correlations,
wherein the notion of naturalness at play is one that we shallmake explicit shortly. The algorithms look to the
CIs among the variables to infer information about the causal structure.

In general, causal discovery algorithmsmay be applied directly to experimental data and in this case one
needs to deal with the subtle issue of how to infer CI relations from a finite sample of a probability distribution.
However, in what followswe are going to apply the causal discovery algorithms directly to the distributions
prescribed by quantum theory, sowe needn’t worry about this subtlety.

It is worth reviewing a few basic facts about the output of causal discovery algorithms. First of all, two
different causal structuresmight support precisely the same probability distributions, so that observation of one
of these distributions necessarily leaves one ignorant aboutwhich causal structure is at play. As an example, for
three variables, the three causal structures show infigure 3 all support the same set of probability distributions—
thosewhereinA andB are conditionally independent givenC (these are theDAGswhereinA andB are d-
separated givenC). (The general conditions under which two causal structures are observationally equivalent is
given by theorem1.2.8 in [1].)

It follows that causal discovery algorithmswill necessarily sometimes yield an equivalence class of causal
structures.When this occurs, additional information is required if one is to narrowdown the causal structure to
a unique possibility, for instance information about the temporal order of some of the variables.

Despite this, one can often narrowdown the field of causal possibilities significantly. To get a feeling for how
this works, it is useful to start with a very simple example. Suppose that one has three binary-valued variables,
denotedA,B andC. Suppose further that the joint distribution over the triple,P A B C( , , ) is such that

⊥⊥ =
⊥⊥ ≠
⊥⊥ ≠

A B P A B P A P B

A C P A C P A P C

B C P B C P B P C

( ) i.e. ( , ) ( ) ( ),

( ) i.e. ( , ) ( ) ( ),

( ) i.e. ( , ) ( ) ( ). (6)

What is the natural causal explanation for this sort of correlation? It is as shown infigure 4. Themarginal
independence ofA andB is explained by their being causally independent.

However, there are other possible causal explanations, such as the one given in figure 5. The reason this is a
possible explanation is because there are two causalmechanisms bywhichA andB could become correlated, and
it could be that the two types of correlations combine in such away as to leaveA andBmarginally independent.
For this to happen, however, the parameters in the causalmodel cannot be chosen arbitrarily and it is in this
sense that the explanation is less natural than the one provided by figure 4.

An example helps tomake all of thismore explicit.We adopt the following notational convention (inspired
by the representation ofmixtures in quantum theory)

= = =
= ≡ = = =

P A x P A x

P A B x y xy P A x B y

( ) [ ] means ( ) 1,

( , ) [ ][ ] [ ] means ( , ) 1.

Figure 3.The three causalmodels consistentwith theCI relation ⊥⊥ ∣A B C( ).

Figure 4.The natural causalmodel for the set of CI given in equation (6).
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Consider the following joint distribution, which has the dependences described in equation (6),

= + + +P A B C( , , )
1

4
[000]

1

4
[010]

1

4
[100]

1

4
[111]. (7)

Wecan easily verify that

= + +P A B( , )
1

2
[0]

1

2
[1]

1

2
[0]

1

2
[1] ,⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

so thatA andB are indeedmarginally independent.We also have

= = + +P A C P B C( , ) ( , )
1

2
[00]

1

4
[10]

1

4
[11],

so thatA andC aremarginally dependent, as areB andC .
The natural explanation is achieved by assuming that the causal structure is as given infigure 4, and the

priors over the exogenous variables and the conditional probabilities for the endogenous variables are as follows:

= +

= +

=

P A

P B

P C A B A B

( )
1

2
[0]

1

2
[1],

( )
1

2
[0]

1

2
[1],

( , ) [ · ],

where A B· denotes the product of the values ofA andB. Thus in this causalmodel,A andB are each chosen
uniformly at random, andC is obtained as their product (equivalently, as the logical ANDofA andB). One can
easily verify that ∣P A P B P C A B( ) ( ) ( , ) yields the distribution of equation (7).

The alternative explanation assumes the causal structure of figure 5, with parameters

= +

= = +

= =

= = = +

= =

P C

P B C

P B C

P A B C

P A B C C

( )
3

4
[0]

1

4
[1],

( 0)
2

3
[0]

1

3
[1],

( 1) [1],

( 0, 0)
1

2
[0]

1

2
[1],

( 1, ) [ ].

(Weneed not specify ∣ = =P A B C( 0, 1) because = = =P B C( 0, 1) 0.) The joint distribution one obtains is
again that of equation (7).

The difference between the two explanations becomes clear whenwe vary the parameters. If we change the
parameters in the firstmodel, for instance to

= + −

= ′ + − ′

= ″ + − ″ ⊕

( )
( )

P A w w

P B w w

P C A B w AB w A B

( ) [0] (1 )[1],

( ) [0] 1 [1],

( , ) [ ] 1 [ ],

where⊕ denotes additionmodulo 2, then the joint distribution is no longer of the formof equation (7), but it is
still true thatA is independent ofB, whileA andC are dependent, andB andC are dependent. On the other hand,
modifications to the parameters in the secondmodel do not preserve the pattern of dependences and
independences amongA,B andC.

Figure 5.Anunnatural causalmodel for the set of CI given in equation (6).
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Thefirst causal structure explains the pattern of statistical dependences and independences in amanner that
is robust to changes in the parameters of the causalmodel, whereas the second causal structure does not. Causal
discovery algorithms therefore favour the firstmodel over the second.

In the examplewe have used, all of the variables in the causalmodel were observed variables. In general (and
especially in a quantum context), onemight only observe a subset of the variables that are part of the causal
model. Even in this case, however, one should prefer those causalmodels wherein theCIs in the probability
distribution over the observed variables are stable to changes in the causal–statistical parameters.

This is themain assumption of the causal discovery algorithms, usually called faithfulness [2] or stability[1].
For a physicist, it is natural to call this an assumption of no fine-tuning. It is the key assumption in our analysis, so
we highlight it:

Faithfulness (no fine-tuning):The probability distribution induced by a causalmodelM (over the
variables inM or some subset thereof) is faithful (notfine-tuned) if its CIs continue to hold for
any variation of the causal–statistical parameters inM.

In other words, all CIs should be a consequence of the causal structure alone, not a result of the causal–
statistical parameters taking some particular set of values. If one assumes a uniformprior over the space of
causal–statistical parameters, then the parameter choices that can explainCI relations that are not implied by the
causal structure are found to havemeasure zero.

The secondmajor assumption of CI-based causal discovery algorithms is an appeal toOccamʼs razor, an
assumption that one should favour themost simple ormostminimalmodel that explains the statistics. Again, it
can be applied both for the case where the observed variables are all the variables in the causalmodel, or the case
where they are some subset thereof.

A causalmodelMwill be said to simulate another causalmodelM′ on a set of variablesV if for every choice of
causal–statistical parameters onM′, there is a choice of causal–statistical parameters onM such thatM yields the
same distribution overV asM′ does.We can nowdefine the assumption ofminimality.

Minimality:Given two causalmodelsM andM′ that induce a given probability distribution over
a set of observed variablesVO (in general a subset of the variables postulated by each causal
model), ifM′ can simulateM onVO butM cannot simulateM′ onVO, thenM is preferred toM′
as a causal explanation of the probability distribution overVO.

Atfirst sight, itmight seemodd to preferM overM′ given thatM is consistent with fewer distributions overV
thanM′ is. But the fact thatM can explain less thanM′ implies thatM ismore falsifiable thanM′, and in the
version ofOccamʼs razor espoused byCI-based causal discovery algorithms, the degree of falsifiability is the
figure ofmerit that one seeks to optimize.More falsifiable theories are to be preferred because, in Pearlʼs words,
‘they provide the scientist with less opportunities to overfit the data ‘hindsightedly’ and therefore command
greater credibility if a fit is found’ ([1], p 49). It follows that a causalmodel is deemedmost simple if it has the
least expressive power, while still doing justice to the observed probability distribution.Note thatMmight be
preferred toM′ as a causal explanation of the probability distribution overVO even thoughMmay requiremore
latent variables and/ormore causal arrows thanM′; ‘the preference for simplicity [...] is gauged by the expressive
power of a structure, not by its syntactic description.’ ([1], p 46).Wewill see some examples of the consequences
of the assumption ofminimality shortly.

It is worth remembering that causal discovery algorithms are fallible. They are best considered a heuristic, an
inference to the best explanation. Indeed, Pearl likens the faithfulness assumption in causal discovery to the
following kind of inference: you see a chair before you and infer that there is a single chair rather than two chairs
positioned such that the one hides the other ([1], p 48). The task of causal discovery can be understood as ‘an
inductive game that scientists play againstNature’ ([1], p 42).

3.1. Example of causal discovery assuming no latent variables
Variables that are not observed butwhich are causally relevant are called latent variables, or hidden variables. In
this section, we assume that the observed variables are the only causally relevant variables, i.e. that there are no
hidden variables.We look at a particular example of how faithfulness can help to determine candidate causal
structures from a pattern of dependences in this case. The scheme is equivalent to the one introduced by
Wermuth and Lauritzen [12].

Suppose one is interested in answering the question ‘Does smoking cause lung cancer?’ For eachmember of a
population of individuals, the value of a variable S is known, indicatingwhether the individual smoked or not,
and the value of a variableC is known, indicatingwhether they developed cancer or not. Suppose a correlation
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between S andC is observed. Furthermore, suppose that one also has access to a third variableT , indicating
whether the individual had tar in their lungs or not, and suppose that it is found that S andC are conditionally
independent givenT . In otherwords, after conditioning onwhether or not there is tar in the lungs, smoking and
lung cancer are no longer correlated. Finally, imagine that these three variables are assumed to be the only
causally relevant ones (wewill consider the alternative to this assumption further on).What causal structure is
natural given the observedCI relation? Becausewewish tomake it very clear how these algorithmswork, wewill
not simply specify what causal structure they return. Instead, wewill look ‘under the hood’ of these algorithms.

We begin by considering every possible hypothesis about the causal ordering. A causal ordering of variables
is an ordering wherein causal influences can only propagate fromone variable to another if the second is higher
in the order than the first.

For instance, consider the causal ordering < <S T C.Themost general causal structure consistent with
such an ordering is given infigure 6. To get a causalmodel, we need to supplement this with conditional
probabilities of every variable given its parents, that is, ∣P S P T S( ), ( ), and ∣P C T S( , ).The joint distribution
that thismodel defines is simply

=P S T C P S P T S P C T S( , , ) ( ) ( ) ( , ).

Given that any distribution can be decomposed in this form, by choosing the conditional probabilities
appropriately, we canmodel any joint distributionP S T C( , , ).But nowwemake use of the additional
informationwe have about the joint distribution, namely that ⊥⊥ ∣S C T( ).This implies that we can take the
parameters in the causalmodel to be such that ∣P C T S( , )= ∣P C T( ), so that the joint distribution can be
written as

=P S T C P S P T S P C T( , , ) ( ) ( ) ( ),

and, by the assumption ofminimality, we drop the causal arrow from S toC, so that the underlying causal
structure is simply given by figure 7.

This simplified causal structure cannot generate an arbitrary probability distribution, but it can generate one
wherein ⊥⊥ ∣S C T( ). It is a candidate for the true causal structure.

One then simply repeats this procedure for every possible choice of the causal ordering. For instance, for the
ordering < <C T S, themost general causal structure is the one shown infigure 8. The decomposition of the
joint probability corresponding to this causal structure is

=P S T C P C P T C P S C T( , , ) ( ) ( ) ( , ),

but the constraint ⊥⊥ ∣S C T( ) implies that one can substitute ∣ = ∣P S C T P S T( , ) ( ) in the causalmodel.
Therefore, by the assumption ofminimality, we drop the causal arrow fromC to S, yielding a causal structure of
the formgiven infigure 9. So this is another possible causal structure.

Sometimes different causal orderings lead to the same causal structure, for instance, the orderings
< <T S C and < <T C S both yield the structure given infigure 10.
Other causal orderings, such as < <S C T and < <C S T are such that theCI constraint does not lead to

any simplification of the causal structure. For instance, for < <S C T , the joint distribution decomposes as
= ∣ ∣P S T C P S P C S P T C S( , , ) ( ) ( ) ( , ), and none of the terms on the right-hand side can be simplified by

⊥⊥ ∣S C T( ).These two orderings lead to the two causal structures infigure 11.

Figure 6.Themost general DAG for the causal ordering < <S T C .

Figure 7.DAG that captures ⊥⊥ ∣S C T( ) for the causal ordering < <S T C .
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Therefore, in this example, the six possible causal orderings have led tofive candidates for the causal structure,
depicted infigures 7, 9, 10 and 11.However, the two causal structures shown infigure 11 do not satisfy
faithfulness, so only the other three are viable.

Suppose finally that in addition to the information about CI, one has informationwhich rules out certain
causal orderings. For instance, in the examplewe are considering, suppose one has the additional information
that tar in the lungs always appears after a person has smoked, never before. It is then reasonable to rule out any
causal structure that has <T S.This rules outfigures 9 and 10. At the end, the only candidate causal structure
which is left is the one given infigure 7, which says that smoking causes tar in the lungs which causes lung cancer.

Of course, it needn’t be the case that these observed variables are the only ones that are causally relevant. For
instance, theremight be an unobserved genetic factor that predisposes people both to smoke and to develop lung
cancer. Indeed, tobacco companies were quick to point out the possibility of explaining the observed correlation
between smoking and cancer in terms of such a genetic factor. So it is useful also to have causal discovery
algorithms that allow for latent variables.

Beforemoving on to algorithms that posit latent variables, we pause to note that the algorithmdescribed
here is proven to be correct in the sense that if there exists a set of causal structures that areminimal and faithful
to the observed correlations, then the algorithmwill return these structures [12].

More efficient versions of this algorithm are described elsewhere, for instance, the inductive causation (IC)
algorithmdescribed in Pearl [1], which is equivalent to the SGS algorithmof Spirtes et al [2]. There have also
beenmany proposals to further improve the efficiency of these algorithms (see [1] and [2] for details) . These
algorithms have been proven to be correct in the sense that if there exist causalmodels that areminimal and
faithful, then the algorithmswill return them.

Figure 8.Themost general DAG for the causal ordering < <C T S.

Figure 9.DAG that captures ⊥⊥ ∣S C T( ) for the causal ordering < <C T S.

Figure 10.DAG that captures ⊥⊥ ∣S C T( ) for the causal orderings < <T S C and < <T C S.

Figure 11.DAGs that capture ⊥⊥ ∣S C T( ) for the causal orderings < <S C T (11(a)) and < <C S T (11(b)).
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3.2. Example of causal discovery allowing for latent variables
Causal discovery in the case where one allows latent variables ismore complicated.We begin by considering
some of the consequences of the assumption ofminimality for causalmodels with latent variables.

First of all, it is clear that one needn’t consider any causalmodels wherein a latent variablemediates a relation
between two observed variables, because the set of distributions over the observed variables that can be explained
by such amodel is no greater than the set that can be explained by simply postulating a direct causal influence
between the observed variables. Similarly, positing a latent variable that is a common effect of the observed
variables does not change the distributions that can be supported on the observed variables. Latent variables have
nontrivial consequences for the observed distribution onlywhen they act as common causes of the observed
variables.

Consider the following suggestion for a causal explanation of the correlations among a set of observed
variables: there are no causal influences among any of the observed variables, but there is a single latent variable
that has a causal influence on each of them. By choosing the latent variable to take asmany values as there are
valuations of the observed variables, one can explain any correlation among the observed variables in this way.
However, if there exists another causalmodel that can only reproduce a smaller set of possible correlations, while
reproducing the observed correlations, then the principle ofminimality dictates that we should prefer the latter.
Of course, one could imagine that further investigations (involving interventions, for instance)might vindicate
the explanation that is less falsifiable over the one that ismore falsifiable. This simply is another reminder that
causal discovery algorithms are not infallible—they are heuristics for identifying themost plausible causal
explanations given the evidence.

Nowwe come to themost subtle part of the causal discovery algorithms that posit latent variables. There is a
difference between applying the criterion ofminimality among a set of causal structures that are consistent with
a given distribution over the observed variables and applying the criterion ofminimality among a set of causal
structures that are consistent with a given set of CI relations over the observed variables. Aswe’vementioned
before, the algorithms described in [1] and [2] look only at the CI relations and consequently they follow the
latter course. This choice is a significant shortcoming ofmany prominent causal discovery algorithms, butwe
will defer this criticismuntil the end of this section.

For themoment, we simply explain the consequences of this choice. To do so, it is useful to divide the causal
structures that are consistent with a given distribution over a set of observed variables into two sorts. The first
kind is such that all the latent variables it posits are common causes for atmost two of the observed variables.
We’ll say that such a causal structure is limited to pairwise common causes. The other kind is unrestricted, so that
more than two observed variables can be directly influenced by a single latent variable.

It is possible to show [13] that for a given set of CI relations among a set of observed variables, if a causal
modelM generates those CI relations faithfully (that is, as a consequence of the causal structure, rather than the
causal–statistical parameters), then there is another causalmodelM′ that achieves the sameCI relations
faithfully butwhich is limited to pairwise common causes. The assumption ofminimalitymakesM′ preferred
toM.

Therefore, if one is only applying the criterion ofminimality among a set of causal structures that are
consistent with theCI relations among the observed variables, then one need only look among causalmodels
that incorporate pairwise common causes. This is precisely what the standard causal discovery algorithms do.

There is a simplified graphical language for representing the set of causal structures that can be output by
these algorithms. Rather than using aDAG that includes both the latent and the observed variables in the causal
structure, one uses a graphwhich only includes the observed variables as nodes but uses a larger variety of edges
among these nodes to specify the causal relation thatmight hold among the associated variables. For instance, a
double-headed arrow between variablesX andY signifies that there is a common cause ofX andY (figure 12). An
arrow that has a circle rather than an arrowhead at one end represents either a common cause or a direct causal
influence or both (figure 13). Finally, an undirected edgewith a circle at both its head and its tail represents any
of thefive possible ways inwhich a pair of variablesmight be related (figure 14). In this way, a set of causal

Figure 12.The interpretation of a bidirected edge in terms of aDAG.
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structures that include latent variables can be summarized in a single graph. Following Pearl, we call such graphs
patterns10.

In order to infer the causal structures with only pairwise common causes that are consistent with a given
pattern, it is not sufficient to simply substitute for every undirected edge (or bi-directed edge or directed edge
with decorated tail) all the possibilities consistent with that edge, as enumerated infigures 12, 13 and 14.One
must eliminate some of the combinations. The definition of a v-structure in aDAG is a head-to-head collision of
two arrows on a node such that the parents do not exert any direct causal influence on one another. The
prescription forfinding all theDAGs consistent with a pattern is to consider all the combinations of possibilities
that do not create a new v-structure.

The IC* algorithmdescribed in Pearl [1] (which is equivalent to the causal inference algorithmdescribed in
SGS [2]) takes CI relations as input and returns a pattern. This algorithm is correct in the sense that if there exist
causal structures with only pairwise common causes that are faithful to the observedCI relations, then the
algorithmwill return theminimal structures within this set11.Wewill not review the details of the algorithm
here, butwewill apply it to a simple example to get a feeling for how itworks.

Consider the smoking example again, where the observed variablesS T, andC are found to satisfy ⊥⊥ ∣S C T .
The pattern returned by the IC* algorithm in this case is shown infigure 15.

For each undirected edge in this pattern, there are five possibilities in theDAG forwhat connection holds
between the nodes, as displayed in figure 14. Infigure 16we display all 25 combinations of such possibilities.We
have also shaded out each of the combinations that introduces a new v-structure—these combinations are not
candidates for the causal structure according to the IC* algorithm.Hence, the nine causal structures that remain
are the candidates returned by IC*.

Howdoes this answer embody the principles of causal discovery? First, the fact that one unpacks the pattern
into causal structures with only pairwise common causes is a consequence of theminimality assumption, as we
discussed at the beginning of this section. This is the reason that we do not find in the output of the algorithm any
latent variable that is a common cause of all three variables S,T andC.

Figure 13.The interpretation of a directed edgewith a circle at its tail in terms ofDAGs.

Figure 14.The interpretation of an undirected edgewith circles at head and tail in terms ofDAGs.

Figure 15.Output pattern of IC* algorithm for input ⊥⊥ ∣S C T .

10
More precisely, the analogue of the particular graphs we consider here are Pearlʼs ‘marked patterns’. These have also been called ‘partially

oriented inducing path graphs’ in SGS.Wewill follow SGSʼs notational convention rather than Pearlʼs when drawing such graphs.
11

Note, however, that the existence of a causal structure that reproduces the CI relations does not guarantee the existence of one that
reproduces the observed distribution, as wewill see at the end of this section. In this sense, the algorithmmay still fail to return a valid causal
explanation of the observed distribution.
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Now consider the question of why there is neither a direct causal influence between S andCnor a latent
variable that acts as a common cause for the pair. The answer is simply that if either of these sorts of influences
were acting, thenwewould not find ⊥⊥ ∣S C T( ); learning Swould teach us something aboutC even thoughT is
known. In the context of our example, this eliminates the possibility put forward by the tobacco companies of a
hypothetical genetic factor that both predisposes people to smoke and to get lung cancer.

We need not consider the cases where there is also no connection between S andT nor the cases where there
is also no connection betweenT andC because by assumption ⊥⊥ ∣S C T( ) is the onlyCI relation and therefore

⊥⊥S T( ) and ⊥⊥T C( ).
It follows that the 25 structures displayed infigure 16 are the only possibilities that remain among all possible

causal structures with pairwise common causes. So, to explainwhy the output of the algorithm is justifiedwe
need only explainwhy one should eliminate those that introduce a new v-structure. First note that if one
conditions on a variable that is the common effect of two other variables, thenwe expect a dependence between
those variables (for instance, in digital logic, knowing that the output of anANDgate is 0 implies that the two
inputs cannot both be 1). Therefore for each causal structure that includes a v-structure onT, wewould expect
that conditioning onT induces a dependence between the roots of the v-structure, and because one of these
roots is always correlatedwith S and the otherwithC, this would imply a dependence between S andC,
contradicting the fact that ⊥⊥ ∣S C T( ). Alternatively, we can infer that a causal structure including a v-structure on
T contradicts the relation ⊥⊥ ∣S C T( )using the d-separation criterion.

What does this imply aboutwhether smoking causes lung cancer? Suppose that wemake use of the same
additional information aswe considered in section 3.1, namely, that tar in the lungs is always found to occur after
smoking, never before.We can then eliminate all causal structures with an arrow fromT to S.What remains are
the three options infigure 17. They are: (i) smoking causes tar in the lungs which causes cancer, (ii) there is a
latent variable that is a common cause of smoking and having tar in the lungs and tar in the lungs causes cancer,
and (iii) bothmechanisms are in play. If option (ii) holds then smoking is not a cause of cancer and, unlike the
hypothesis of a genetic factor that predisposes people both to smoke and to develop lung cancer, it is consistent
with the observation that tar screens off smoking from cancer. Of course, this hypothesis remains implausible if
one cannot identify (or imagine) any factor that screens off smoking from tar in the lungs.

Figure 16.The causal structures returned by the IC* algorithmwhen the input is a distribution over observed variables S,T andCwith
⊥⊥ ∣S C T( ). Those that introduce a new v-structure are shaded out.

Figure 17.The causal structures that remain if the ordering <S T is assumed.
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Wepreviously highlighted the fact that the causal discovery algorithms of [1] and [2] apply the principle of
minimality within the set of causal structures that are consistent with theCI relations in the observed
distribution, not within the set of those that are consistent with the observed distribution itself. This can be a
problembecause these two sets of causal structures can be different [13].

It is best to illustrate this with an example. Consider the case of a triple of observed variables,X,Y andZ.We
will compare two causalmodels. Thefirst posits a latent variable λwhich has a direct causal influence on all three
observed variables. The second posits three latent variables, λ, μ and ν, each of which has a direct causal influence
on a distinct pair of observed variables12. The twomodels are illustrated infigure 18.

The two structures imply precisely the same set of CI relations among the observed variables, namely, the
null set. However, there are distributions over the triple of observed variables that are only consistent with the
firstmodel and not the second. For instance, a joint distributionwherein the three observed variablesX,Y andZ
are close to perfectly correlated13 cannot be generated from the second causal structure for any choice of causal
parameters [15, 16]. Therefore, if this is the distribution one has observed, then the second causal structure is not
a candidate for the underlying causalmodel. However, the CI relations one observes for such a distribution are
consistent with the second causal structure. So if the input to oneʼs causal discovery algorithm is limited to these
relations, then the algorithm can return a causal structure that is inconsistent with the observed distribution.
Indeed, because the first causal structure can simulate the second, the principle ofminimality would naturally
lead one to prefer the second, even though it is inconsistent with the observed distribution.

Wewill see that this deficiency of CI-based causal discovery algorithms becomesmanifest when one applies
them to correlations that violate a Bell inequality.

4. Applying causal discovery algorithms to quantumcorrelations

Wenow turn to the question of what these algorithms tell us about quantum correlations.We consider only
Bell-type experiments involving two systems, two possible settings for eachmeasurement and two possible
outcomes for eachmeasurement. Let S andT be the binary variables that specify whichmeasurement was
performed on the left and right wings of the experiment respectively, and letA andB be the binary variables that
specify the outcomes of themeasurements on the left and right wings respectively.

Bellʼs theoremderives constraints on ∣P AB ST( ) from assumptions about the causal structure [17]. These
assumptions—which Bell justified by appeal to the space-like separation of the twowings of the experiment and
the impossibility of superluminal causal influences—are thatA is the joint effect of the setting variable S and a
common cause variable λ,whileB is the joint effect of the setting variableT and λ.The causal structure
corresponding to this assumption is presented infigure 19.

This structure implies the followingCI relations,

λ λ⊥⊥ ⊥⊥A BT S B AS T( ) and ( ).

Bell called his assumption local causality and formalized it in terms of these CIs. These in turn imply that
λ∣P AB ST( )= λ λ∣ ∣P A S P B T( ) ( ),which is known as factorizability. From this condition, together with the

assumption that there are no correlations between the settings and the hidden variables

λ λ⊥⊥ ⊥⊥S T T S( ) and ( ),

one can infer that ∣P AB ST( )must satisfy the Bell inequalities [17, 18]. Bellʼs assumption about the causal
structure also implies no superluminal signalling:

Figure 18.Two candidate causal structures for explaining correlations betweenX,Y andZ using latent variables.

12
This causal scenario has also been considered in the context of a discussion of quantum correlations in [14, 15].

13
We cannot take the casewhere they are perfectly correlated because wewant our example to be of a distribution that is faithful to the first

causal structure and perfect correlationwould imply that any two variables are conditionally independent given the third.
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The fact that quantum correlations can violate Bell inequalities shows that they cannot be explained using the
causal structure offigure 19.

Wewill now consider the inverse problem to the one considered by Bell. Rather than attempting to infer
constraints on correlations from assumptions about the causal structure, wewill attempt to infer conclusions
about possible causal structures from the nature of the correlations that arise in quantum theory. This is the sort
of problem that the causal discovery algorithmswere designed to solve.

Wewill contrast two examples of quantum correlations: onewhich violates the Bell inequalities and the
otherwhich satisfies the Bell inequalities.

For the latter, wewill take a version of the Einstein–Podolsky–Rosen (EPR) experiment [19] in terms of
qubits (first proposed by Bohm for spin-1/2 systems [20]). The pair are prepared in themaximally entangled
state

Ψ = + + + − −z z z z
1

2
( ), (9)

where ±z are the eigenstates of spin along the ẑ axis. On eachwing, the two choices ofmeasurement are
between a pair ofmutually unbiased bases (the same pair for eachwing). For instance, wemaymeasure spin
along the ẑ or x̂ axes, as illustrated infigure 20. In this case, if the samemeasurement ismade on bothwings
(both ẑ or both x̂), one sees perfect correlation between the outcomes, while if differentmeasurements aremade
(ẑ on one and x̂ on the other), then one sees no correlation between the outcomes. It is well known that these
sorts of correlations do not violate any Bell inequality, which is to say that they can be explained by a locally causal
model.

The other sort of correlationwe consider will be those exhibited in theClauser–Horne–Shimony–Holt
(CHSH) experiment [18].We can take the pair of spins to be prepared in the samemaximally entangled state Ψ
as for the EPR scenario, and the pair ofmeasurements on the left wing to also be of spin along the ẑ or x̂ axes.
However, on the right wing, the pair of possiblemeasurements are of spin along the +z x( ˆ ˆ) 2 axis or along the

−z x( ˆ ˆ) 2 axis, as indicated in figure 21. In this case, onefinds that the probability of correlation for the cases

=S T( , ) (0, 0), (1, 0) and(0, 1) is equal to the probability of anticorrelation for the case =S T( , ) (1, 1) and

has the value + ≃ 0.85.1

2

1

2 2
In both the EPR andCHSH scenarios, we assume that the settings S andT are sampled independently.
The input to the standard causal discovery algorithms is limited toCI relations, sowe begin by computing

theCIs that hold for the EPR andCHSHexperiments. Rather than specifying an exhaustive list, we provide a
generating set (the rest can be obtained by applying the semi-graphoid axioms). They are:

Figure 19.The causal structure corresponding to Bellʼs notion of local causality.

Figure 20.Measurement axes for generating EPR correlations given the quantum state Ψ of equation (9).
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Consider the conditions ⊥⊥A S( ) and ⊥⊥B T( ). These assert that the outcome on awing is independent of the
setting on that wing.While true, this independence is not representative of the causal structure. Indeed, it only
holds because of the degeneracy of the Schmidt coefficients in themaximally entangled state. If we instead
consider the state

Ψ = + + + − − −p z z p z z1 , (10)

where ≠p 1 2, then ⊥⊥A S( ) and ⊥⊥B T( ). Because it is intuitively clear that the choice ofmeasurement does have
a causal influence on the outcome, the independences ⊥⊥A S( ) and ⊥⊥B T( ) are pathological in the context of the
causal discovery algorithms. Given that if the EPR (CHSH) experiment is implementedwith a state that is close to
maximally entangled, it still satisfies (violates) the Bell inequalities, we consider these states instead. (If one likes,
pmay be taken to be arbitrarily close to1 2.)We then get the following generating sets of independence relations,

⊥⊥ ⊥⊥ ⊥⊥
⊥⊥ ⊥⊥ ⊥⊥

S T A T S B S T

S T A T S B S T

EPR: ( ), ( ), ( ),

CHSH: ( ), ( ), ( ),

where ⊥⊥S T( ) asserts the independence of the settings, and ⊥⊥ ∣A T S( ) and ⊥⊥ ∣B S T( ) are the no-signalling
conditions (equation (8)).

The critical point is that the set of independences are the same for the EPR and theCHSHexperiments. Since
the input to the causal discovery algorithms that we consider is limited toCI relations, it follows thatwhatever
causal conclusions these algorithms draw, theywill draw the same causal conclusions about the EPR experiment
as they do about theCHSH experiment. And yet, from the fact that the EPR correlations satisfy the Bell
inequalities, we know that they can be explained by local causes while from the fact that the CHSH correlations
violate a Bell inequality, we know that they cannot be so explained.

So the conclusion is that CI-based causal discovery algorithms do not do justice to Bellʼs theorem.
Independences simply do not provide enough information.One needs a causal discovery algorithm that looks at
the strength of correlations to reproduce Bellʼs conclusion.

Despite the inability of the standard causal discovery algorithms to distinguish correlations that violate the
Bell inequalities from those that satisfy them, it is nonetheless interesting to seewhat happenswhen one applies
the algorithms to the set of independences we found for the EPR andCHSHexperiments.Wewill refer to these
as nontrivial no-signalling correlations (‘nontrivial’ in the sense that there is some nonvanishing correlation
between the outcomes for some choices of the settings).

In applying the causal discovery algorithms, wewill assume for themoment that the setting variable on one
wing is a cause of the outcome variable on that wing, that is, wewill assume that S is a cause ofA and thatT is a
cause ofB. This assumptionwill be relaxed in section 5. In this case, the assumption that there are no causal
cycles then implies that there can be no causal influence fromA to S, nor fromB toT. Nonetheless, we are still
permitting influences from the outcome on onewing to the setting on the other, although, as wewill see, the
causal discovery algorithmswill rule against such influences.

4.1. No latent variables
It is instructive to consider the causal structure that arises for a single representative causal ordering of the
variables.We take < < <S T A B.Then, themost general causal structure is illustrated infigure 22.Hence the
most general joint distribution for this ordering is of the form

=P S T A B P S P T S P A S T P B S T A( , , , ) ( ) ( ) ( , ) ( , , ).

Figure 21.Measurement axes for generating CHSHcorrelations given the quantum state Ψ of equation (9).
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The independence ⊥⊥S T( ) implies that ∣ =P T S P T( ) ( ), and the independence ⊥⊥ ∣A T S( ) implies that
∣ = ∣P A S T P A S( , ) ( ). The independence ⊥⊥ ∣B S T( )has no nontrivial implications for this causal ordering,

hence the term ∣P B S T A( , , ) cannot be simplified. From these CI relation it follows that the joint distribution
can bewritten as

=P S T A B P S P T P A S P B S T A( , , , ) ( ) ( ) ( ) ( , , ),

which corresponds to the causal structure infigure 23(a). If we change the ordering of variables so thatB
precedesA, then by a similar argument, we obtain the causal structure in figure 23(b). For every other possible
causal ordering consistentwith our assumption that <S A and <T B,we also obtain one of the causal structures
offigure 23.

Consider the causal structure infigure 23(a), Although it faithfully captures ⊥⊥S T( ) and ⊥⊥ ∣A T S( ), it does
not faithfully capture ⊥⊥ ∣B S T( ).The onlyway to explain the independence ⊥⊥ ∣B S T( )within this causalmodel is
byfine-tuning of the causal parameters in themodel, for instance, if the parameters defining ∣P B S T A( , , ) are
not independent of those defining ∣P A S( ). A similar problem arises for the causal structure infigure 23(b). It
follows that in the case of no latent variables, no causal structure can satisfy faithfulness for theCIs of nontrivial
no-signalling correlations.

Note that if, instead of applying theWermuth–Lauritzen algorithm to the nontrivial no-signalling
correlations, one applies the IC algorithm [1], equivalently the SGS algorithm [2] (which also assume no latent
variables), onefinds that it returns a graph that is not a valid pattern, signalling a failure of the algorithm. This is
what onewould expect given that the algorithmonly promises to return a valid causal structure if there exists one
that satisfies faithfulness, and in this case, there is not.

There is an interesting lesson here for the foundations of quantum theory. Long before Bellʼs work, Einstein
had pointed out that if one did not assume hidden variables, then one could only explain the EPR correlations by
positing superluminal causes. This argument wasmade in his comments at the 1927 Solvay conference [21] (see
[22] and [9] formore concerning Einsteinʼs arguments on completeness and locality.) One can easily cast
Einsteinʼs argument into themold of causal discovery algorithms as follows. If we allow the quantum stateψ,
considered as a classical variable, as the only common cause, then the assumption of no superluminal causal
influences implies that ψ∣P A B S T( , , , )= ψ ψ∣ ∣P A S P B T( , ) ( , ), and given thatψ isfixed in the experiment (it
is a variable which only takes one possible value), this implies thatA andB should be uncorrelated, in
contradictionwith the EPR correlations.

But Einstein failed to explicitly note anothermysterious feature of the EPR correlations, which our analysis
highlights: even if one is willing to countenance superluminal causal influences in an attempt to explain the EPR
correlationswithout recourse to hidden variables, ensuring that these superluminal causes cannot be used to
send superluminal signals implies that theremust befine-tuning in the underlying causalmodel.

4.2. Latent variables allowed
If one simply inputs the independences of nontrivial no-signalling correlations into the IC* algorithmof [1],
which allows latent variables, one obtains the pattern illustrated infigure 24 as output.

Figure 22.Themost general causal structure for the causal ordering < < <S T A B, assuming no hidden variables.

Figure 23.Possible causal structures for no-signalling correlations, assuming no hidden variables, for causal orderings
< < <S T A B, < < <T S A B, < < <S A T B (a) and < < <S T B A, < < <T S B A, < < <T B S A (b).
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Recall that the arrowswith an empty circle at their tail imply that one can have either a direct causal link or a
common cause. If one believes that the settings at eachwing are freely chosen, then one is inclined to think that
either the setting variables S andT should be direct causes ofA andB respectively, or that if they are not, then it is
the common cause forA and S and the common cause forB andT that is freely chosen. In this case, we could
lump the common causes into the definition of the setting variables without loss of generality.

Besides this caveat about the causal relation between S andA and betweenT andB, the causal structures with
pairwise common causes that are consistent with the pattern that the IC* algorithmhas returned are precisely
those that capture Bellʼs notion of local causality, illustrated infigure 19.Moreover, the principle ofminimality,
applied to the causalmodels consistent with theCI relations, would lead us to favour the causalmodel of
figure 19. But because such a causalmodel satisfies the Bell inequalities, while the CHSH correlations do not, we
know that it cannot provide a causal explanation of theCHSH correlations.

This is how the deficiency of the IC* algorithmmanifests itself when applied to quantum correlations. The
problem is that a causal structurewith latent variables that reproduces theCI relations of a given distribution
might not be capable of reproducing the distribution itself. In particular, the causal structure offigure 19
reproduces theCI relations of the distributionP A B S T( , , , )defined by theCHSHexperiment, namely

⊥⊥ ⊥⊥ ∣S T A T S( ), ( ) and ⊥⊥ ∣B S T( ), but it cannot reproduce the distribution itself. As our brief discussion in
section 3.2 highlighted, if one applies the principle ofminimality among the causalmodels that are consistent
with the CI relations, rather than among the causalmodels that are consistent with the entire observed distribution,
one canmistakenly come to favour a causalmodel that cannot reproduce the observed distribution.

Of course, we already pointed out in section 4, that the input of the IC* algorithm cannot distinguish Bell-
inequality-violating fromBell-inequality-satisfying correlations. Sowe reiterate our conclusion from section 4,
that causal discovery algorithmswhich look only at CIs are inadequate to the task of establishingwhether or not
correlations can be explained by a locally causalmodel.We require better algorithms that also take into account
the strengths of the correlations.

4.3. Someproposed causal explanations of quantum correlations
Wenow apply the ideas behind causal discovery algorithms to a few of the existing proposals for providing a
causal explanation of Bell-inequality-violating correlations.We consider three: superluminal causation,
superdeterminism, and retrocausation.

We start by considering themost general kind of causal explanation, where one allows hidden variables.
Causal structureswithout hidden variables are a special case of these. Nonetheless, we consider the case of no
hidden variables explicitly to ensure that there is no confusion.

4.3.1. Superluminal causation
One option for explaining Bell correlations causally is to assume that there are some superluminal causes, for
instance, a causal influence from the outcome on onewing to the outcome on the other, or from the setting on
onewing to the outcome on the other, or both. The possibilities are illustrated in figure 25.

These sorts of causal explanations of Bell-inequality violations, however, are unsatisfactory in light of the
principles embodied in causal discovery algorithms. Given the superluminal causal influences fromonewing to
the other, the only way to explain the lack of superluminal signals, that is the CI relations of equation (8), is
through a fine-tuning of the causal parameters.

For instance, infigure 25(c), the correlations set up between S andB along the direct causal path could cancel
with those set up by the causal path throughA. (The path through λ cannot set up correlations between S andB
because there is a collider onA in this path andwe are not conditioning onA.) Such a cancelation requires fine-
tuning of the parameters of themodel.

To salvage no-signalling for the causal structure offigure 25(a), we need a different sort offine-tuning (a
similar sort of fine-tuningmechanism can also be used for the causal structure offigure 25(b)). For instance, it
could be that λ λ λ= ( , )1 2 , where λ1 is a binary variable that is uniformly distributed and thatB is a function of

λ⊕S ,1 T and λ2. In this case, we can ensure that ⊥⊥ ∣B S T( )by virtue of the special distribution on λ ,1 which is a
kind offine-tuning.

Figure 24.The output pattern of the IC* algorithmwhen applied to nontrivial no-signalling correlations.
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Note that this is precisely the sort of causal structure that is assumed in the Toner andBaconmodel [23],
where Bell-inequality violations are simulated by classical communication14. Thismodel also involves fine-
tuning insofar as signalling is prohibited only for a special distribution over the shared randomvariables posited
by themodel.

The deBroglie–Bohm interpretation is a prominent example of amodel that seeks to provide a causal
explanation of Bell correlations using superluminal causal influences. Consider the deBroglie–Bohm
interpretation of a relativistic theory such as themodel ofQEDprovided by Struyve andWestman [24], or else of
a nonrelativistic theorywherein the interactionHamiltonians are such that there is amaximum speed at which
signals can propagate. In both cases, it is presumed that there is a preferred rest frame that is hidden at the
operational level. In a Bell experiment, if themeasurement on the left wing occurs prior to themeasurement on
the right wing relative to the preferred rest frame, then there is a superluminal causal influence from the setting
on the left wing to the outcome on the right wing,mediated by the quantum state, which is considered to be a
part of the ontology of the theory [25]. (Note that no causal influence from the outcome of the first experiment
to the outcome of the second is required because the outcomes are deterministic functions of the Bohmian
configuration and thewavefunction.) It follows fromour analysis that the parameters in the causalmodel
posited by the deBroglie–Bohm interpretationmust befine-tuned in order to explain the lack of superluminal
signalling.

Valentiniʼs version of the deBroglie–Bohm interpretationmakes this fact particularly clear. In [26, 27] he has
noted that thewavefunction plays a dual role in the deBroglie–Bohm interpretation. On the one hand, it is part
of the ontology, a pilot wave that dictates the dynamics of the systemʼs configuration (the positions of the
particles in the nonrelativistic theory). On the other hand, thewavefunction has a statistical character, specifying
the distribution over the systemʼs configurations. In order to eliminate this dual role, Valentini suggests that the
wavefunction is only a pilot wave and that any distribution over the configurations should be allowed as the
initial condition. It is argued that one can still recover the standard distribution of configurations on a coarse-
grained scale as a result of dynamical evolution [28].Within this approach, the no-signalling constraint is a
feature of a special equilibriumdistribution. The tension betweenBell inequality violations and no-signalling is
resolved by abandoning the latter as a fundamental feature of theworld and asserting that it only holds as a
contingent feature. Thefine-tuning is explained as the consequence of equilibration. (It has also been noted in
the causalmodel literature that equilibration phenomenamight account forfine-tuning of causal
parameters [29].)

Conversely, the version of the deBroglie–Bohm interpretation espoused byDürr, Goldstein andZanghí [30]
—which takes no-signalling to be a non-contingent feature of the theory—does not seek to provide a dynamical
explanation of the fine-tuning. Consequently, it seems fair to say that the fine-tuning required by the deBroglie–
Bohm interpretation is less objectionable inValentiniʼs version of the theory.On the other hand, the cost of
justifying the fine-tuning by a dynamical process of equilibration is that, because true equilibrium is an
idealization that is never achieved infinite time, onewould expect systems to have small deviations from
equilibrium and such deviations could in principle be exploited to send signals superluminally. Valentini
endorses this consequence of his version of the deBroglie–Bohm interpretation [31] and indeed hasmade
proposals for where the strongest deviations from equilibriummight arise [32]. Therefore, anyonewho thinks
that the absence of superluminal signals is a necessary, rather than a contingent, feature of quantum theory, will
not be enthusiastic about Valentiniʼs approach.

Another recent article that considers the question of whether Bell-inequality violations can be explained by
superluminal causal influences is Bancal et al [33]. They consider a physicalmodel wherein causal influences can
propagate at a speed v that is faster than light, >v c, but stillfinite. They imagine that thismodel deviates from

Figure 25.Examples of causal structures that posit superluminal causal influences to explain Bell correlations.

14
Thismodel works evenwhen themeasurement setting for each qubit is chosen arbitrarily, rather than being limited to the two settings of

theCHSHexperiment.
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quantum theory in some of its operational predictions. In particular, if the twowings of a Bell experiment are
space-like separated relative to the v lightcone structure, then it is presumed that the Bell inequalities are not
violated (contrary to the quantumpredictions), whereas if they are time-like separated relative to v (but still
space-like separated relative to c), the Bell inequalities are violated, as theywould be in quantum theory. They
then show that the the superluminal causes in theirmodel can be leveraged to achieve superluminal signalling. In
this sense, theirmodel is analogous toValentiniʼsmodel, and implies that if one is unwilling to endorse a theory
allowing such signals, one should not posit finite superluminal causal influences. Note, however, that, unlike
Valentiniʼsmodel, the Bancal et almodel still requires fine-tuning in those cases wherein the superluminal
causal influences cannot be used to send superluminal signals, such as the original bipartite scenario. Thefine-
tuning criticism of explanations positing superluminal causes applies whether those superluminal causes
propagate at afinite speed or not.

4.3.2. Superdeterminism
Another option for a causal explanation of quantum correlations is to posit that the settings are not free but are
causally influenced by other variables.

For instance, the hidden variable λ (which correlates the outcomes)might causally influence one or both of
the setting variables, as illustrated infigures 26(a) and (b). Alternatively, one can posit the existence of a second
hidden variable μ that is a common cause for the setting on onewing and the outcome on the otherwing, as
illustrated infigure 26(c).More complicated possibilities would have μ as a common cause of a subset of three of
the settings and outcomes. Note that the possibility of a latent variable that is a common cause of λ and one or
both settings has not been excluded; it is incorporated into the first case. This is because any such variable could
just be absorbed into the definition of λwithout loss of generality. The scenario infigure 26(c) could also be
considered a special case of the one infigure 26(a), if we include μ into the definition of λ. Nonetheless, it is useful
to separate out this second case because it posits that the common cause ofA andB is not correlated with the
common cause of S andB.

All of the causal influences posited in suchmodels can be taken to be subluminal. However, such
explanations of the Bell correlations are clearly in conflict with the notion that the settings can be freely chosen
by the experimenter. To assert one of these causal structures as away to resolve themystery of Bellʼs theorem is
an instance of what is commonly known as the ‘superdeterminism’ loophole. But, just as with positing
superluminal causal influences, these causal structures are not faithful to the observed correlations because one
ormore of the observedCI relations— ⊥⊥S T (independence of settings), ⊥⊥ ∣A T S( ) (no-signalling from left to
right) and ⊥⊥ ∣B S T( ) (no signalling from right to left)—can only be satisfied by fine-tuning of the parameters in
the causalmodel. This is a novel sort of objection against the notion of a superdeterministic explanation of Bell-
inequality-violations, independent of an appeal to freewill.

It is worth devoting a fewwords to the sort offine-tuning that is required. First note that in the context of
abandoning the assumption of freewill, the no-signalling constraintmust be reinterpreted as an observed
statistical independence, rather than a statement about the consequences of an intervention on a setting variable.
Of course, this statistical independence is still observed and thereforemust still be reproduced by the causal

model. In the causal structure offigure 26(a), if we define λ* to be that part of λ that is correlated nontrivially

with S, thenwe require that λ ⊥⊥B* despite the arrow from λ toB.We can still do justice to the Bell correlations by

having λ* correlatedwith only the parity ofA andB, while remaining uncorrelatedwithB. This is an instance of
fine-tuning.

Similar fine-tuning tricks can be used to ensure that ⊥⊥ ∣B S T( ) in the causal structures offigures 26(b)
and (c).

Figure 26. Some causal structures that exploit the superdeterminism loophole to explain Bell correlations.
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4.3.3. Retrocausation
‘Retrocausation’ refers to the possibility of causal influences that act in a direction contrary to the standard arrow
of time. It has been proposed as ameans of resolving themystery of Bell-inequality violations [34–38] by
purportedly saving the relativistic structure of the theory: rather than having causal influences propagating
outside the light cone, they propagatewithin the light cone although possibly within the backward light cone.

It is useful to distinguish two approaches to retrocausal explanations of Bell correlations: those that add
cycles to the causal structure and those that do not. Given that the former take us outside the framework of
directed acyclic graphs, wewill confine our attention to acyclic retrocausation.

Price has described the idea of a retrocausalmodel of Bell inequality violations in [39]. It is not completely
clearwhether he has inmind amodel that posits cycles or not.However, he does argue that oneway to generate a
retrocausalmodel is to start with a superdeterministicmodel and to simply reverse the causal arrows that lead
into the settings. For the examples of superdeterminismwe have considered, such reversals lead to acyclic
retrocausalmodels. For instance, if one starts with the superdeterministic causal structure offigure 26(a) and
reverses the λ → S arrow, one obtains the causal structure offigure 27(a), where setting S is a cause of the hidden
variable λ. If one assumes that S is chosen freely at a time to the future of when λ is set, then thismodel is clearly
retrocausal.

Alternatively, consider taking the superdeterministicmodel of figure 26(c) and reversing the μ → S arrow,
to obtain the causal structure offigure 27(c). If μwere presumed to be space-like separated fromboth S andB, it
would simplymediate a superluminal causal influence from S toB. However, if one posits that μ is in the
common future of S andB, thenwe can imagine that there is a causal influence from S toμ that is subluminal,
and one from μ toB that is retrocausal. Alternatively, if one posits that μ is in the commonpast of S andB, then
the causal influence from S to μmust be assumed to be retrocausal.

Note that if one views spatio-temporal relations as supervening upon causal relations, rather than vice versa,
then there is no freedom to specify the spatio-temporal location of μ and the distinction drawn above is not
meaningful. Even if one takes spatio-temporal notions to be primary, the fact that the location of μ seems to be
merewindow-dressing in the context of a causal explanation of Bell-inequality violations undermines the
distinction between retrocausation and superluminal causation.

Fine-tuning is just as necessarywithin the retrocausal explanations as it was in the ones that posited
superluminal influences or superdeterminism.Without it, onewould obtain a correlation between S andB, in
contradictionwith their observed statistical independence. Indeed, if these causal structures could be
supplementedwith arbitrary causal parameters, then one could use the causal chain of influence that extends
from S toB to send a signal.

4.3.4. Causal explanations without hidden variables
Note that causal structureswithouthidden variables can always be interpreted as causal structures with trivial
hidden variables. If λ is a variable acting as a common cause of other variables but takes only a single value, then it
cannot generate a statistical correlation among its causal children. Equivalently, a variable acts as a nontrivial
common cause only if the distribution over its values has a nontrivial spread.

Recall figure 25, which considers both a common cause relation holding betweenA andB together with a
superluminal causal influence from the settings and/or outcomes on onewing to the outcome on the otherwing.
If the hidden variable λ is trivial, thenwe can drop it from the causal structure, to obtain the followingDAGs,
whereinA andB are related only by a superluminal causal influence from the settings and/or outcomes on one
wing to the outcome on the otherwing.

Thefirst two of these causal diagrams, 28(a) and (b), are not viable as causal explanations of the observed
correlations because they each imply aCI relation that is not observed: 28(a) implies ⊥⊥ ∣A B S( ),while 28(b)
implies ⊥⊥ ∣S B A( ). So only 28(c) is a candidate for a causal explanation. However, it is obvious that this causal

Figure 27.Causal structures that exploit the retrocausation loophole to explain Bell correlations.
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structure requiresfine-tuning to explain the no-signalling independence ⊥⊥B S just asmuch as the causal
structures offigure 25 do.

The fact that trivial variables as common causes are useless for explaining correlations serves to clarify how
Bellʼs theoremprovides a challenge to the possibility of causal explanations of quantum correlations even if one
espouses the interpretation of quantum theorywherein the pure quantum stateψ is a complete description of
reality (this is called aψ-complete ontologicalmodel in the terminology of [9]). The notion that explaining
quantum correlations causally is a challenge only if one assumes hidden variables is a common error.We
therefore pause to consider what is wrongwith an intuitionwhichmaywell acount for the error, namely, that in
a Bell experiment the common cause of themeasurement outcomes is the quantum state of the pair of particles.

Within the framework of causalmodels, only a variable can act as a common cause. If one takes the quantum
state of the pair of particles to be a common cause within this framework, thenwemust introduce a variableΨ
that varies over all possible quantum states for the pair of particles and allow this to causally influence bothA and
B. If this common cause is the onlymeans for correlatingA andB, that is, if there are no causal influences from
onewing to the other, then the causal network is the one depicting Bellʼs notion of local causality, figure 19, but
withΨ playing the role of λ. Given the framework of causalmodels, this causal structure implies that the
probability ∣P A B S T( , , )must be given by

∫ Ψ Ψ Ψ Ψ=P A B S T P A S P B T P( , , ) d ( , ) ( , ) ( ). (11)

In the experiment, the distribution over the variableΨ is aDirac-delta function centred onψ,
Ψ δ Ψ ψ= −P ( ) ( ), and consequently

ψ ψ=P A B S T P A S P B T( , , ) ( , ) ( , ). (12)

This is simply a special case of the phenomenon described above: becauseΨhas no statistical spread, one can
eliminate it from theDAG,A and S then become causally disconnected fromB andT, andwe are left with a
product distribution. The critical point is that the expression (11) that is implied by the framework of causal
models cannot accommodate the Born rule as a special case. The Born rule specifies that ∣P A B S T( , , )=

Π Π ψ⊗tr ( )S A T B, ,
⎡⎣ ⎤⎦ for some projectorsΠS A, andΠT B, and bipartite stateψ, an expressionwhich cannot be

factorized. The situation can be characterized as follows. According to the framework of causalmodels, it is only
appropriate to claim that the correlation between two variables is explained by a common cause if the variables
can bemade uncorrelated by conditioning on the common cause. Given this definition, the quantum state
cannot be claimed to be a common cause of the outcomes on the twowings, at least not within the standard
framework of causalmodels15.

If one does not allow hidden variables, then in the framework of causalmodels the only way to explain
correlations betweenA andB, even those that satisfy the Bell inequalities, is through a causal influence from the
setting and outcome on onewing to the outcome on the other wing, as infigure 28(c).

In fact, this is precisely the sort of causalmodel that describes aψ-complete interpretationwherein the
collapse of thewavefunction is a physical process. In such an interpretation, the setting and outcome on one
wing has a causal influence on the local quantum state at the opposite wing and hence has a causal influence on
the outcome at the opposite wing. Figure 28(c) describes such a causal structure if the causal influence is from
the left wing to the right and if the local quantum state at Bobʼs wing is considered as an intermediary variable in
the causal influences fromA and S toB. Of course, tomake this influence consistent with the no-signalling
independence relations, one requiresfine-tuning; aψ-completemodel with physical collapses is no exception.

Finally note that in anyψ-complete interpretation, because the possiblity of an explanation in terms of a
hidden common cause, distinct from the quantum state, has been ruled out from the outset, one can rule out the

Figure 28.Examples of causal structures that posit superluminal causal influences but no hidden variables to explain Bell correlations.

15
[53] describes a proposal to abandon the standard framework and revise the notion of a common cause in order to secure an explanation

of quantum correlations wherein the quantum state acts as a common cause. Our own proposal for howonemightmodify the standard
framework of causalmodels to secure a causal explanation of quantum correlations will be discussed in the conclusions.
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possibility of a non-fine-tuned causal explanationwithout even appealing to Bellʼs argument. This is precisely
whatwe concluded in our discussion of EPR correlations in section 4.1.

5. Proof of the necessity offine-tuning in causal explanations of Bell inequality violations

Upuntil this point, we have followed closely themethodology of existingCI-based causal discovery algorithms.
Such algorithms aim to contendwith scenarios wherein the number of observed variablesmay be large. Our
interest here, however, is Bell-type experiments, where there are only four observed variables. It follows that we
can ignore the details of existing algorithms and instead use a brute-force search to determinewhether there is
any causal explanation of the correlations observed in such experiments that can do justice to the core principles
of causal discovery algorithms.Wefind that no such causal explanation is possible. This can be understood as a
novel characterization of Bellʼs theorem.

We begin by clarifying the assumptions of our no-go theorem.

QCORR: The assumption that the following predictions of quantum theory are correct. In a Bell-
type experiment where the settings and outcomes are binary variables, with S (T) andA (B)
denoting, respectively, the setting and outcome on the left (right) wing, it is possible tofind a
probability distributionP A B S T( , , , ) such that: (i) the CI relations ⊥⊥S T( ), asserting themar-
ginal independence of the settings, as well as ⊥⊥ ∣A T S( ) and ⊥⊥ ∣B S T( ), asserting theCI of each
local outcome from the distant setting given the local setting (which is the standardway of for-
malizing the assumption of no superluminal signals) are satisfied, and (ii) a Bell inequality is
violated.

CAUSAL: The assumption that a probability distribution over observed variables can be
explained causally using the standard framework of causalmodels, described in section 2. This
framework presumes Reichenbachʼs principle, which asserts that any correlation between a pair
of variablesmust be explained either by a causal influence fromone variable to the other, or a
common cause acting on both, or a combination of the twomechanisms.

NOFT: The assumption that the CI relations that hold in a probability distribution over observed
variables are a consequence of the causal structure alone rather than a consequence of a parti-
cular choice of values for the causal–statistical parameters. This is the principle of faithfulness or
no fine-tuning described in section 3.

Our no-go theorem establishes that under the assumption of the framework of causalmodels, every causal
model that can reproduce no-signalling Bell-inequality-violating correlationsmust befine-tuned. Formally, it
can be characterized as the inconsistency of our three assumptions above:

Theorem2.CAUSAL+NOFT+QCORR⇒ contradiction.

Proof.Wemust consider all candidates for a causalmodel underlying the correlations among the observed
variablesA,B, S andT.

Recall that there is no point adding latent variables that are transits between observed variables or the
common effect of observed variables, because these yield the same possibilities for correlations among the
observed variables as causalmodels that exclude such variables. Sowe need only consider adding latent variables
that act as common causes of observed variables.

From theCI relations, ⊥⊥S T( ), ⊥⊥ ∣A T S( ) and ⊥⊥ ∣B S T( ), one can deduce theCI relations ⊥⊥S B( ) and ⊥⊥T A( )
using the semi-graphoid axioms. For instance, from ⊥⊥S T( ) and ⊥⊥ ∣B S T( ), the contraction axiom allows one to
infer ⊥⊥S BT( ), and then from the decomposition axiom, one obtains ⊥⊥S B( ).

Consider which pairs of the observed variables could possibly admit of a hidden common cause.We can
immediately exclude hidden common causes for the pairs S T{ , }, S B{ , } and T A{ , }because if therewere such
hidden common causes then the onlyway to obtain the observed independences ⊥⊥S T( ), ⊥⊥S B( ) and ⊥⊥T A( )
would be by fine-tuning. This in turn implies that there cannot be a hidden common cause for all four of the
observed variables, because it would imply a hidden common cause for these pairs. Furthermore, because any
triple of the observed variables necessarily includes at least one of these pairs, there cannot be a hidden common
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cause for any triple either. It follows therefore that the only sets of observed variables for whichwe need to
consider the possibility of a hidden common cause are the pairs A B{ , }, S A{ , } and T B{ , }.

Now consider which pairs of the observed variables could possibly be connected by a direct causal influence.
We can exclude such influences for the pairs S T{ , }, S B{ , } and T A{ , }, because if any such influencewere
present, we could only ensure ⊥⊥S T( ), ⊥⊥S B( ) and ⊥⊥T A( )by fine-tuning. The only pairs for which there can be a
direct causal influence, therefore, are A B{ , }, S A{ , } and T B{ , }.

Finally, consider which pairs of the observed variables could possibly have no causal connection between the
elements of the pair. From the fact that the pairs S T{ , }, S B{ , } and T A{ , } admit neither a hidden common cause
nor a direct causal influence, they are necessarily in the set of pairs for which there is no causal connection.
Conversely, we can exclude the possibility of no causal connection for the pairs A B{ , }, S A{ , } and T B{ , },
because therewould then be noway of explaining the observed correlations between S andA or betweenT andB
or betweenA andB given S andT .

So, nontrivial causal connections can arise only for the pairs A B{ , }, S A{ , } and T B{ , }, and in each case there
can be a direct causal influence in either direction, a hidden common cause, or a hidden common cause acting
jointly with a direct causal influence in one direction; these are just thefive possibilities outlined infigure 14.

We now exclude all the possibilities wherein there is a direct causal influence fromA toB.We do this by
noting that whichever of the five causal connections hold between S andA, for generic parameters, S andB
would be correlated (i.e. S andBwould not be d-separated in theDAG), so that the onlyway to ensure ⊥⊥S B( )
would be by fine-tuning. By symmetry of the independence relations under the exchange ↔A B and ↔S T ,
one can also exclude all the possibilities wherein there is a direct causal influence fromB toA. It follows thatA
andBmust be related by a hidden common cause alone.

We now consider the possibility of a causal influence fromA to S. This would be an odd sort of influence,
from the outcome to the setting, but we don’t need to appeal to its oddness to rule it out; it can be excluded based
on the principle of nofine-tuning. The argument is as follows. If such a causal influence existed, then because of
the common cause acting onA andB (the existence of whichwe demonstrated above), wewouldfind thatB and
S ought to be correlated for generic choices of the parameters (i.e.B and Swould not be d-separated in theDAG),
so that the onlyway to ensure ⊥⊥S B( )would befine-tuning. By symmetry, we can also exclude the possibility of a
causal influence fromB toT.

It follows that the only causal structures that can explain the observedCI relationswithout fine-tuning have
the following features:A andB have a common cause; S andA are related by a direct causal influence from S toA,
or by a common cause, or by bothmechanisms;T andB are related by a direct causal influence fromT toB, or by
a common cause, or by bothmechanisms.

Wenowdemonstrate that regardless ofwhich of the three possible causalmechanisms (depicted infigure 13)
are acting between S andA, and also regardless of which of the three are acting betweenT andB, we can express
the conditional probability ∣P A B S T( , , ) as follows (where λ denotes the hidden variable which is the common
cause ofA andB)

∑ λ λ λ=
λ

P A B S T P A S P B T P( , , ) ( , ) ( , ) ( ). (13)

Weargue this as follows. Begin by noting that by the definition of conditional probability, we have

∑ λ λ λ=
λ

P A B S T P A S B T P B T P( , , , ) ( , , , ) ( , ) ( ). (14)

However, for all nine of the causal diagrams that remain, we have λ⊥⊥ ∣AS BT( ), and therefore λ∣P A S B T( , , , )=
λ∣P A S( , ), so that

∑ λ λ λ=
λ

P A B S T P A S P B T P( , , , ) ( , ) ( , ) ( ). (15)

From this expression, we determine ∣P A B S T( , , )using the definition of conditional probability, ∣P A B S T( , , )
=P A B S T P S T( , , , ) ( , ). By assumption, ⊥⊥S T( ), soP S T( , )=P S P T( ) ( ) and it follows that

∑ λ λ
λ=

λ

P A B S T
P A S

P S

P B T

P T
P( , , )

( , )

( )

( , )

( )
( ). (16)

Next, we show that regardless of which of the three causal relations hold between S andA, we have

λ
λ=P A S

P S
P A S

( , )

( )
( , ). (17)
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By symmetry, this implies that regardless of which of the three causal relations hold betweenT andB, we have

λ
λ=P B T

P T
P B T

( , )

( )
( , ). (18)

equations (16)–(18) together imply equation (13).
So it remains only to prove that equation (17) holds for each of the three possible causal relations between S

andA. In each case, one can easily verify that λ⊥⊥S( ). This follows, for instance, from an application of the d-
separation criterion (described in the appendix) for each of the three possible causal relations. Recalling that this
factmay be expressed as λ∣ =P S P S( ) ( ) and given that by definition λ∣P A S( , )= λ λ∣ ∣P A S P S( , ) ( ), one sees
that equation (17) follows.

Sowe conclude that the only causal structures that can explain the observedCI relations withoutfine-tuning
are such that ∣P A B S T( , , ) can be decomposed as in equation (13).However, it is well known that the existence
of such a decomposition implies that ∣P A B S T( , , ) satisfies the Bell inequalities. This contradicts our
assumption that a Bell inequality is violated, so these causal structures are also excluded as candidate
explanations of the correlations.We have thereby exhausted the set of possible causal structures. □

6. Conclusions

Our twomain conclusions are as follows. First, causal discovery algorithms that appeal only toCIs among
observed variables cannot distinguish betweenBell-inequality-violating andBell-inequality-satisfying
correlations. Better algorithmswhich look to the strength of correlations are needed to do justice to Bellʼs
theorem. Second, andmore importantly, we have shown that any causalmodel which can reproduce Bell-
inequality violationswhile respecting the observed independences—themarginal independence of the
measurement settings and the no-signalling condition—will necessarily violate a principle that is at the core of
all the best causal discovery algorithms, namely, that observed independences should not be explained by fine-
tuning of the causal parameters in themodel. This is true in particular for all explanatory strategies that fit within
the framework ofDAGs supplementedwith conditional probabilities, includingmodels that posit superluminal
causes,models that exploit the superdeterminism loophole, andmodels that posit retrocausation.

The topic of causal discovery is still relatively young. The best algorithms available today are not likely to be
thefinal story. Indeed, our analysis suggests that the tools that have been developed in the literature on the
foundations of quantum theory for assessing the possibility of local explanations of correlationsmaywell be
important for developing causal discovery algorithms. If one could deliver on this promise, then it would be an
interesting example of the field of quantum foundations having applications in other fields, such as statistics and
machine learning, and via these, inmedicine, genetics, economics and other disciplines wherein causal discovery
plays a prominent role.

Conversely, it is our view that there is a great dealmore insight to be gained about the foundations of
quantum theory from the literature on causalmodels and causal discovery algorithms.We consider a few
possible directions of research along these lines.

Asmentioned previously, defining causality in amanner that does notmake reference to temporal ordering
provides a language bywhich one could hope to describe a fundamental theory wherein spatio-temporal notions
are emergent and notions of causal structure are primitive. In such a theory, it would not be the case that a cause
was defined to be prior in time to its effects, but rather the notion of the temporal order of two events would be
defined in terms of whether one eventwas a potential cause of the other. Consequently, the framework for causal
inference provides a natural arena inwhich to pursue the idea that space–time is emergent, a notion that is
popular in attempts to unify general relativity with quantum theory [40, 41].

There are a number of results in the quantum foundations literature that have the following form:make
some assumptions about the causal structure and derive inequalities on the correlations that can be obtained
from these classically. Svetlichnyʼs inequalities are an example of this [42], wherein one considers a triple of
measurements at space-like separation and one allows amixture of causal structures wherein superluminal
influences can propagate between any two of thewings of the experiment. The topic has been studied in [43–45].
Fritz has also recently derived inequalities on classical correlations for some causal structures that do not
correspond to the standard Bell scenario [15]. Such results are examples of a general approach to correlations
that has been developed in the causalmodel literature. For instance, In Pearlʼs book (section 8.4), inequalities on
correlations are derived fromassumptions about the causal structure in a section considering noncompliance in
drug trials. Pearl points out the similarity between these ‘instrumental’ inequalities and the Bell inequalities, and
adds: ‘The instrumental inequality can, in a sense, be viewed as a generalization of Bellʼs inequality for cases
where direct causal connection is permitted to operate between the correlated observables,X andY.’ It will be
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interesting to see howmany results in the quantum foundations literature can be considered to be instances of
such generalized inequalities.

Finally, by exploiting a quantum analogue of conditional probability proposed by Leifer [46] and developed
by Leifer and Spekkens [47, 48] and an associated quantum analogue of CI (see Leifer and Poulin [49], for
instance), one can hope to explore a generalization of the notion of causalmodel to a quantum causalmodel. A
quantum causalmodel is naturally defined as a quantum causal structure, which is aDAGwherein each node is a
quantum system, and a set of quantum causal parameters, which constitute a set of conditional quantum states
(the quantumanalogue of conditional probability) for every node given its causal parents. Insofar as one can
accommodate classical variables as special cases of quantum systems (corresponding to commuting algebras),
one can describe correlations among settings and outcomeswithin quantum causalmodels.

Quantum causalmodelsmake similar assumptions about the possibilities for causal structure as do classical
causalmodels (no cycles for instance), and theymake similar assumptions about the consequences of causal
structure for statistical independences, but they replace the formalismof classical probability theory with a
noncommutative generalization thereof. If one canmake the case that the formalismof quantum causalmodels
is not just amathematical artifice but can be given a sensible interpretation as a formof causal explanation, then
suchmodels can provide a causal explanation of Bell-inequality violationswithout requiring fine-tuning.

Note, however, that if the conditional probabilities that appear in classical causalmodels are interpreted as
degrees of belief—andwe take this to be themost sensible interpretation—then the transition from classical
causalmodels to quantum causalmodels involves not only amodification to physics, but amodification to the
rules of inference. In this view, the correct theory of inference is not a priori but empirical. Nonetheless, one
cannot simply declare by fiat that some formulation of quantum theory is a theory of inference. Onemust justify
this claim. At aminimum, onemust determine how standard concepts in a theory of inference generalize to the
quantumdomain.One could also reconsider the various proposals for axiomatic derivations of classical
probability theory, for instance, that of Cox [50] or that of de Finetti [51], to see whether a reasonable
modification of the axioms yields a quantum theory of inference16. Ideally, onewould show that if quantum
causalmodels imply amodification to both our physics and to our theory of inference, then thesemodifications
are not independent. After all, the physics determines the precisemanner inwhich an agent can gather
information about theworld and in turn act upon it and so the physics should determinewhat is themost
adaptive theory of inference for an agent. It is in this sense that the project of defining quantum causalmodels is
not yet complete and onlywith such a completion in hand can one really say that a causal explanation of the Bell
correlationswithout recourse tofine-tuning has been achieved.
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Appendix. d-separation

CI relations are captured inDAGs by the notion of distance-separation or d-separation. First let us introduce the
basic elements of which aDAGmay be composed; these are colliders, forks, and chains; which for three variables
A, B, C are illustrated infigure A1 .

Figure A1.Basic structures found inDAGs.

16
Fuchs and Schack have also suggested that parts of quantum theory can be derived by an appeal to dutch-book coherence following de

Finetti [52].
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Given aDAGG, a path between two verticesX andY inG is any set of edges and vertices which connectsX
andY, regardless of the direction of the edges.We say that a path betweenX andY is blocked by a set of verticesZ
if at least one of the following conditions holds

1. The path contains a chain (figure, A1(c)), or a fork (figure A1(b)) such thatC is inZ.

2. The path contains a collider (figure A1(a)) such thatC is not inZ and no descendant ofC is inZ.

We then have the following definition of d-separation:

Definition 3 (d-separation).Given aDAGGwith verticesV, two vertices ∈X Y V, are d-separated by a set of
vertices ⊂Z V if and only ifZ blocks all paths betweenX andY.

d-separation is a relation among three sets of variables in aDAG. If one is interpretingDAGs as causal
networks (as in this article), then d-separationmust represent a causal relation among the three sets of variables.
By contrast, CI represents a statistical relation among them.Onemight say thatX is causally screened off fromY
givenZ wheneverX is d-separated fromY givenZ. Of course, the significance of this causal relation is found in
the statistical distributions that can be supported by the causal structure. A set of variablesX is d-separated from
the setY given the setZ in a causal structure if and only if for all probability distributions over the causal
structure,X is conditionally independent ofY givenZ.
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