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Abstract
Non-equilibriumquantumdynamics represents an emerging paradigm for condensedmatter physics,
quantum information science, and statisticalmechanics. Strongly interacting Rydberg atoms offer an
attractive platform to examine driven-dissipative dynamics of quantum spinmodels with long-range
order. Here, we explore the conditions underwhich stationarymany-body entanglement persists with
near-unit fidelity and high scalability. In our approach, coherentmany-body dynamics is driven by
Rydberg-mediated laser transitions, while atoms at the lattice boundary locally reduce the entropy of
themany-body system. Surprisingly, themany-body entanglement is established by continuously
evolving a locally dissipative Rydberg system towards the steady state, precisely as with optical
pumping.We characterize the dynamics ofmultipartite entanglement in an one-dimensional lattice
byway of quantumuncertainty relations, and demonstrate the long-range behavior of the stationary
entanglement withfinite-size scaling. Ourwork opens a route towards dissipative preparation of
many-body entanglement with unprecedented scaling behavior.

1. Introduction

Quantumcontrol of openmany-body systems has become amajor theme in the quest to explore newphysics at
the interface between condensedmatter physics, quantum information science, and statisticalmechanics [1–5].
The ability to control themany-body interactions and their dissipative processes has been identified as a
powerful resource for the preparation of steady-state entanglement [6–14, 16–18] and the investigation of noise-
driven quantumphase transitions [2, 19, 20]. Indeed, quantum-reservoir engineering provides the framework
for dissipative quantum computation [3, 4] and communication [15]with built-in fault-tolerance.
Furthermore, open systemdynamics offers newprospectives to the relationship between entanglement and
quantum thermodynamics [5].

Laser-driven Rydberg atoms offer unique possibilities for creating andmanipulating open quantum systems

r̂ of dipolar interacting spinmodels [21–23]. By excitingN atoms to high-lying Rydberg states, strong and long-
range interactions between the Rydberg atoms can be exploited to induce spin–spin interactions, whereas atoms
comprising themany-body state can couple to their local radiative reservoirs by spontaneous emission [24]. The
competition between the coherent and incoherent dynamics can drive the system to bipartite entangled states
for two atoms [25, 26] and novel states ofmatter for amesoscopic number of atoms, exhibiting topological
order, glassiness, and crystallization dynamics [27–35]. Remarkably, the basic primitives behind such a principle
have been demonstrated in the laboratory by several groups [36–41].

Despite the tantalizing prospects of quantum-reservoir engineering, themain obstacle has been that local
decoherence (e.g., spontaneous emission) generally destroys the global entanglement of the system.Most
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proposals reported to date thereby achieve the required ‘non-local’ jumpoperator byway of collective system-
bath coupling in order to suppress the information loss by local dissipation [6–14, 16–18]. In practice, such a
coupling is achieved in the highly challenging, strong coupling regime for an array of qubits interactingwith a
common reservoir (e.g., cavitymode). Furthermore, forN>2, the inherently local nature of the driving fields
hardly allows only a single entangled state to be distinctively separated from the coupling to the reservoir, which
enforces the introduction of auxiliary coherentmanipulations andmultiple time-steps of quantum gates and
dissipations to single out a particular entangled state from a broader subspace [2, 11, 28], diluting the very nature
of quantum-reservoir engineering. Such a challenge is further complicated by the characterization of
entanglement formany-body states tˆ ( )r under evolution [1, 42–45].

Here, we explore suchmany-body entangled states persistingwith highfidelity in the stationary limit for
laser-driven Rydberg atoms in a lattice under locally engineered dissipation. As illustrated infigure 1, our
protocol conceptually begins by globally pumping regularly arranged Rydberg atoms A B( )Å with a driving
fieldΩ, where the lattice is separated into twopartitionsA,B. Rydberg excitation coherently delocalizes within
the subspace defined by ‘system’ atomsA, while ‘reservoir’ atomsB at the lattice boundary serve as an entropy
sink forAwith localfields that enhance the spontaneous decay. By preparing a dark state in theMarkovian
dynamics, the atomic sample tˆ ( )r evolves towards the entangled steady state in the formof an eigenstate

W g gA B1∣ ∣ ∣ ñ = ñ Ä ñ of a latticeHamiltonian Hxy
ˆ in the single-excitation subspace, where W g gA B∣ (∣ )ñ ñ is a

Figure 1.Production of stationary entanglementwith Rydberg atoms in 1D lattice. (a) Schematic of optically driven, dissipative
Rydberg atoms in a 1D staggered triangular lattice. Distances a0 and a1 are defined between spins in neighbor and next-neighbor
configurations. Inset (i) the decay rates N r1,G = G G for the edge atoms are enhanced bymixing the Rydberg states r∣ ñwith short-
lived e∣ ñwith localfields (Rabi frequency dW ) (appendix A). Inset (ii) atoms are pumped by a single, global driving field (Rabi
frequencyΩ)with detuning δ. (b)Rydberg blockaded atomic structure showing a rich family of anharmonic levels with level shifts

i j
p

,( )D for the Rydberg state r g r r g ,i j i j,
2∣ ˜ ∣( )ñ = ñ   separated by subspace n. (Left)Two-photon process H2

ˆ optically pumps the

population to the n=1manifold. (Middle)XYHamiltonian Hxy
ˆ dictates the delocalization dynamics within the n=1 subspace. Jij is

driven byRaman transitions r ri j
1 1∣ ˜ ∣ ˜( ) ( )ñ « ñwith detuning δ ( i j

p
,( )d - D ) through intermediate state G∣ ˜ñ ( ri j,

2∣ ˜( )ñ), while i
ls

¯ ( )D is induced

by light shifts. (Right) For 2,i i
p

, 1( )d = D + atoms are dissipatively driven to the target eigenstate r g g
i A i A B1

1∣ ∣ ˜ ∣( ) åñ = ñ Ä ñ
Î

 with
locally enhanced decoherence for atomsB.
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W-like entangled state (ground state) forA (B). The genuinemultipartite entanglement for tˆ ( )r is
unambiguously detected by the quantumuncertainty relations [46–48].Wefind that steady-stateW-state
persists indefinitely with near-unit fidelity F�0.99, and that entanglement depth k shows favorable scaling
relative to its system size, reaching ‘hectapartite’(k= 100) entanglement forN=126 atoms. Unlike all previous
methodswith auxiliary unitary and time-sequential dissipativemanipulations [6–14, 16–18], themany-body
entanglement in our protocol emerges purely out of the open systemdynamics in a time-independent, continuous
fashionwith local decoherence, precisely aswith optical pumping. Ourmethod thereby allows the scalable
production of stationarymany-body entanglement with Rydberg atoms through locally engineered
decoherence, where long-range entanglement extendswell beyond the blockade radius.

2.Driven-dissipative preparation ofmany-body entangled states

2.1. Schematics
Weconsidermany-body states ofN atoms configured in a lattice (seefigure 1(a)), irradiated by a uniformdriving
fieldΩ that couples the atomic ground state g∣ ñ to the highly excited Rydberg state r∣ ñwith detuning δ. A pair of
atoms i, j in the Rydberg state at lattice sites x x,i j

 
couple each other via the potential C x xij

i j
p

p p ∣ ∣( )D = - - 
with

power-law scaling whereCp is the dipolar interaction coefficient, for whichwe take p=6 for the van derWaals
(vdW) regime of blockade shifts [24]. In a frame rotatingwith the laser frequency, theHamiltonian is given by

H , 1
i

N

rr
i

x
i

i j

N
ij

rr
i

rr
j

1 ,
p( )ˆ ˆ ˆ ˆ ˆ ( )( ) ( ) ( ) ( ) ( )å åds s s s= + W - D

= á ñ

where i
iˆ ∣ ∣( )s m m= ñ ámm is the projection operator for states ∣mñwith g r, ,{ }m Î and m

iˆ ( )s are the canonical Pauli
operators for atom iwith m x y z, , , .{ }Î  i j,á ñdenotes the sumover all i j.¹ In the following, we denote the
ground state (n= 0) as G g g ,∣ ˜ ∣ñ = ñ the singly excited (n= 1) states as r g r g ,i i N

1
1∣ ˜ ∣( )ñ = ñ  and the doubly

excited (n= 2) states as r g r r gij i j N
2

1∣ ˜ ∣( )ñ = ñ   with the subspaces separated by the total number spin

excitations n .
i rr

iˆ ( )å s= á ñ
The openmany-body dynamics for the atomic state r̂ is governed by aMarkovianmaster equation

Hi ,ˆ̇ [ ˆ ˆ] ˆr r r= - + with the Lindblad superoperators
2

2 ,
i

i i i i iˆ ( ˆ ˆ ˆ {ˆ ˆ ˆ})( ) ( ) ( ) ( ) år s rs s s r=
G

-- + + - for the atomic

coupling to their local radiative reservoirs. In order to allow the jump n n 1, - as employed for imaging
ultracold Rydberg atoms [38] and derived in the appendix A, we can arbitrarily set the decay rate

4i d e
2∣ ∣G W G relative to its free-space rate rG by coherentlymixing the Rydberg level r∣ ñand a rapidly

decaying e∣ ñwith localfield represented by its Rabi frequency ,dW where eG is the decay rate of e∣ ñ (inset of
figure 1). In practice, the short-lived state e∣ ñcan be a low-lying excited state (see appendix G).

2.2. Rydberg-mediated laser transitions and local decoherence
As shownby figure 1(b), our protocol starts by globally applying a single, global driving field of Rabi frequencyΩ
to all atoms N1{ } with detuning 2.i i

p
, 1( )d = D + This field plays two roles. First, it drives the population in G∣ ˜ñ

to the n=2 subspace via two-photonRaman resonance H2
ˆ (figures 1(b)).With the anharmonic Rydberg

spectrum (see appendix B), higher-order transition n n 2 + for n 1 is suppressed formoderateN, as the
long-range nature of the van derWaals interaction ij

p
( )D lifts all levels in n 3 out of the two-photon resonance.

This is enabled by having the blockade shiftsmuch greater than power broadening of two-photon resonance
( wij

dp
2( ) ( )D > ), where wd

2( ) is the power-broadened linewidth for the two-photon transition as w 2 2 .d
2 2( ) dW

The net result alongwith the spontaneous decay is that the population is optically pumped into the single-
excitation (n= 1) subspace (appendices B andC) for an atomic sample spread over a region L beyond the
blockade distance d C w ,B dp6= where w 2d W is the power-broadened linewidth for the single-photon
transition n n0 1.= « =

The second role ofΩ is to generate the necessary Raman couplings Jij and light shifts
i

ls
¯ ( )D within the n=1

subspace (figure 1(b) inset) to physically realize theXY spinmodelHxy. By adiabatically eliminating G∣ ˜ñand rij
2∣ ˜( )ñ

in the off-resonant limit w ,ij
dp∣ ∣( )d - D  and obtain an effectiveHamiltonian

H J , 2xy
i j

ij
i j i j

i

i
rr

i

, 1
ls( )ˆ ˆ ˆ ˆ ˆ ¯ ˆ ( )( ) ( ) ( ) ( ) ( ) ( )å ås s s s s= + - D

á ñ
+ - - +

=

in the single-excitationmanifold. The nonlocal Raman transitions Ji i x, + between r ri i x
1 1∣ ˜ ∣ ˜( ) ( )ñ « ñ+ occur off-

resonantly via virtual levels near ri i x,
2∣ ˜( ) ñ+ and G ,∣ ˜ñ thereby providing the ‘hopping’ terms Jij between sites i i x, ,+

while the light shift terms
i

ls
¯ ( )D play the role of local ‘magnetic’field of theXYHamiltonian. After adiabatic
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eliminations of ri i x,
2∣ ˜( ) ñ+ and G ,∣ ˜ñ we obtain Jij ij

2 2

p
( )d d

=
W

-
W

- D
and

i

j i ijls

2 2

p

¯ ( )
( )åd d

D =
W

-
W

- D¹
as derived

in appendixD.

2.3. Emergence of darkmultipartite entangled states for open-systemdynamics
The dissipativemany-body entanglement for the steady state limt ssˆ ˆr r=¥ is generated as follows.Wefirst

identify the spectrum ,i i{ ∣ }  ñ of Hxy
ˆ in the n=1 subspace. As shown by figure 1(b), our goal is to set J ,ij

i
ls

¯ ( )D
such that one of the eigenstates, say ,1∣ ñ corresponds to a product ofW state W rA i A i

1∣ ∣ ˜( )åñ = ñÎ
for a subsetA

of atoms (‘system atoms’) and ground state g g B∣ ñ for another subsetB (‘reservoir atoms’), thereby leading to
W g g ,A B1∣ ∣ ∣ ñ = ñ Ä ñ while all the other eigenstates contain r B∣ ñ for at least one (ormore) atom inB. By

enhancing iG  G for atomsB, the net result is that all the eigenstates except 1∣ ñbecome susceptible to a decay
to G ,∣ ˜ñ leaving 1∣ ñas a unique dark state (i.e., zero-mode eigenstate) of the Lindbladian dynamics. Infigure 1(a),
we take the two edge atoms at 1 andN as reservoir atomsB, for whichwe control the relative hopping rates Jij to
obtain dark resonance for atomsB so that 1∣ ñhas vanishing coefficients for r1

1∣ ˜( )ñand r .N
1∣ ˜( )ñ For afixed detuning,

Jij is purely determined by the relative strength between nearest (a0) and next-nearest (a1)neighbor
interactions a a .1 0x =

More specifically, the dark resonances J Ji i i i, 1 , 2= -+ + occur for atoms N1,{ }at the lattice boundary of a 1D
staggered triangular lattice infigure 1(a) for 36x = andN=4.More generally, for N 4, quantum
interference betweenmultiple pathways r ri j

1 1∣ ˜ ∣ ˜( ) ( )ñ « ñoccurs so that one of the eigenstates of

H ,xy
ˆ W g g ,A B1∣ ∣ ∣ ñ = ñ Ä ñ emerges as the unique dark state (see appendix E). This process is analogous to
coherent population trapping for levels consisting of ‘radiative’ states ri B

1{∣ ˜ }( ) ñÎ with decay rate i B rG GÎ 
coupled to ‘metastable’ states r .i A

1{∣ ˜ }( ) ñÎ We thereby define atomsB as reservoirmodes, whereby the atoms are
continuously projected to the ground state by spontaneous emissionΓ in amanner similar to sympathetic
cooling [49]. In order to enable this process, we locally enhance the decoherence 4 d e

2∣ ∣G W G for the
reservoir atomsB by 104 relative to the radiative rates rG of the system atomsA. AnyRydberg population in
atomsBwill cause the overall atomic state to become ‘bright’ and decay until it reaches the unique steady state

.1∣ ñ Many-body entanglement is thereby auto-stabilized for the stationary state ss 1 1ˆ ∣ ∣ r = ñá in the presence of
noise and decoherence.

In other words, during the entanglement pumping stage, the population is constantly projected to some
superposition state t∣ ( ) ¢ ñof eigenstates {∣ } ñm by the decay channels n n2 1=  = via atomsB. If

t 1,1∣ ∣ ( ) ∣ á ¢ ñ < the Rydberg population ri
1∣ ˜( )ñwill delocalize until it populates the reservoir atoms, thereby

quickly decaying to G∣ ˜ñbefore being repumped by two-photon transition hamiltonian H .2
ˆ After several cycles of

n n0 2=  = (via H2
ˆ ) and n n 1 - (viaΓ), the atomic population accumulates into the unique ‘dark’

eigenstate 1∣ ñof H .xy
ˆ

Indeed, the entanglement dynamics displays an intricate behavior, as the atomic sample is driven to the
steady state .ssr̂ At the early stage of Liouvillian dynamics ( t0 11  G), atoms in G g g∣ ˜ ∣ñ = ñ are rapidly

pumped to the n=1 subspace. The Rydberg excitation then delocalizes under Hxy
ˆ with off-resonant Raman

transitions Jij. At the final stage (t 12 G ), the Rydberg lattice gas r̂ is dissipatively pumped to aW-like
entangled state W ,A∣ ñ which separates from g g .B∣ ñ The entanglement fidelity F is thereby determined by the
‘branching’ ratio 10r

4G G - between the lifetimes of dissipative and coherent dynamics. Because our
procedure does not involve adiabatic evolutions, our dark-state pumping protocol is scalable to arbitrarily large
Nwith sample size extended over L Na d2 B0~  only limited by F 1 .r( )= - G G

3. Results

3.1.Open-systemdynamics for bipartite atomic entanglement
In the following, we perform a numerical analysis of the relaxation behavior of the Rydberg gas towards a
stationary bipartite entanglement for atomnumberN=4 and enhanced radiative rates N1,G = G for the edge
atoms by taking the full Hamiltonian in equation (1). Figure 2(a)displays the contourmap of entanglement

fidelity F Tr ,A B A2 2 ss 2∣ [ ˆ ]∣y r y= á ñ for the stationary state ssr̂ and the target state g r r g
1

2
,A A2 2 3 2 3∣ (∣ ∣ )y ñ = ñ + ñ

as a function of interaction parameter ξ and distance a0 (in units of blockade radius d C wB d6
6= ). The profile

offidelity along a0 depicts the requirement of Rydberg blockade regime a dB0 < to provide sufficient
nonlinearity in n (figure 1(b)) for selectively driving transitions G ri i, 1

2∣ ˜ ∣ ˜( )ñ « ñ+ and adiabatically eliminating
subspaces n=0, 2 (appendixD). Atoms in the region a d0.2 0.5B0  are thereby efficiently pumped to the
single-excitation subspace. The interaction parameter ξ is tuned to numericallymaximize the steady-state
entanglement fidelity up to F2=0.9982 for 31

6x = and 0.362x = at a d 0.26.B0 = To validate our

4
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entanglement pumping scheme, we further show the dissipative dynamics of concurrenceC at 1x in the inset of
figure 2(b). The atomic sample is driven to amaximally entangled state with F2=0.9965within t 200.G =

3.2. Evolution ofmany-body entanglement and uncertainty-based entanglementwitness
Now, let us treat the case ofmany-body entanglementwithN=6 atoms in the 1D latticewith equation (1) as an
example ofmultipartite system.With same parameter setΩ andΓ, we simulate the dissipative dynamics of
entanglement fidelity F t tTrA B A4 4 4( ) ∣ [ ˆ ( )] ∣y r y= á ñ with respect to the ideal symmetricW state

r
1

2
A i i A4 2

5 1∣ ∣ ˜( )åy ñ = ñ= byway of quantum-trajectorymethod (see figure 3(a)). Here, we have optimized the

steady-state fidelity Fmax 0.99124( ) = for the parameters a d, 1.1996, 0.285 ,B0{ } { }x = thereby setting a
symmetric quadripartiteW-state g gA B1 4 1 6∣ ∣ ∣ yñ = ñ Ä ñ as the dark state.

The transitions ofmany-body entanglement under dissipative dynamics are detected by the uncertainty
relations [46–48], which serves as the collective entanglement witness t y t, c{ ( ) ( )}D [1]. The uncertainty

i i
2 ˆå dD = á P ñmeasures the total variance of projection operators W Wi i i

ˆ ∣ ∣P = ñá toNA-dimensionalW-state

basis W ,i∣ ñ while yc
N

N

p p

p

2

1
A

A

2 0

1
2

=
-

detects the amount of higher-order spin-waves (e.g., p
i j rr

i
rr

j
2 ˆ ˆ( ) ( )å s s= á ñ¹

)and

ground-state fraction p
i gg

i
0 ˆ ( )å s= á ñ relative to the singly excited spinwave p ,

i rr
i

1 ˆ ( )å s= á ñ whereNA is the

number of atoms inA. For an idealW-state, ymin , 0, 0 ,c{ } { }D  while the boundary b
k 1( )D - represents the

minimumuncertainty for k 1( )- -partite entangled states for a given yc. Violation of the uncertainty bound

b
k 1( ˆ ) ( )rD < D - then signals the presence of genuine k-partite entanglement stored in t ,ˆ ( )r with the fullNA-

partite entanglement certified by 0 .b
N 1A( ˆ ) ( ) rD < D -

Experimentally, the entanglement witness y, c{ ( ˆ ) ( ˆ )}r rD can be determined by detecting thefluctuation

t
2d

in the collective transverse spin component cos , sint i d x

i
d y

i{ ˆ ˆ }( ) ( ) å q s q s=


and the excitation statistics

p p p, , ,0 1 2{ } where dq is the detection angle in the transverse plane x−y. As discussed in [48],

N d1 ,N

N

1 2 2( )( ˆ ) ˜ ( ˆ ) ( ˜ )r rD D = ´ -- where d
N N

d
2

1 ij ij
˜

( )
∣ ∣å=

-
is the average off-diagonal coherence

d g r r gij i j∣ ∣ ∣ ∣= ñ á Ä ñ á for the reduced densitymatrix 1r̂ in the single-excitation subspace. Since

dmin 2 ,t ij ij
2

d
∣ ∣ ådá ñ =q we find the following upper bound of themeasured variance

1 .N

N N1

min

1

2
t d

2( )˜ ( ˆ ) [ ]
rD = ´ -

d

-

á ñ

-
q The quantum statistics yc

N

N

p p

p

2

1
2 0

1
2( ) =

-
can be detected by the total

Figure 2.Driven-dissipative dynamics of bipartite atomic entanglement. (a)Contour of stationary entanglement fidelity F2 with
interaction parameter ξ and distance a0 (in units of blockade radius dB). (b)Dynamics of entanglement fidelity F t2 ( ) as a function of
pumping time (in units ofΓ). Inset. Temporal evolution of concurrenceC fromunentangledC=0 tomaximal entanglementC=1
for the parameters: w a d2 ,d B0

6( )d = 10 ,3W = G and 10 r1,4
4G = G for atoms 1, 4 with a d, 3 , 0.26 .B0

6{ } { }x =

5

New J. Phys. 17 (2015) 113053 SKLee et al



excitation statistics p p p, ,0 1 2{ } withMCP ionization signals. Hence, our entanglement witness can be readily
implemented even for low-resolutionRydberg experiments without the capability to locally detect the state of
single atoms in the lattice.

By applying thewitness y, ,c{ }D we observe that atoms initially in ground state are dissipatively driven to the

quadripartite entangledW state by sequentially crossing the boundaries , ,b b b
1 2 3( ) ( ) ( )D D D infigure 3(b), thereby

progressing towards the steady-state with F 0.99.4 > The transitions of entanglement depth k are indicated by
black, purple, green, and red lines offigure 3(b) for the average trajectory t .ˆ ( )r For pumping time t 100 ,4 ~ G
themany-body system exhibits a full quadripartite entanglement with amoderate atomnumberN=6, and
reach y, 1.5 10 , 2 10 ,c ss

2 4{ }∣ { }D  ´ ´- - as the atoms are pumped to the desired eigenstate .1∣ ñ In the
appendix E, we also discuss our numerical result for the formation of stationary hexapartite entanglement for
N=10 atomswith F 0.996 > (see figure E2).

3.3. Finite-size scaling of steady-state entanglement
Next, wemove on to the question offinite-size scaling behavior of the stationarymany-body entanglement.
Although the full dynamical simulation for largeN is beyond our computational capability, the steady-state
entanglement can be established by analyzing the unique eigenstate 1∣ ñ thatmeets the dark resonance condition

,1x x= for which J J .i i i i, 1 , 2= -+ + Perturbations by higher-order interactions are negligible, as

J J 10 .
x i i x i i2 , , 1

2∣ ∣ ∣ ∣å >
¥

+ +
- We truncate our analysis up to next-nearest-neighbor interactions for the

following discussion.We define the entanglement depth k in accordwith the concept of k-producibility for
qubits [1, 42], thereby identifying theminimal depth for genuine km-partite entanglement to produce the
purported state ssr̂ (for details, see appendix E).

We directly diagonalize themany-bodyHamiltonian Hxy
ˆ for ,1x and characterize the resulting entanglement

depth k of the stationary eigenstate 1∣ ñup to N 128. Figure 4 captures our result of y, 0c{ }D  for the dark
state W g g ,k A B1∣ ∣ ∣ ñ = ñ Ä ñ where Wk A∣ ñ is the k-partite symmetricW state. Due to the nonlinear sensitivity of
ourwitness for some region k, we characterize the scaling of theminimal entanglement depth k k.m  The

Figure 3.Driven-dissipative dynamics ofmany-body entanglement for six atoms. (a)Dynamics of entanglement fidelity F4 at
maximumpoint a d, 1.1996, 0.285B0{ } { }x = simulated byway ofMonte Carlowavefunction (averaged over 500 trajectories).
Inset. 3Dmap of steady-state entanglement fidelity F4 for interaction parameter ξ and distance a0 (in units of blockade radius dB).
F 0.994 > for a0.25 0.350  (b)Dissipative preparation of genuine quadripartite entangled state. The entanglement parameters

y, c{ ( ) }rD transit from fully separable (black line) to bipartite entanglement (purple line, t 22G  ), to tripartite entanglement (green
line, t 653G  ), and to stationary quadripartite entanglement (red line, t 1004G  ). The colored surfaces represent theminimum
uncertaintiesΔ for fully separable states (purple), and for states containing bipartite (green) and tripartite entanglement (red) for a
given yc.
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shaded area represents the physical region, whereby km-partite entanglement could be defined for a givenN, and
the dashed lines are the uncertainty bounds for 0 100~ -partite entanglement (with 20-partite increments).
Remarkably, we observe a favorable scaling up to genuine ‘hectapartite’ (km=100) entanglement forN=126
atoms.

4. Experimental feasibility

Our entanglement pumping scheme is experimentally feasible. By exciting 85Rb atoms toRydberg state
r S100 1 2∣ ∣ñ = ñwith localmixing of decohering state e P5 ,1 2∣ ∣ñ = ñ quadripartite entangled states couldbe
prepared for F 0.994  within thepumping time t 60 sp m= in the region a a1.9 2.3 m 2.1 2.5 m0 1( ) ( ) ( ) m m
with parameters C 566 = THz m ,6m 1 kHz,rG  10 MHz,G = andwith drivingfields 1 GHzW = in the far-off
resonant limit 400 GHzd  (effective Rabi frequency∼10MHz), and d 5.8 mB m= [50–53]. The limit for any
driven-dissipative approachwithRydberg lattice gaseswill be thephotoionization lifetime t 10p  ms for the
givenΩ [54], thereby t t .p p Instead, ifwe reduce thefidelity threshold F 0.94  ( 10r

3G G = - ), the steady state
can be achievedwithin t t600 s 1sp m= p  for relaxed parameters 1 MHz,G = 50 MHz,W = and
d 9.6 mB m= over the regionof a a3.8 4.5 m 3.9 4.7 m.0 1( ) ( ) ( ) m m In appendixG,wehave discussed awide
range of experimental parameterswithRb andCs, including directUVexcitation to r nP3 2∣ ∣ñ = ñ statewith
e S7 ,1 2∣ ∣ñ = ñ which offers lower 300 HzrG  and thereby improvedfidelity F 1 r( )~ - G G forfixed ,W G
[55]. For example,with r P100 ,3 2∣ ∣ñ = ñ weexpect to obtain highfidelity F 0.994 > withmoderate drivingfield

50 MHzW = and lattice constants a a, 30 1( ) m~ m.
In our driven-dissipative protocol, the dark state is selected by optimizing the set of parameters for the lattice

constants a a,0 1( ) in the limits of (i) strong saturation , 1r r
2( )dW G W G  and (ii) local dissipation 1.rG G 

Indeed, within the single-excitation subspace, the parameters a a,0 1( ) determines the full spectrumof theXY
spinHamiltonianHxy, thereby setting the conditions for dark-state engineering (appendix E). By virtue of locally
enhanced decoherence for edge atoms, we then isolate a single eigenstate ,1∣ ñ as the unique dark state. As shown
infigures 2 and 3, ourmethod can stabilize high-fidelity steady-state entanglement over a wide range of lattice
parameters (see also appendixG for the experimental parameters).

One crucial benefit of ourmethod for quantum-reservoir engineering is that the dark state 1∣ ñ is stabilized
bymany-body interactions and local decoherence, and that it offers built-in error-correcting features and
robustness against variation in the driving fields and decay rates. This prediction is supported by thewide range
of laboratory parameters (overmany orders ofmagnitude) in tables G1 andG2, which allow high-fidelity
entanglement. Experimentally, the lattice parameters a a,0 1( ) can be coarse-tuned by locallymonitoring the
flourescence for the edge atoms.When the dark state is fully populated, the successful passage into the steady
statemay be confirmed by the observation of inhibited atomic scattering.

The bottleneck for any driven-dissipation protocol is the relaxation time scale tp to reach the desired steady
state. As further discussed in appendixG, the quantum jumps in the n=1 subspace occur in a characteristic
time N 2( )~ due to the time scale for the quantumwalk of ri

1∣ ˜( )ñ to reach the ‘reservoir’ atoms at the edge. On
the other hand, if wewere to address every ‘zeros’ for the dark state equations (E.5) and (E.6) in appendix E) by

Figure 4. Finite-size scaling behavior ofmany-body entanglement depth.Multipartite entanglement behavior of themany-body
system ssr̂ is probedwith quantumuncertainty witnessΔ for y 0c  byway of direct diagonalization of Hxy

ˆ as a function of atom
numberN.We obtain stationary eigenstates ,ss 1 1ˆ ∣ ∣ r = ñá exhibiting up to hectapartite entanglement forN=126 atoms. The
shaded area refers to the physical region formed by convex combination of all pure andmixed states for a givenN, thereby representing
the state space for which entanglement depth k can be definedwith k N . The uncertainty boundaries for 20-partite, 40-partite, 60-
partite, 80-partite, 100-partite entanglement are shown as dashed lines.
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dW with N 2res > reservoir atoms, the pumping time t Np sys( )~ scales linear to the number Nsys of eigenstates

{∣ } ñm within the single-excitation subspace, where Nsys is the number of system atoms. The relaxation time for
figures 2 and 3 and E2 is consistent with the scaling t N .p sys( )~ As discussed in appendixG, ourmethod can
be applied to generate stationary hectapartite entanglement within t t10 msp p  forN=126 atomswith
optically accessible a a, 1 m,0 1( ) m> where tp is the photo-ionization time. Compared to direct adiabatic
passagewith time-varying fields [36, 37], the range of entanglement L Na 2 63 m0 m= surpasses the
blockade radius d 9.6 mB m= bymore than six fold, testifying the intrinsic scalability of ourmethodwith
engineered driven-dissipation.

In terms of the initialization of the atoms in the 1D lattice, the atomswould need to be confined in eachwell
with unit filling factor. In practice, such a low entropy state could be achieved by the superfluid-Mott insulator
transition or by themanipulation of laser-induced atomic collisions with blue-detuned potentials [56]. The 1D
staggered triangular lattice can be realized in a free-space superlattice configuration [57]. Since the general
principle of our protocol is not necessarily confined to a particular lattice configuration, one could explore other
configurations in 1D and 2Dwith arbitrary trap potential landscapes created by spatial lightmodulators in [58].

Alternatively, it is possible to load amesoscopic number of atomsNi at each lattice site withweak optical
confinement perpendicular to the lattice plane [57], and use the effective spin-1/2 degree of freedomunder
collective Rydberg blockade [22]. Thismay be particularly crucial for realistic experimental settings, where the
collectively enhanced Rabi frequency NN

i
( )W = W can be used to circumvent the small single-photon Rabi

frequencywith limited optical power. The effect of thefinite atomicwavepackets in the potential landscape is
negligible with the steady-state entanglement fidelity bounded by F 1 ,p p( ) d> - D D inwhich F 0.95> for
the typical values of zero-point fluctuation of atoms in dipole traps (appendix G). Ourmethod does not rely on
the dynamics of coherent delocalization andAnderson localization for disorded spin arrays is not a relevant
phenomena for the relaxation to steady-state entanglement.

For N 126, atoms can be embedded in photonic crystal waveguides tomediate effective atom-atom
interactions. Dispersive optical interactions near band edges can induce dipole–dipole oscillations Hxy

ˆ and

‘Rydberg’ blockades H2
ˆ with tailored scaling cij x

p
ij( )D ~ - between low-lying excited atoms [59, 60]. Decay rates

iG = G¢ can be controlled by the density of states [61].

5. Conclusion

Wehave examined the conditions underwhich driven-dissipative dynamics displays a rich family ofmany-body
entangled states, and have provided a criteria for the purported entanglement. Byway of engineered driven-
dissipation, genuinemultipartite entangled states can be prepared efficiently as steady states of the dissipative
time evolution through continuous optical driving from arbitrary initiate states, and the stationary
entanglement shows a favorable long-range behavior up to entanglement depth km=100 forN=126 atoms.
In comparison to otherworkwith coherent Rydberg excitation, ourmethod allows the deterministic production
ofmany-body entangled states over length scales unlimited by the blockade radius.More generally, the
delocalization dynamics for our latticeHamiltonian Hxy

ˆ in the high-order subspace n (see appendix B) can be
extended to examine locality estimates ofmany-body systems [62–64] and bosonic sampling for quantum
algorithms [65].Massively entangledW states with N 2 stabilized by engineered driven-dissipationmay be
applied for ‘all-versus-nothing’ tests of extreme nonlocality [66]. Ourwork paves theway for the stabilization of
exotic entangled states with an openmany-body system enabled bywell-controlled Rydberg-mediated laser
interactions and local decoherence [1–3], as well as for the advanced protocols with dissipative quantum
computing and reservoir engineering.

Note: A related proposal for stationarymany-body entanglement has been presented recently in [67]with
resonant dipole–dipole interactions (RDDIs) between twoRydberg ensembles. In [68], ourwork has been
generalized to the stabilization of arbitrarymany-body states in a system-independentmanner.
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AppendixA. Control of spontaneous emission rates

As discussed in themain text, for reservoir sites i B,Î atoms initially in the Rydberg state r∣ ñwith decay rate rG
radiatively couple to a highly decohering state e∣ ñwith decay rate e rG G so that atoms in bipartitionB can
behave as an effective ‘reservoir’ channel for the ‘system’ atoms in partitionA. In this section, we discuss howwe
couldmanipulate the spontaneous emission rate iG of the Rydberg state r∣ ñ for the ‘reservoir’ atoms.

As illustrated infigure 1(a), we consider aΛ-type energy level diagram,where r∣ ñ is dressedwith e∣ ñby
auxiliaryfieldwith Rabi frequency .dW In the rotating-wave frame of the dressing laser, theHamiltonian is given
by

H . A.1d d ee
i

d er
i

re
i( )ˆ ˆ ˆ ˆ ( )( ) ( ) ( )s s s= D + W +

The resulting optical Bloch equations are, then

i i , A.2ge
i

e ge
i

d ge
i

d gr
i˙ ( )( ) ( ) ( ) ( )s g s s s= - + D + W

i , A.3gr
i

r gr
i

d ge
i˙ ( )( ) ( ) ( )s g s s= - + W

where 2e r e r, ,g = G and dD is the detuning for the dressing field dW relative to the transition e r .∣ ∣ñ « ñ In

writing equations (A.2) and (A.3), we have neglected the Langevin noise forces F̂mn and assumed c-number

counterparts for .i iˆ ( ) ( )s smn mn Hence, wefind that the atomic coherence tgr
i ( )( )s between g r,∣ ∣ñ ñobeys the

following equation ofmotion

¨ i e e 0, A.4gr
i

r gr
i t

d gr
i ti 2 ir r( ) ( ) ( )˜ ˜ ˜̇ ˜ ( )( ) ( ) ˜ ( ) ˜s g s s- D + + W =g g- D- - D-

with egr
i

gr
i tr˜ ( ) ( )s s= g- and i .e d

˜ gD = + D
Figure A1 shows the dynamics of Rydberg population trr

i
rg
i

gr
i( )( ) ( ) ( )s s s= obtained by numerically solving

equations (A.2) and (A.3) for the parameters offigures 2–4with 10 .e r
4G = G The black solid (dashed) line is the

atomic dynamics for 10d rW = G ( 10 , , 9 10d r r
2 2{ }W Î G ¼ ´ G with10 r

2G increments). The red line is the result
of atomic decay 10 r

3G G with 10 .d r
3W = G Aswe increase ,d eW  G we find that the effective decay rate for

the reservoir atoms scales with 4 d e
2∣ ∣G ~ W G up to 0.1 .d eW ~ G

In order to understand the dynamics, we formally integrate equation (A.2) to obtain

te i e d e .ge
i t

d gr
i t d

gr
i ti i i

˜
( ) ˜ ( ) ˜ ( ) ˜

òs s s= W
W
D

- D - D - D Assuming slowly varying amplitude gr
i˙ ( )s for ,d egW  we obtain

the following equation ofmotion

i
, A.5gr

i
r

d
gr
i

2

˙ ˜ ( )( ) ( )
⎛
⎝⎜

⎞
⎠⎟s g s= - +

W
D

where the effective decay rate is given by r
e d

e
eff

2

2 2

∣ ∣
∣ ∣

g g
g

g
= +

W

D +
with 2 .effgG = As further discussed below,

r S100 1 2∣ ∣ñ = ñand e P5 1 2∣ ∣ñ = ñhave decay rates with 10 .e r
4G G  Hence, decay rates for reservoir sites could

be enhanced up to 4 order ofmagnitudewith 10 .r
4G G 

Appendix B.Optical pumping to arbitrary n-subspace in an anharmonic Rydberg ladder

Now, let us discuss the possibility of optically pumping the system r̂ ofN atoms to an arbitrary target nt-
excitation subspacewith n N 2,t < - for which nt=1 in themain text. This is achieved by a set of nt lasers
resonantly driving the two-photon transitions n n 2 + (n n0, , 1t{ }Î ¼ - )with effective Rabi
frequencies n

2
( )W (see figure B1 (a)) and the three-photon transition n n2 1t t-  + with effective Rabi

frequency n
3
( )W (seefigure B1(b)). Because ˆr dissipates the levels n n 1, - the atomic population is pumped

to the target subspace nt (see figure B1(b)). For the case of n 1,t = 2
0( )W is provided by a single globalfieldΩ for

the entire atoms (see figure B1(c)).
The efficacy of this procedure to address only a particular transition n n ¢ depends on the anharmonicity

in the Rydberg spectrumV n V n ,n p∣ ˆ ∣= á ñ whereV
i j

N ij
rr

i
rr

j
p , p
ˆ ˆ ˆ( ) ( ) ( )å s s= D and n∣ ñrepresents themost shifted

state of the n subspace. TheVn is obtained by degenerate Rydberg configurationswith n-nearest neighbor
excitations (e.g., n r r g g, , , , ,n n N1 1∣ ∣ñ = ¼ ¼ ñ+ ). The Rydberg spectrum is then given by

V . B.1n
i

n

j i

n
ij

1

1

1
p ( )( )å å= D

=

-

= +
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The transition energy for n n 2 + is then

V V 2 , B.2n n
i

n
i n n

2
1

p
, 1

p
1, 2 ( )( ) ( )å- = D + D+

=

+ +

so that the anharmonicity is given by

V . B.3n n
n n

2, p
1, 1

p
1, 2 ( )( ) ( )d = D + D+

+ +

As shown infigure B1(b), for a given target subspace nt, we terminate the two-photon excitations to
n n1 1.t t-  + All subspaces with n n n0, , 1, 1t t{ }Î ¼ - + are resonantly connected by two-photon
transitions n

2
( )W with detunings V V 2n n n

2
2( )( )d = -+ and by three-photon 3W couplingwith detuning

V V 3,n n n2
3

1 2t t t
( )( )d = -- + - except for the nt subspace (see figure B1(b)). The Rydberg blockade condition for

the two-photon transition n n 2 + is then given by

V w , B.4n n d2,
2 ( )( )d >+

where w 2d r
n2 2

2
2∣ ∣( ) ( )= G + W is the ‘two-photon’ power-broadenedwidth of the transition n n 2 + and

2n
n2

2 2( ) ( )dW = W is the effective Rabi frequency. Critically, w w2 2 ,d n d
2 2 2( ) ( )d~ W  so that the higher-order

two-photon excitations (e.g., n n1 3=  = ) can be blocked even for extended samples L d .B

AppendixC. Feasibility of pumping to single-excitation subspacewith largeN

For n 1,t = by driving the two-photon transition n n0 2=  = with V V 2 2,0
2

2 0 p
1,2( )( ) ( )d = - = D the

atoms are pumped to a decoherence-free subspace (DFS) for atomsA of the nt=1 subspace (see figure 2(d)). As
discussed in themain text, theDFS is defined by the space spanned by superpositions of r ,i A

1{∣ ˜ }( ) ñÎ and the
subspace is set for the reservoir atomsB. In this case, high pumping efficiency to nt=1 is assured if the higher-
order transition n n1 3=  = is blockaded for the least shifted state r r g g r, , , , ,N N1 2 3 1∣ ¼ ñ- of n=3
subspace, thereby w .N N

dp
1, 1

p
2, 1 2( ) ( ) ( )D + D >- - For the 1D lattice infigure 1(a), our dissipative pumping scheme

works in the region a d 0.1B0  even forN=126 in the extended sample regime L d ,B wherewe take
50 ,W = G 10r

3G G = and a a 3 .1 0
6x =  For the case of Rbwith r S100 ,1 2∣ ∣ñ = ñ the blockade distance is

d 9.6 mB m= L 63 mm= , so that a a, 900, 1000 nm .0 1( ) ( )

AppendixD.Derivation of effective spinHamiltonian

In the off-resonant limit w ,ij
dp∣ ∣( )d - D  we obtain the effectiveHamiltonian Heff

ˆ (equation (2)) by
truncating the perturbative expansion to the second order and by time-averaging highly oscillating terms [69],

Figure A1.Enhancement in the decay rate d eeff
2∣ ∣g W G as a function of the strength of dressing field .dW The parameters are

10 ,e r
4G = G and resonant dressing 0.dD =
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m n( )ˆ
ˆ ˆ

¯
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†
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⎡
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⎤
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⎝
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⎞
⎠
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= +
¢
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-
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with the interactionHamiltonian given by H h he e ,
n n

t
n

t
I 1

i in nˆ ˆ ˆ †
å= +w w

=
- where H He e ,I

H t H ti
1

i0 0= -

1 2 1 1 ,mn m n
1¯ [( )( )]w w w= + - 1 2 1 1 ,mn m n

1¯ [( )( )]w w w¢ = - - and nw is the detuning between the laser
frequency and the Rydberg-shifted transition. In particular, we use H H H0 1

ˆ ˆ ˆ= + with

H , D.2
i

N

rr
i

i j

N
ij

rr
i

rr
j

0
1

p
ˆ ˆ ˆ ˆ ( )( ) ( ) ( ) ( )å åds s s= - D

= <

H , D.3
i

N

rg
i

gr
i

1
1
( )ˆ ˆ ˆ ( )( ) ( )å s s= W +

=

with i
iˆ ∣ ∣( )s m n= ñ ámn for g r, ,{ }m n Î and blockade shift C x x .ij

i j
p

p p ∣ ∣( )D = - - 

Weobtain the following effectiveHamiltonian

H J h.c. , D.4xy
i

i
rr

i

i j
ij

i j

1
ls ( )ˆ ¯ ˆ ˆ ˆ ( )( ) ( ) ( ) ( )å ås s s= - D + +

= <
+ -

which corresponds to aXYmodel Hxy
ˆ with spin–spin interaction Jij andmagnetic field ,i

ls
( )D thereby H H .xyeff

ˆ ˆ=
After the population is pumped to the nt subspace (see figure B1(b)), the coherent atomic dynamics is governed
byHxywithin the nt subspace.

For n 1,t = the necessary Raman couplings (Jij) and light shifts ( i
ls
( )D ) are generated by the globalfieldΩwith

detuning 2,i i
p

, 1( )d = D + for which

Figure B1. (a)Anharmonic Rydberg spectrum for two-photon transition .n
2
( )W Dotted (solid) line represents the energy level for non-

interacting atoms (themost shifted energy level with Rydberg interaction). (b)A set of n 1t - two-photon transitions n n 2 +
(with n n0, , 1t{ }Î ¼ - ) are resonantly driven at Rabi frequencies ,n

2{ }( )W in tandemwith a three-photon laser 3W for
n n2 1t t-  + are required to pump atoms to the target subspace nt. Non-coupled subspaceA of n excitations remains dark
throughout the entire driving processes. The target eigenstate is r g g .

p A p p
n

A B1 ,1
i i i

∣ ∣ ˜ ∣{ } { } { }
( ) å añ = ñ Ä ñ

Î
 (c)A single laser is required

to drive n n0 2=  = for target subspace n 1,t = (d) For ,0
2( )d d= atoms are pumped to the target eigenstate

r g g ,
i A i i A B1 ,1

1∣ ∣ ˜ ∣( ) å añ = ñ Ä ñ
Î

 whereby decoherence is enhanced for atomsB.
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-

+ The exchange term Jij involves Raman transitions between ri
1∣ ˜( )ñand rj

1∣ ˜( )ñ

through the ground states G∣ ˜ñwith the 2 i i2
p

, 1( )W D + term, and through the n=2manifolds rij
2∣ ˜( )ñwith the

f2 ij
i i2

p
, 1( )- W D + term. The globalfieldΩ also resonantly drives n n0 2=  = transitionwith the two-mode

squeezingHamiltonian

H
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h.c. . D.7
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2
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2

p
, 1
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+

Sincewe have increased the decay rates ,i BG = GÎ the population is driven to the nt=1 subspace via H2
ˆ (see

figure B1). As illustrated in the inset offigure E1 (a), the atomic dynamics in nt=1 subspace is dictated byHxy,
whose coefficients are fully determined by the ratio ij i i, 1D D + in a scale-invariant fashion (with overall factor
2 i i2

p
, 1( )W D + ). Generally, let us express the eigenstate ∣ ñm ofHxy in nt=1 as r .

i i i,
1∣ ∣ ˜( ) å añ = ñm m

Appendix E.Diagonalization of effectiveHamiltonian

For the 1D staggered triangular lattice infigure 1(a), the position vectors are given by x k a1 , 0i 1{( ) }= -


for
odd sites (i k2 1= + ) and by x a k a acos 1 , sini 0 1 0{ ( ) }q q= + -


for even sites (i k2= ), with cos 2q x=

and a a .1 0x = Under this geometry, the parameter ξ can fully describe the effectiveHamiltonianHxy. Figure
E1(b) shows thefinite-range behavior of the nonlocal coupling rate Jij between r ri j

1 1∣ ˜ ∣ ˜( ) ( )ñ « ñ in the vdW
interacting regime (p= 6). For the sufficiently large 1,x > wefind that the rate Jij significantly diminishes for
sites i j 2∣ ∣- > due to the r1 6~ vdW scaling. In the following discussion, we thereby truncate our analysis up
to next-nearest neighbor interactionswith the sparse-arrayHxy as

H J h.c. , E.1xy
i

N
i

rr
i

i j

N

ij
i j

1
ls ( )ˆ ¯ ˆ ˆ ˆ ( )( ) ( ) ( ) ( )å ås s s= - D + +

= <
+ -

with

J
N i N

J
N i N

J
N i N

2
4 for 1,

2
6 for 2, 1

2
6 for 2 2,

E.2
i

ls

2

2

2

2

4

2

6

6

6

( )
( )
( )

¯ ( )( )

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

D =

´ + - =

´ + - = -

´ + - < < -

x

x

x

-

-

-

J

J i j

J i j

i j

for 1

for 2

0 for 2

E.3ij
1

2 6( )
∣ ∣

∣ ∣

∣ ∣

( )

⎧
⎨
⎪⎪

⎩
⎪⎪

=

- =

´ - =

- >
x-

with overall factor J 4 .i i2
p

, 1( )= W D +

Eigenstates r
i i i,

1∣ ∣ ˜( ) å añ = ñm m with 0i B,a =mÎ can be obtained by controlling the ratio between nearest
and next-nearest terms for Jijwith ξ. As discussed infigure E1(a), this process is analogous to the behavior of
coherent population trapping, where destructive quantum interference occurs for the excitation pathways that
connects the ‘bright’ state ri

1∣ ˜( )ñ (decay rate 10 r
4G G ) to ‘metastable’ states rj i

1∣ ˜( ) ñ¹ (decay rate rG ). The
emergence of ‘dark state’ for such a toymodel provides an insight on our choice of interaction parameter

31
6x x = for symmetric (antisymmetric) eigenstates, whereby J J .i i i i, 1 , 2= -+ + For instance, in the case of

N=4with

H

J J J
J J J

J J J
J J J

0
0

0
0

, E.4xyˆ ( )

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟=

- -
-

-
- -

destructive interference in the form J J1,2 1,3= - and J J2,3 3,4= - occurs for 0.1,1 4,1a a= = For N 4, the
eigenstate 1∣ ñwith 0i B,1a =Î cannot be obtained by locally considering the atoms near the boundaries (i.e.,
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atoms1, 2, 3 and N N N2, 1,- - ). Instead, the uniqueness of the dark state 1∣ ñ is amanifestation of the

many-body interferences for J , ,ij
i

ls
¯ ( )D leading to 0.i B,1a =Î Nonetheless, J Ji i i i, 1 , 2= -+ + provides a reasonable

guiding principle for us to guess the dark resonance conditions for atoms near the edges for a certain value ofN,
due to symmetric sparse characteristics ofHxy.

We confirmed this prediction by solving the full spectrumof the sparseHamiltonianmatrix Hxy
ˆ with

J 0i j 2 - > and by numerically simulating the stationary state of themaster equation.We obtain two sets of

eigenstates r
i i i,

1∣ ∣ ˜( ) å añ = ñm m with 0N1, ,a a= =m m for arbitraryN thatmeets J Ji i i i, 1 , 2= -+ + at 1x x= as

below

N m mset 1 : 4 6 0, 1,
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, , 1, 1, 0, 1, 1, 0 , E.5i,

( )
{ } { } ( )a

= + = ¼
= - - ¼ - -m

Figure E1. (a) Interaction strength Jij and light shift
i

ls
¯ ( )D of the effectiveHamiltonianHxy are given by Raman transition r ri j

1 1∣ ˜ ∣ ˜( ) ( )ñ « ñ
via twopathmediated by G∣ ˜ñ and r .i j,

2∣ ˜( )ñ (b)The power law scaling behavior of spin–spin coupling strength Jijwith 1D staggered

triangular lattices for 31
6x = (blue) and 0.362x  (red). For ,1x the spatial range of Jij depicts amonotonic power-law decay, whereas

jig-jag oscillatory pattern exists for .2x

13

New J. Phys. 17 (2015) 113053 SKLee et al



N m mset 2 : 6 10 0, 1,
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,

1, 1, 1, 1, 0, 1, 1, 1, 1, 0 . E.6

i,

( )
{ } {

} ( )
a

= + = ¼
= - - - - ¼

- - - -
m

Therefore, ourmethod could produce stationary k-partite entanglement in the formof an eigenstate
W g gk A B1∣ ∣ ∣ ñ = ñ Ä ñ with k m2 4= + (set (E.5)) and k m4 8= + (set (E.6)), plotted as blue dots infigure

F1 (b). In themain text, we present our numerical result for theMarkovian dynamics with the steady state
corresponding to set (E.5) (set (E.6)) forfigure 2 (figure 3)withN=4 (N= 6). Infigure E2, we present our result
forN=10, thereby producing hexapartitemultipartite entanglement in the steady state withfidelity F 0.99.>
In the hindsight, we can attribute the existence of symmetric entangled steady states in equations (E.5) and (E.6)
to the special structure of H .xy

ˆ As Hxy
ˆ is sparse, highly symmetric, a kind of commensurability requirement is

imposed to the eigenstate under the restriction that the coefficients at the edges are zero.
Even if wewere to consider the case J 0,i j 2 ¹- > our result would not have changedmuch for .1x x= The

truncationwould slightlymodify the exact eigenstate as i i i∣ ∣ ∣  dñ  ñ + ñwith 0.i i∣ dá ñ = Roughly
speaking, i i∣ d dá ñ scales linear to the energy perturbation up to a leading order. Since the energy perturbation to

r1ij
ijp
6( )D ~ is atmost 10i i i i

p p
, 3

p
, 1 2( ) ( )dD = D D+ + - (see figure E1(b)), the perturbation to the entanglement

fidelity is atmost F 10 ,2d - which is well within the numerical uncertainty of the quantum trajectorymethod
(see figure 3). In terms of dark resonance J J ,i i i i, 1 , 2= -+ + the higher-order interactions J i j 2- > for 1x x= (blue
dots) are suppressed by at least 102 relative to J J, .i i i i, 1 , 2+ + By taking N , ¥ the higher-order contributions

J
x i i x2 ,∣ ∣å >
¥

+ would still be far too negligible to have any impact on the final state with J 10
x i i x2 ,

2∣ ∣å ´>
¥

+
-

J Jmin , ,i i i i, 1 , 2(∣ ∣ ∣ ∣)+ + leading to F 0.99.
The infinitesimally reduced fidelity can then be recovered to F 1 by displacing ξ to an optimal value by

themore general condition J J
x x x1,2 2 ,1 1,1å a= - + for 1∣ ñat the expense of having a slightlymodified steady

states, i.e., a new eigenstate W g g .A B1∣ ∣ ∣ ¢ñ = ¢ñ Ä ñ Due to the inherent symmetry of the system, thismodified
steady state W∣ ¢ñwould onlymarginally differ from the original one. Furthermore, the original steady state 1∣ ñ
could be recovered by re-adjusting the arrangement of the atoms. In any case, the only sensitive parameter that
determines the optimal fidelity is the ‘branching’ ratio 10 ,r

4G G - which sets the balance between the
lifetimes for dissipative and coherent evolutions, thereby the finalfidelity F 1 .r( )~ - G G

On the other hand, in the region of 1x  (J J J,i j i j i j2 1 2- > - = - = ), the optimal value ξ cannot be
predicted by the dark resonance conditions of the sparse-arraymatrixHxy. In this case, Jij displays zigzag
oscillatory decay as shown infigure E1(b), and higher-order terms J i j 2- > must be included in the analysis.

Appendix F.N-partite uncertaintywitness

In this section, we describe ourmethod of constructing theN-partite uncertainty witness [46]. Our
entanglement witness y, c{ }D consists of identifying the boundaries b

k 1( )D - for all possible states b
k 1ˆ ( )r -

produced by convex combinations of pure k 1( )- -partite entangled states b
k 1∣ ( )y ñ- aswell as theirmixed

siblingswith less k. As shown in [46], the lower bound of b
k 1( )D - is attained by taking a convex set of

y,b b
k

c b
k1 1{ ( ˆ ) ( ˆ )}( ) ( )r rD - - for all pure states .b

k
b
k

b
k1 1 1ˆ ∣ ∣( ) ( ) ( )r y y= ñá- - - Infigure 3, we depict the boundaries

Figure E2.Dynamic formation of steady-state entanglement forN=10 in the extended sample regime. The dark state 1∣ ñof the
driven-dissipative dynamics is hexapartite entangled, as derived in equations (23) and (24). The entanglement fidelity F6 ismaximized
at a, 1.1997, 0.280( ) ( )x = to F 0.993.6 
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, ,b b b
1 2 3( ) ( ) ( )D D D for all possible realizations of fully separable states, bipartite entangled and tripartite entangled

states, respectively, by following the procedures of [47, 48].
Generally, we can determine the projection operators W Wi i i

ˆ ∣ ∣P = ñá with i 1, , 2m{ }Î ¼ for arbitrary
number of systems N 2m

m= with the recursive relationship

W W G G W
1

2
, , ,i

m
i
m m m

i
m1 1 1 1( )∣ ˜ ˜( ) ( ) ( ) ( ) ( )ñ = - - - -

from the initial condition W gr rg1 2 .1,2
1∣ (∣ ∣ )( )ñ = ñ  ñ Here, W r1 2i

m m
i i
2 1

m

∣ ( ) ∣ ˜( ) ( )åñ = ñand

G g gm∣ ˜ ∣( )ñ = ñ forNm atoms. As discussed in [46], we then construct the uncertainty witness
i i

2 ˆå dD = á P ñ
to identify the bounds b

k 1{ }( )D - for k 1( )- -partite entanglement up to k N .m For convenience, we set the
maximal N Nm A to be larger than the numberNA of atoms inA, so thatwe could distinguish the entanglement
depth k for any k N .A

For figure 4, we assumed the stationary limit, so that y 0.c  In order to verify theminimumbounds ,b
k 1( )D -

we only need to optimize the overlap of pure k 1( )- -partite entangled states of the form b
k 1∣ ( )y ñ- = G N k 1∣ ˜ ( )ñ- +

r
i

k
i i

1 1∣ ˜( )å aÄ ñ-
with one of the projectors W .i∣ ñ This is achievedwhen the test state is a balanced k 1( )- -partite

W-state (i.e., k1 1i∣ ∣a = - ). Figure F1 depicts the uncertainty bounds b
k 1( )D - with k N1, , m{ }Î ¼

calculated for yc=0 and N 2 128.m
7= = The shaded regions represent the parameter spaces for which

ambiguity exists for the tiered structure .b
k

b
k 1( ) ( )D D + This is caused by the nonlinear structure of

b
k

b
k(∣ ∣)( ) ( )y yD ñá to POVMvalues .iP̂ For such regions, we conservatively quote theminimumvalue of km and

certify the presence of genuine entanglement depth k 1m + stored in the purported state r̂ with b
km( ˆ ) ( )rD < D

(see figure F1(b)).Hence, the entanglement depth km (red dot) is a conservative estimate, which can be detected
in an experiment, as opposed to themodel-dependent analysis of k (blue dot) for the pure state form

W g gk A B1∣ ∣ ∣ ñ = ñ Ä ñ (i.e., by counting the number of non-zero probability amplitudes in Wk A∣ ñ ).

Figure F1. (a) k-partite uncertainty bounds b
k( )D for k 1, , 128{ }Î ¼ andNm=128. Shaded regions indicate the parameter spaces for

which ambiguity exists for ,b
k

b
k 1( ) ( )D D + due to the nonlinear sensitivity ofΔ. For such regions, we conservatively quote the

minimumvalue km for the genuine k-partite entanglementwith .b
km( ˆ ) ( )rD < D (b)Theminimum entanglement depth km certified

by y, c{ }D (red dots), and the entanglement depth k in the purported eigenstate W g gk A B1∣ ∣ ∣ ñ = ñ Ä ñ (blue dots), with fully
balanced k-partiteW state W .k A∣ ñ
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AppendixG. Experimental parameters with alkali atoms

Let us consider 85Rb atoms interacting with opticalfield near the transition between g S5 1 2∣ ∣ñ = ñ and
r n Sp 1 2∣ ∣ñ = ñwith two-photonRabi frequency 1 2W = W W D¢ and detuning δ that globally addresses the
atomic sample. As shown byfigureG1, this could be achieved by a two-photon transitionwith Rabi frequencies

,1 2W W via the intermediate state e P5 3 2∣ ∣¢ñ = ñwith one-photon detuning .D¢ TheRydberg excitation spectrum
displays a highly nonlinear excitation spectrum n due to the dipole–dipole interaction C r r ,ij

i j
p

p p ∣ ∣( )D = - - 

with themost shifted level given by configuration states consisting of nearest-neighbor excitations ri i, 1
2∣ ˜( ) ñ+

with .i i
p

, 1( )D +

In order to achieve the parameter sets offigures 2–4, we take the principal quantumnumber np=100 so
that r S m100 , 1 2 .j1 2∣ ∣ñ = = ñ The radiative lifetime is given by n ,0 p( )*t t= a where n n nlp p* d= - is the

effective principal number and nld is the quantumdefect.With 1.430t = ns and 2.94a = for S100 1 2∣ ñ [24], we
find that the Rydberg lifetime is 1rt = ms (i.e., 1rG  kHz). On the other hand, 38 MHzeG  for e .∣ ñ Since

eG  G in the limit of strong dressing fields 1W for ‘reservoir’ atoms, 10 r
4G  G can be achieved in an

experiment.
By setting 10 GHz1,2W = and 10 1,2D¢ = W (i.e., 1W = GHz), the photo-ionization rate can be determined

by

I

w

I

w

2
, G.1

e

sat 1,2
2

( )
⎛
⎝⎜

⎞
⎠⎟ 

g s s= ´ =
W
G¢

p p p

where 38 MHzeG¢ = is the spontaneous decay rate for e ,∣ ¢ñ I 4.5 mWsat = cm−2 is the saturation intensity for

g e∣ ∣ñ  ¢ñand 2 10 7 2Ås ´p
- is the photo-ionization cross-section that couples the Rydberg state S100 1 2∣ ñ

to the continuum free-electronwavefunctions [24]. Hence, we find that the photo-ionization lifetime is limited
to 1 10t g=p p  ms 1 rG [54].

The blockade shift ij
p
( )D is determined by Rydberg coefficient Cp, for whichwe take C 56 THz m6

6m= for

the vdW interaction between twoRydberg atoms in r S m100 , 1 2j1 2∣ ∣ñ = = ñ [50–53]. For 1W = GHz and

N 6= , the blockade shift for nearest-neighbors is 800i i
6

, 1( )D =+ GHz (a dB0  0.35), while the power-
broadened linewidth for the transition g r is w 2d∣ ∣ñ « ñ W . The resulting blockade radius is

d C w 5.8B d6
6 = and a a F1.9 2.3 m 2.1 2.5 m for0 1 4( ) ( ) ( ) m m  0.99. In terms of spatial localizations,

the variance of the lattice constants would need to be less than a a,0 1d d 200 nm in order to achieve F4  0.99.
This could be readily achieved in deep optical lattice experiments with zero-pointmotion xd ~ 10 nm [70].
Hence, Rydberg atoms interacting in the strong blockade regimewith the lattice constants
a a, 1 m 20 1 0m l> (figures 2–4) can be spatially resolved, so that dW can be locally addressed to the reservoir
sites without the requirement for diffraction-limited imaging resolutions 20l [71]. Therefore, the pumping
time for F N0.99for 64 = is then t 6 10 60 sp

2 m~ ´ G = , which is not limited by the photo-ionization
time tp 10 ms.

In addition, if we reduce the fidelity threshold F 0.9 10r4
3( G G = - ), the steady state can be achieved

within t t600 s 1sp m= p  for relaxed parameters 1G = MHz, 50W = MHz, and d 9.6 mB m= over the
region of a a3.8 4.5 m 3.9 4.7 m0 1( ) ( ) ( ) m m as shown in tableG1. Since the quantum jumps in the n 1=
subspace occur on a time-scale of t Nj

2( )~ due to the randomwalk for ri
1∣ ˜( )ñuntil it reaches the ‘reservoir’

sites with N r1,G = G G , we expect that the pumping time to reach stationarity also scales as t Np
2( )~ . On

the other hand, if wewere to address every ‘zeros’ in equations (E.5) and (E.6)with dW , the pumping time

FigureG1. (a) N-atomRydberg blockade. Effective Rabi frequency between g∣ ñand r∣ ñ is given byΩ. (b) Level diagram for 85Rb atom.
The effective transition between g∣ ñand r∣ ñ is formed by a two-photon transition via the intermediate excited state e ,∣ ¢ñ with
g S5 ,1 2∣ ∣ñ = ñ e P5 ,3 2∣ ∣¢ñ = ñ and r n S .p 1 2∣ ∣ñ = ñ D¢ is the one-photon detuning respect to e∣ ¢ñbyfield 1W ( 4741l  nm) and δ is
the two-photon detuning by thefield 2W ( 7952l  nm).
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t Np ( )~ will scale linear to the numberN of eigenstates nspanning 1{∣ } ñ =m . Hence, even for N 126=
atomswith a a, 0.9, 1 m0 1( ) ( )m , the condition wN N

dp
1, 1

p
2, 1 2( ) ( ) ( )D + D >- - is satisfied so that the atomic

sample can efficiently relax into the steady state 1∣ ñ.
We have also considered the case for 133 Cswhere direct UV excitation to r P100 3 2∣ ∣ñ = ñ state is possible

[55].We set the decohering state to e S7 e1 2∣ ∣ (ñ = ñ G  36MHz). Because P100 3 2∣ ñoffers lower rG 330 Hz
[24], the steady-state entanglement fidelity F 1 r( )~ - G G can be improved relative to the case of S100 1 2∣ ñ
with thefixed parameters in tableG2 . For example, if we choose 50W = MHz and 1G = MHz as above, the
resultingfidelity for N F P F S6is 100 0.96 100 0.914 3 2 4 1 2(∣ ) (∣ )= ñ = > ñ = . The resulting lattice constants for
N 126= atoms are a a, 1.0, 1.2 m 1 m0 1( ) ( ) m m so that they are optically addressable, thereby allowing for
steady-state hectapartite entanglement. The photo-ionization lifetimemay also be significantly improved, as
demonstrated in [55].

In conclusion, we estimate that ourmethod could be extended to generate 100-partite entangled steady
states with the parameters g e r, , , , ,1,2{ ∣ ∣ ∣ }dW D¢ ñ ¢ñ ñ . Further improvement in the entanglement depth k may

be possible by optimizing the driving field W under the constraint
2

r

2

d
W

G for a given r∣ ñ, which reduces the

ionization time tp [54]. Alternative strategies, including the use of photonic crystals with atoms in low-lying
electronic states, will be discussed elsewhere.

References

[1] Amico L, Fazio R,OsterlohA andVedral V 2008 Entanglement inmany-body systemsRev.Mod. Phys. 80 517
[2] Diehl S,Micheli A, KantianA, Kraus B, BüchlerHP andZoller P 2008Quantum states and phases in driven open quantum systems

with cold atomsNat. Phys. 4 878
[3] Verstraete F,WolfMMandCirac J I 2009Quantum computation and quantum-state engineering driven by dissipationNat. Phys.

5 633
[4] KastoryanoM J,WolfMMandEisert J 2013 Precisely timing dissipative quantum information processing Phys. Rev. Lett. 110 110501
[5] CampisiM,Hänggi P andTalkner P 2011Colloquium: quantum fluctuation relations: foundations and applicationsRev.Mod. Phys.

83 771
[6] PlenioMB,Huelga S F, Beige A andKnight P L 1999Cavity-loss-induced generation of entangled atomsPhys. Rev.A 59 2468
[7] Schneider S andMilburnG J 2002 Entanglement in the steady state of a collective-angular-momentum (Dicke)model Phys. Rev.A 65

042107

TableG2. Summary of experimental parameters to achieve steady-state entanglement withfidelity F for4
133 Cs. The set of

parameters are given by Rydberg state r P100 3 2∣ ∣ñ = ñwith decay rate 330rG = Hz, decohering state
e S7 with 36e1 2∣ ∣ñ = ñ G ~ MHz, and van derWaals coefficient C 88 THz m6

6∣ ∣ m= . The error bars in a a,0 1 indicate the
range of lattice constants, which allow robust entanglement productionwith F 0.94 > .

rG G W G F4 W dB a0 a1 tp

(MHz) ( mm ) ( mm ) ( mm ) ( sm )

104 103 0.99 3.3 103´ 5.2 1.5 0.5
0.8

-
+ 1.8 0.6

1.0
-
+ 60

104 102 0.99 3.3 102´ 7.6 2.7 0.6
0.8

-
+ 3.2 0.7

0.9
-
+ 60

104 50 0.98 1.7 102´ 8.5 3.1 0.5
0.7

-
+ 3.8 0.6

0.8
-
+ 90

104 30 0.97 102 9.2 3.5 0.4
0.6

-
+ 4.2 0.4

0.8
-
+ 120

104 15 0.92 50 10 4.3 0.2
0.2

-
+ 5.1 0.2

0.2
-
+ 160

3 103´ 102 0.96 102 9.2 3.5 0.4
0.4

-
+ 4.2 0.4

0.6
-
+ 210

103 102 0.92 33 11 4.2 0.4
0.6

-
+ 5.1 0.5

0.7
-
+ 1200

103 50 0.91 17 13 5.0 0.1
0.1

-
+ 6.0 0.1

0.1
-
+ 1800

TableG1. Summary of experimental parameters to achieve steady-state entanglementwith
fidelity F4 for

85Rb. The set of parameters are given by Rydberg state r S100 1 2∣ ∣ñ = ñwith
decay rate 1 kHz,rG = decohering state e P5 1 2∣ ∣ñ = ñwith 36 MHz,eG = and van derWaals
coefficient C 56 THz m .6

6∣ ∣ m= The error bars in a a,0 1 indicate the range of lattice con-
stants, which allow robust entanglement productionwith F 0.9.4 >

Γ/Γr Ω/Γ F4 Ω dB a0 a1 tp
(MHz) (μm) (μm) (μm) (μs)

104 103 0.99 104 4.0 1.1 0.4
0.7

-
+ 1.4 0.5

0.8
-
+ 20

104 102 0.99 103 5.8 2.0 0.5
0.6

-
+ 2.4 0.6

0.7
-
+ 20

104 50 0.98 5.0 102´ 6.6 2.4 0.4
0.5

-
+ 2.9 0.5

0.6
-
+ 30

104 30 0.97 3.0 102´ 7.1 2.7 0.3
0.5

-
+ 3.3 0.3

0.6
-
+ 40

104 15 0.92 1.5 102´ 8.0 3.3 0.2
0.2

-
+ 3.9 0.2

0.2
-
+ 55

103 100 0.92 102 8.6 3.3 0.4
0.3

-
+ 3.9 0.4

0.5
-
+ 400

103 50 0.91 50 9.6 3.8 0.1
0.1

-
+ 4.6 0.1

0.1
-
+ 600

17

New J. Phys. 17 (2015) 113053 SKLee et al

http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1103/PhysRevLett.110.110501
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/PhysRevA.59.2468
http://dx.doi.org/10.1103/PhysRevA.65.042107
http://dx.doi.org/10.1103/PhysRevA.65.042107


[8] PlenioMBandHuelga S F 2002 Entangled light fromwhite noise Phys. Rev. Lett. 88 197901
[9] BraunD2002Creation of entanglement by interactionwith a commonheat bath Phys. Rev. Lett. 89 277901
[10] Jakóbczyk L 2002 Entangling two qubits by dissipation J. Phys. A:Math. Gen. 35 6383
[11] Kraus B, BüchlerHP,Diehl S, KantianA,Micheli A andZoller P 2008 Preparation of entangled states by quantumMarkov processes

Phys. Rev.A 78 042307
[12] MuschikCA, Polzik E S andCirac J I 2011Dissipatively driven entanglement of twomacroscopic atomic ensembles Phys. Rev.A 83

052312
[13] KastoryanoM J, Reiter F and SørensenA S 2011Dissipative preparation of entanglement in optical cavities Phys. Rev. Lett. 106 090502
[14] Cho J, Bose S andKimMS 2011Optical pumping intomany-body entanglement Phys. Rev. Lett. 106 020504
[15] Vollbrecht KGH,MuschikCA andCirac J I 2011 Entanglement distillation by dissipation and continuous quantum repeaters Phys.

Rev. Lett. 107 120502
[16] KrauterH,MuschikCA, JensenK,WasilewskiW, Petersen JM,Cirac J I and Polzik E S 2011 Entanglement generated by dissipation

and steady state entanglement of twomacroscopic objectsPhys. Rev. Lett. 107 080503
[17] LinY et al 2013Dissipative production of amaximally entangled steady state of two quantumbitsNature 504 415
[18] Shanker S et al 2013Autonomously stabilized entanglement between two superconducting quantumbitsNature 504 419
[19] Barreiro J T et al 2011An open-systemquantum simulator with trapped ionsNature 470 486
[20] Schindler P et al 2013Quantum simulation of dynamicalmapswith trapped ionsNat. Phys. 9 361
[21] JakschD,Cirac J I, Zoller P, Rolston S L, Côté R and LukinMD2000 Fast quantumgates for neutral atomsPhys. Rev. Lett. 85 2208
[22] LukinMD et al 2001Dipole blockade and quantum information processing inmesoscopic atomic ensembles Phys. Rev. Lett. 87 037901
[23] SaffmanM,Walker TG andMølmerK 2010Quantum informationwithRydberg atomsRev.Mod. Phys. 82 2313
[24] Gallagher T F 1994Rydberg Atoms (Cambridge: CambridgeUniversity Press)
[25] RaoDDBandMølmerK 2013Dark entangled steady states of interacting Rydberg atomsPhys. Rev. Lett. 111 033606
[26] Carr AWand SaffmanM2013 Preparation of entangled and anti-ferromagnetic states by dissipative Rydberg pumping Phys. Rev. Lett.

111 033607
[27] Olmos B,González-Férez R and Lesanovsky I 2009 Fermionic collective excitations in a lattice gas of Rydberg atomsPhys. Rev. Lett. 103

185302
[28] WeimerH,MüllerM, Lesanovsky I, Zoller P andBüchlerHP 2010ARydberg quantum simulatorNat. Phys. 6 382
[29] Lee TE,HäffnerH andCrossMC2012Collective quantum jumps of Rydberg atomsPhys. Rev. Lett. 108 023602
[30] ZhaoB,Glaetzle AW, Pupillo G andZoller P 2012Atomic Rydberg reservoirs for polarmoleculesPhys. Rev. Lett. 108 193007
[31] AtesC,Olmos B, LiWand Lesanovsky I 2012Dissipative binding of lattice bosons through distance-selective pair loss Phys. Rev. Lett.

109 233003
[32] Glaetzle AW,Nath R, Zhao B, Pupillo G andZoller P 2012Driven-dissipative dynamics of a strongly interacting Rydberg gas Phys. Rev.

A 86 043403
[33] HöningM,MuthD, PetrosyanD and FleischhauerM2013 Steady-state crystallization of Rydberg excitations in an optically driven

lattice gasPhys. Rev.A 87 023401
[34] Lesanovsky I andGarrahan J P 2013Kinetic constraints, hierarchical relaxation, and onset of glassiness in strongly interacting and

dissipative Rydberg gases Phys. Rev. Lett. 111 215305
[35] PetrosyanD,HöningMand FleischhauerM2013 Spatial correlations of Rydberg excitations in optically driven atomic ensembles Phys.

Rev.A 87 053414
[36] Wilk T et al 2010 Entanglement of two individual neutral atoms usingRydberg blockadePhys. Rev. Lett. 104 010502
[37] Isenhower L et al 2010Demonstration of a neutral atom controlled-NOTquantumgatePhys. Rev. Lett. 104 010503
[38] SchaußP et al 2012Observation of spatially ordered structures in a two-dimensional Rydberg gasNature 491 87
[39] Dudin YOandKuzmichA 2012 Strongly interacting Rydberg excitations of a cold atomic gas Science 336 887
[40] Peyronel T et al 2012Quantumnonlinear optics with single photons enabled by strongly interacting atomsNature 488 57
[41] SchemppH et al 2014 Full counting statistics of laser excited Rydberg aggregates in a one-dimensional geometry Phys. Rev. Lett. 112

013002
[42] GühneO andTothG 2009 Entanglement detection Phys. Rep. 474 1
[43] SørensenA S andMølmerK 2001 Entanglement and extreme spin squeezingPhys. Rev. Lett. 86 4431
[44] HofmannHF andTakeuchi S 2003Violation of local uncertainty relations as a signature of entanglement Phys. Rev.A 68 032103
[45] Duan L-M2011 Entanglement detection in the vicinity of arbitraryDicke states Phys. Rev. Lett. 107 180502
[46] Lougovski P, van Enk S J, Choi K S, Papp SB,DengH andKimbleH J 2009Verifyingmultipartitemode entanglement ofW statesNew

J. Phys. 11 063029
[47] Papp S B, Choi K S, DengH, Lougovski P, van Enk S J andKimbleH J 2009Characterization ofmultipartite entanglement for one

photon shared among four opticalmodes Science 324 764
[48] Choi K S, GobanA, Papp SB, van Enk S J andKimbleH J 2010 Entanglement of spinwaves among four quantummemoriesNature

468 412
[49] LewensteinM,Cirac J I andZoller P 1995Master equation for sympathetic cooling of trapped particles Phys. Rev.A 51 4617
[50] Singer K, Stanojevic J,WeidemüllerM andCôté R 2005 Long-range interactions between alkali Rydberg atompairs correlated to the

ns–ns, np–np and nd–nd asymptotes J. Phys. B: At.Mol. Opt. Phys. 38 S295
[51] Walker TG and SaffmanM2008Consequences of Zeeman degeneracy for the van derWaals blockade betweenRydberg atomsPhys.

Rev.A 77 032723
[52] Dudin YO, Li L, Bariani F andKuzmichA 2010Observation of coherentmany-bodyRabi oscillationsNat. Phys. 8 790
[53] Balewski J B et al 2013Coupling a single electron to a Bose–Einstein condensateNature 502 664
[54] SaffmanMandWalker TG2005Analysis of a quantum logic device based on dipole–dipole interactions of optically trapped Rydberg

atomsPhys. Rev.A 72 022347
[55] HankinAM et al 2014Two-atomRydberg blockade using direct 6S to nP excitationPhys. Rev.A 89 033416
[56] Grünzweig T,HilliardA,McGovernMandAndersenMF2010Near-deterministic preparation of a single atom in an opticalmicrotrap

Nat. Phys. 6 951
[57] JoG, Guzman J, ThomasCK,Hosur P, VishwanathA and Stamper-KurnDM2012Ultracold atoms in a tunable optical Kagome

latticePhys. Rev. Lett. 108 045305
[58] BarredoD et al 2014Demonstration of a strong Rydberg blockade in three-atom systemswith anisotropic interactions Phys. Rev. Lett.

112 183002
[59] ShahmoomE andKurizki G 2013Non-radiative interaction and entanglement between distant atomsPhys. Rev.A 87 033831

18

New J. Phys. 17 (2015) 113053 SKLee et al

http://dx.doi.org/10.1103/PhysRevLett.88.197901
http://dx.doi.org/10.1103/PhysRevLett.89.277901
http://dx.doi.org/10.1088/0305-4470/35/30/313
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1103/PhysRevA.83.052312
http://dx.doi.org/10.1103/PhysRevA.83.052312
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1103/PhysRevLett.106.020504
http://dx.doi.org/10.1103/PhysRevLett.107.120502
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1038/nature12801
http://dx.doi.org/10.1038/nature12802
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nphys2630
http://dx.doi.org/10.1103/PhysRevLett.85.2208
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/PhysRevLett.111.033606
http://dx.doi.org/10.1103/PhysRevLett.111.033607
http://dx.doi.org/10.1103/PhysRevLett.103.185302
http://dx.doi.org/10.1103/PhysRevLett.103.185302
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1103/PhysRevLett.108.023602
http://dx.doi.org/10.1103/PhysRevLett.108.193007
http://dx.doi.org/10.1103/PhysRevLett.109.233003
http://dx.doi.org/10.1103/PhysRevA.86.043403
http://dx.doi.org/10.1103/PhysRevA.87.023401
http://dx.doi.org/10.1103/PhysRevLett.111.215305
http://dx.doi.org/10.1103/PhysRevA.87.053414
http://dx.doi.org/10.1103/PhysRevLett.104.010502
http://dx.doi.org/10.1103/PhysRevLett.104.010503
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1126/science.1217901
http://dx.doi.org/10.1038/nature11361
http://dx.doi.org/10.1103/PhysRevLett.112.013002
http://dx.doi.org/10.1103/PhysRevLett.112.013002
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1103/PhysRevA.68.032103
http://dx.doi.org/10.1103/PhysRevLett.107.180502
http://dx.doi.org/10.1088/1367-2630/11/6/063029
http://dx.doi.org/10.1126/science.1172260
http://dx.doi.org/10.1038/nature09568
http://dx.doi.org/10.1103/PhysRevA.51.4617
http://dx.doi.org/10.1088/0953-4075/38/2/021
http://dx.doi.org/10.1103/PhysRevA.77.032723
http://dx.doi.org/10.1038/nphys2413
http://dx.doi.org/10.1038/nature12592
http://dx.doi.org/10.1103/PhysRevA.72.022347
http://dx.doi.org/10.1103/PhysRevA.89.033416
http://dx.doi.org/10.1038/nphys1778
http://dx.doi.org/10.1103/PhysRevLett.108.045305
http://dx.doi.org/10.1103/PhysRevLett.112.183002
http://dx.doi.org/10.1103/PhysRevA.87.033831


[60] Douglas J S et al 2015Quantummany-bodymodels with cold atoms coupled to photonic crystalsNat. Photonics 9 326
[61] GobanA et al 2014Atom-light interactions in photonic crystalsNat. Commun. 5 3808
[62] Lieb EHandRobinsonDW1972The finite group velocity of quantum spin systemsCommun.Math. Phys. 28 251
[63] Eisert J, van denWormM,Manmana SR andKastnerM2013 Breakdown of quasi-locality in long-range quantum latticemodels Phys.

Rev. Lett. 111 260401
[64] Lee SK et al 2015 Localization and diffusion ofmany-body entanglement in long-range interacting disordered lattice spinmodels in

preparation
[65] Childs AM,Gosset D andWebbZ 2013Universal computation bymultiparticle quantumwalk Science 339 791
[66] Heaney L, Cabello A, SantosMF andVedral V 2011 Extreme nonlocality with one photonNew J. Phys. 13 053054
[67] RaoDDBandMølmerK 2014Deterministic entanglement of Rydberg ensembles by engineered dissipation Phys. Rev.A 90 062319
[68] Reiter F, ReebD and SørensenA S 2015 Scalable dissipative preparation ofmany-body entanglement preprint (arXiv:1501.06611)
[69] JamesDFV and Jerke J 2007 EffectiveHamiltonian theory and its applications in quantum informationCan. J. Phys. 85 625
[70] GobanA et al 2012Demonstration of a state-insensitive, compensated nanofiber trap Phys. Rev. Lett. 109 033603
[71] BakrWS,Gillen J I, PengA, Fölling S andGreinerM2009A quantumgasmicroscope for detecting single atoms in aHubbard-regime

optical latticeNature 462 74

19

New J. Phys. 17 (2015) 113053 SKLee et al

http://dx.doi.org/10.1038/nphoton.2015.57
http://dx.doi.org/10.1038/ncomms4808
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1103/PhysRevLett.111.260401
http://dx.doi.org/10.1126/science.1229957
http://dx.doi.org/10.1088/1367-2630/13/5/053054
http://dx.doi.org/10.1103/PhysRevA.90.062319
http://arXiv.org/abs/1501.06611
http://dx.doi.org/10.1139/P07-060
http://dx.doi.org/10.1103/PhysRevLett.109.033603
http://dx.doi.org/10.1038/nature08482

	1. Introduction
	2. Driven-dissipative preparation of many-body entangled states
	2.1. Schematics
	2.2. Rydberg-mediated laser transitions and local decoherence
	2.3. Emergence of dark multipartite entangled states for open-system dynamics

	3. Results
	3.1. Open-system dynamics for bipartite atomic entanglement
	3.2. Evolution of many-body entanglement and uncertainty-based entanglement witness
	3.3. Finite-size scaling of steady-state entanglement

	4. Experimental feasibility
	5. Conclusion
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	Appendix E.
	Appendix F.
	Appendix G.
	References



