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Abstract

Non-equilibrium quantum dynamics represents an emerging paradigm for condensed matter physics,
quantum information science, and statistical mechanics. Strongly interacting Rydberg atoms offer an
attractive platform to examine driven-dissipative dynamics of quantum spin models with long-range
order. Here, we explore the conditions under which stationary many-body entanglement persists with
near-unit fidelity and high scalability. In our approach, coherent many-body dynamics is driven by
Rydberg-mediated laser transitions, while atoms at the lattice boundary locally reduce the entropy of
the many-body system. Surprisingly, the many-body entanglement is established by continuously
evolving alocally dissipative Rydberg system towards the steady state, precisely as with optical
pumping. We characterize the dynamics of multipartite entanglement in an one-dimensional lattice
by way of quantum uncertainty relations, and demonstrate the long-range behavior of the stationary
entanglement with finite-size scaling. Our work opens a route towards dissipative preparation of
many-body entanglement with unprecedented scaling behavior.

1. Introduction

Quantum control of open many-body systems has become a major theme in the quest to explore new physics at
the interface between condensed matter physics, quantum information science, and statistical mechanics [ 1-5].
The ability to control the many-body interactions and their dissipative processes has been identified asa
powerful resource for the preparation of steady-state entanglement [6—14, 16—18] and the investigation of noise-
driven quantum phase transitions [2, 19, 20]. Indeed, quantum-reservoir engineering provides the framework
for dissipative quantum computation [3, 4] and communication [15] with built-in fault-tolerance.
Furthermore, open system dynamics offers new prospectives to the relationship between entanglement and
quantum thermodynamics [5].

Laser-driven Rydberg atoms offer unique possibilities for creating and manipulating open quantum systems
p of dipolar interacting spin models [21-23]. By exciting N atoms to high-lying Rydberg states, strong and long-
range interactions between the Rydberg atoms can be exploited to induce spin—spin interactions, whereas atoms
comprising the many-body state can couple to their local radiative reservoirs by spontaneous emission [24]. The
competition between the coherent and incoherent dynamics can drive the system to bipartite entangled states
for two atoms [25, 26] and novel states of matter for a mesoscopic number of atoms, exhibiting topological
order, glassiness, and crystallization dynamics [27—-35]. Remarkably, the basic primitives behind such a principle
have been demonstrated in the laboratory by several groups [36—41].

Despite the tantalizing prospects of quantum-reservoir engineering, the main obstacle has been that local
decoherence (e.g., spontaneous emission) generally destroys the global entanglement of the system. Most
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Figure 1. Production of stationary entanglement with Rydberg atoms in 1D lattice. (a) Schematic of optically driven, dissipative
Rydberg atoms in a 1D staggered triangular lattice. Distances ao and a, are defined between spins in neighbor and next-neighbor
configurations. Inset (i) the decay rates I y = I' > I, for the edge atoms are enhanced by mixing the Rydberg states |r) with short-
lived |e) with local fields (Rabi frequency €2;) (appendix A). Inset (ii) atoms are pumped by a single, global driving field (Rabi
frequency (2) with detuning é. (b) Rydberg blockaded atomic structure showing a rich family of anharmonic levels with level shifts
Ag’” for the Rydberg state |7i(j)) = |g---1;-+-1j--g), separated b}r subspace . (Left) Two-photon process H, optically pumps the
population to the # = 1 manifold. (Middle) XY Hamiltonian H,, dictates the delocalization dynamics within the n = 1 subspace. J;;is
driven by Raman transitions |7{") « |?J§l)) with detuning 6 (6 — Ag’j)) through intermediate state | G) (I?isz-) )), while Aﬁ)
by light shifts. (Right) For § = Ag”*” / 2, atoms are dissipatively driven to the target eigenstate | ;) = Zi c AIF,-<1)>A ® |g---g)p with
locally enhanced decoherence for atoms B.

isinduced

proposals reported to date thereby achieve the required ‘non-local’ jump operator by way of collective system-
bath coupling in order to suppress the information loss by local dissipation [6—14, 16—18]. In practice, such a
coupling is achieved in the highly challenging, strong coupling regime for an array of qubits interacting with a
common reservoir (e.g., cavity mode). Furthermore, for N > 2, the inherently local nature of the driving fields
hardly allows only a single entangled state to be distinctively separated from the coupling to the reservoir, which
enforces the introduction of auxiliary coherent manipulations and multiple time-steps of quantum gates and
dissipations to single out a particular entangled state from a broader subspace [2, 11, 28], diluting the very nature
of quantum-reservoir engineering. Such a challenge is further complicated by the characterization of
entanglement for many-body states p (t) under evolution [1, 42—45].

Here, we explore such many-body entangled states persisting with high fidelity in the stationary limit for
laser-driven Rydberg atoms in a lattice under locally engineered dissipation. As illustrated in figure 1, our
protocol conceptually begins by globally pumping regularly arranged Rydberg atoms (A @& B) with a driving
field €2, where the lattice is separated into two partitions A, B. Rydberg excitation coherently delocalizes within
the subspace defined by ‘system’ atoms A, while ‘reservoir’ atoms B at the lattice boundary serve as an entropy
sink for A with local fields that enhance the spontaneous decay. By preparing a dark state in the Markovian
dynamics, the atomic sample p (¢) evolves towards the entangled steady state in the form of an eigenstate
le)) = |W)s ® |g---g)p of alattice Hamiltonian ﬁxy in the single-excitation subspace, where |[W), (|g---g)p) isa
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W-like entangled state (ground state) for A (B). The genuine multipartite entanglement for p (¢) is
unambiguously detected by the quantum uncertainty relations [46—48]. We find that steady-state W-state
persists indefinitely with near-unit fidelity F > 0.99, and that entanglement depth k shows favorable scaling
relative to its system size, reaching ‘hectapartite’(k = 100) entanglement for N = 126 atoms. Unlike all previous
methods with auxiliary unitary and time-sequential dissipative manipulations [6—14, 16—18], the many-body
entanglement in our protocol emerges purely out of the open system dynamics in a time-independent, continuous
fashion with local decoherence, precisely as with optical pumping. Our method thereby allows the scalable
production of stationary many-body entanglement with Rydberg atoms through locally engineered
decoherence, where long-range entanglement extends well beyond the blockade radius.

2. Driven-dissipative preparation of many-body entangled states

2.1. Schematics

We consider many-body states of N atoms configured in a lattice (see figure 1(a)), irradiated by a uniform driving
field Q2 that couples the atomic ground state |¢) to the highly excited Rydberg state | ) with detuning é. A pair of
atoms 1, j in the Rydberg state at lattice sites X;, X; couple each other via the potential Agj) = G, |X; — X[ 7P with
power-law scaling where C,, is the dipolar interaction coefficient, for which we take p = 6 for the van der Waals
(vdW) regime of blockade shifts [24]. In a frame rotating with the laser frequency, the Hamiltonian is given by

N

H =

™=

(609 + 060) — S ADZ00, 1)

i=1 (i)

i = |0)i (e|is the projection operator for states | y1) with 1 € {g, r},and &9 are the canonical Pauli
operators foratomiwith m € {x, y, z, = }.(i, j) denotes the sum overall i = j. Inthe following, we denote the
ground state (n = 0)as |G) = |g---g), the s1ngly excited (n = 1) states as |#{")) = |g---1;---gy), and the doubly
excited (n = 2) states as | r(2)> = |g---i---1j---gy) with the subspaces separated by the total number spin

excitations n = ) _ (5, (’)>.

TT

where 6% =

The open many-body dynamics for the atomic state p is governed by a Markovian master equation
p = —i[H, p] + Lp with the Lindblad superoperators £ = Z (20 Dpa — (696D, p1) for the atomic

coupling to their local radiative reservoirs. In order to allow the Jump n — n — 1, asemployed for imaging
ultracold Rydberg atoms [38] and derived in the appendix A, we can arbitrarily set the decay rate

I} =~ 4 |Q4? /T, relative to its free-space rate I} by coherently mixing the Rydberg level |r) and a rapidly
decaying |e) with local field represented by its Rabi frequency €2, where T, is the decay rate of | ) (inset of
figure 1). In practice, the short-lived state |e) can be a low-lying excited state (see appendix G).

2.2.Rydberg-mediated laser transitions and local decoherence
As shown by figure 1(b), our protocol starts by globally applying a single, global driving field of Rabi frequency 2
toallatoms {1---N} with detuning 6 = Ag’” b / 2. This field plays two roles. First, it drives the population in | G)
to the n = 2 subspace via two-photon Raman resonance H, (figures 1(b)). With the anharmonic Rydberg
spectrum (see appendix B), higher-order transition n — n + 2for n > lissuppressed for moderate N, as the
long-range nature of the van der Waals interaction Agj Miftsalllevelsin # > 3 out of the two-photon resonance.
This is enabled by having the blockade shifts much greater than power broadening of two-photon resonance
(Agj) > wtgz)), where wéz) is the power-broadened linewidth for the two-photon transition as w{® ~ 2/2 2 / 0.
The net result along with the spontaneous decay is that the population is optically pumped into the single-
excitation (n = 1) subspace (appendices B and C) for an atomic sample spread over a region L beyond the
blockade distance dy = ¢/C,,/w; , where wy ~ /2 Q is the power-broadened linewidth for the single-photon
transitionn = 0 < n = 1. '

The second role of {2 is to generate the necessary Raman couplings J;;and light shifts Aﬁ) withinthen =1
subspace (figure 1(b) inset) to physically realize the XY spin model H,,. By adiabatically eliminating | G)and| Fl;z) )

in the off-resonant limit |§ — Agj )| > wy, and obtain an effective Hamiltonian

] P ~ () A
H, = Z]i]( Ol 4 505 (1)) Z All r(;)’ @)
(i) i=1
in the single-excitation manifold. The nonlocal Raman transitions J; ; ; » between |Fi(1)> |r1(1) ) occur off-

#(2)
z i+x

while the light shift terms Als play the role of local ‘magnetic’ field of the XY Hamiltonian. After adiabatic

resonantly via virtual levels near |#?,_)and | G), thereby providing the ‘hopping’ terms J;; jjbetweenssites i, i + x,

3
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eliminations of |#?, ) and | G), we obtain J; = e Q—zand AV = e > Q72215 derived
iit+x ’ ] S 5 — A(;]) Is S j=i 5 — Ag])

in appendix D.

2.3. Emergence of dark multipartite entangled states for open-system dynamics
The dissipative many-body entanglement for the steady state lim,_,,p = p, is generated as follows. We first
identify the spectrum {¢;, |€;) } of I:Ixy inthen = 1 subspace. As shown by figure 1(b), our goal is to set Jj;, Aﬁ)
such that one of the eigenstates, say | €;), corresponds to a product of Wstate | W), = Zie Al 71 for a subset A
of atoms (‘system atoms’) and ground state |g---¢)z for another subset B (‘reservoir atoms’), thereby leading to
le)) = |W)a ® |g---¢)p, whileall the other eigenstates contain |r)p for at least one (or more) atom in B. By
enhancing I} — T for atoms B, the net result is that all the eigenstates except | ¢;) become susceptible to a decay
to | G), leaving | ¢) as a unique dark state (i.e., zero-mode eigenstate) of the Lindbladian dynamics. In figure 1(a),
we take the two edge atoms at 1 and N as reservoir atoms B, for which we control the relative hopping rates J; to
obtain dark resonance for atoms B so that | ;) has vanishing coefficients for | 7"} and |7{}). For a fixed detuning,
Jijis purely determined by the relative strength between nearest (a,) and next-nearest (a;) neighbor
interactions £ = a;/ay.

More specifically, the dark resonances J; ;11 = —J; ;1 occur for atoms {1, N} at the lattice boundary ofa 1D
staggered triangular lattice in figure 1(a) for £ = /3 and N = 4. More generally, for N > 4, quantum
interference between multiple pathways [7") « | F;l)> occurs so that one of the eigenstates of

I:Ixy,l e) = |W)4 ® |g---g)p, emerges as the unique dark state (see appendix E). This process is analogous to
coherent population trapping for levels consisting of ‘radiative’ states {|7,) } with decay rate [;cp > T,
coupled to ‘metastable’ states { |72} }. We thereby define atoms B as reservoir modes, whereby the atoms are
continuously projected to the ground state by spontaneous emission I in a manner similar to sympathetic
cooling [49]. In order to enable this process, we locally enhance the decoherence I' >~ 4|Q |* /T, for the
reservoir atoms B by 210 relative to the radiative rates I} of the system atoms A. Any Rydberg population in
atoms B will cause the overall atomic state to become ‘bright’ and decay until it reaches the unique steady state

| €1). Many-body entanglement is thereby auto-stabilized for the stationary state 5, = | ;) {¢;|in the presence of
noise and decoherence.

In other words, during the entanglement pumping stage, the population is constantly projected to some
superposition state | e’ () ) of eigenstates { | ¢,,) } by the decay channels n = 2 — n = 1viaatomsB.If
[{e1l€'(£))| < 1,the Rydberg population |7} will delocalize until it populates the reservoir atoms, thereby
quickly decaying to | G) before being repumped by two-photon transition hamiltonian H. After several cycles of
n=0—n=2(viaH)andn — n — 1(viaD), the atomic population accumulates into the unique ‘dark’
eigenstate | ;) of Fl,,.

Indeed, the entanglement dynamics displays an intricate behavior, as the atomic sample is driven to the
steady state f. At the early stage of Liouvillian dynamics (0 < # < 1/T),atomsin|G) = |g---g) are rapidly
pumped to then = 1 subspace. The Rydberg excitation then delocalizes under I:Ixy with off-resonant Raman
transitions Jj;. At the final stage (£, > 1/I'), the Rydberg lattice gas p is dissipatively pumped to a W-like
entangled state | W), , which separates from |g---g)p. The entanglement fidelity F is thereby determined by the
‘branching’ ratio I}, /T’ =~ 10~* between the lifetimes of dissipative and coherent dynamics. Because our
procedure does not involve adiabatic evolutions, our dark-state pumping protocol is scalable to arbitrarily large
Nwith sample size extended over L ~ Nay/2 > dgonlylimitedby F = 1 — O(L,/T).

3. Results

3.1. Open-system dynamics for bipartite atomic entanglement

In the following, we perform a numerical analysis of the relaxation behavior of the Rydberg gas towards a
stationary bipartite entanglement for atom number N = 4 and enhanced radiative rates I} y = I for the edge
atoms by taking the full Hamiltonian in equation (1). Figure 2(a) displays the contour map of entanglement
fidelity F, = 4(32| Tig[p,1]1)2)a, for the stationary state p,, and the target state |1),)4 = % (Igm) + 1728) )as
as a function of interaction parameter £ and distance a, (in units of blockade radius dg = §/Cs/wy ). The profile
of fidelity along a, depicts the requirement of Rydberg blockade regime ay < dj to provide sufficient
nonlinearity in 7 (figure 1(b)) for selectively driving transitions | G) « |Ff2r 1) and adiabatically eliminating
subspaces n = 0, 2 (appendix D). Atoms in the region 0.2 < ao/dp < 0.5 are thereby efficiently pumped to the
single-excitation subspace. The interaction parameter £ is tuned to numerically maximize the steady-state
entanglement fidelity up to F, = 0.9982 for & = ¢/3 and &, = 0.36 at ao/dp = 0.26. To validate our

4
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Figure 2. Driven-dissipative dynamics of bipartite atomic entanglement. (a) Contour of stationary entanglement fidelity F, with
interaction parameter £ and distance ag (in units of blockade radius d3). (b) Dynamics of entanglement fidelity F, (¢) as a function of
pumping time (in units of I'). Inset. Temporal evolution of concurrence C from unentangled C = 0 to maximal entanglement C = 1
for the parameters: § = w;/2(ao/dp),Q = 10°T, and I} 4 = 10} for atoms 1, 4 with {£, ap/dg} = {¢/3, 0.26}.

entanglement pumping scheme, we further show the dissipative dynamics of concurrence Cat ¢ in the inset of
figure 2(b). The atomic sample is driven to a maximally entangled state with F, = 0.9965 within tI" = 200.

3.2. Evolution of many-body entanglement and uncertainty-based entanglement witness

Now, let us treat the case of many-body entanglement with N = 6 atoms in the 1D lattice with equation (1) as an
example of multipartite system. With same parameter set {2 and I, we simulate the dissipative dynamics of
entanglement fidelity F; (t) = (4| Trz[p(#)] |14)4 with respect to the ideal symmetric W state

A % 21,5:2| 7, by way of quantum-trajectory method (see figure 3(a)). Here, we have optimized the

steady-state fidelity max (F;) = 0.9912 for the parameters {, ao/dz} = {1.1996, 0.285}, thereby settinga
symmetric quadripartite W-state |e;) = |1u)a ® |g g5 as the dark state.

The transitions of many-body entanglement under dissipative dynamics are detected by the uncertainty
relations [46-48], which serves as the collective entanglement witness { A (t), y.(¢) } [1]. The uncertainty

A=3%"1(6 2[1;) measures the total variance of projection operators IT; = |W;) (W | to N4-dimensional W-state

basis |W;), while y, = I\;I\f‘lpjfo (6969 ))and
1

ground-state fraction p, = Ei (&é?) relative to the singly excited spin wave p, = Zi (60, where N, is the

detects the amount of higher-order spin-waves (e.g., p, = >

i=j

number of atoms in A. For an ideal W-state, min{A, y } — {0, 0}, while the boundary Ag‘ ~D represents the
minimum uncertainty for (k — 1)-partite entangled states for a given y,. Violation of the uncertainty bound
AD) < Ag‘_ U then signals the presence of genuine k-partite entanglement stored in / (t), with the full N ;-
partite entanglement certified by 0 < A(p) < AENA’ b,

Experimentally, the entanglement witness { A (), y.(p) } can be determined by detecting the fluctuation
6 th in the collective transverse spin component :S"t = Zi {cos 6; 5,@, sin 6, 5}(,i) } and the excitation statistics
{Po> P1> P>, }> where 0; is the detection angle in the transverse plane x — y. As discussed in [48],
N >".|d;;|is the average off-diagonal coherence
N(N — 1) <~
dij = |g)i (r| ® |r); (g|for the reduced density matrix p, in the single-excitation subspace. Since
min (62S,)g, = 2 Zij |djj|, we find the following upper bound of the measured variance

N-1

A) < Ap) = (T) x (1 — N2d%), where d =

min (62S,)g,

- 2
Ap) = % x [1 — (?) ]. The quantum statistics y, = (

_NZI:’ 1 ) e ;ZZP ® can be detected by the total
1

5
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Figure 3. Driven-dissipative dynamics of many-body entanglement for six atoms. (a) Dynamics of entanglement fidelity F, at
maximum point {&, ao/dg} = {1.1996, 0.285} simulated by way of Monte Carlo wavefunction (averaged over 500 trajectories).
Inset. 3D map of steady-state entanglement fidelity F, for interaction parameter £ and distance a, (in units of blockade radius dp).

F; > 0.99for 0.25 < ao < 0.35 (b) Dissipative preparation of genuine quadripartite entangled state. The entanglement parameters
{A(p), .} transit from fully separable (black line) to bipartite entanglement (purple line, £,I" =~ 2), to tripartite entanglement (green
line, ;" ~ 65), and to stationary quadripartite entanglement (red line, t4I" >~ 100). The colored surfaces represent the minimum
uncertainties A for fully separable states (purple), and for states containing bipartite (green) and tripartite entanglement (red) for a
giveny,.

excitation statistics {py, p;, p-, } with MCP ionization signals. Hence, our entanglement witness can be readily
implemented even for low-resolution Rydberg experiments without the capability to locally detect the state of
single atoms in the lattice.

By applying the witness { A, y, }, we observe that atoms initially in ground state are dissipatively driven to the
quadripartite entangled W state by sequentially crossing the boundaries A{", A%, A» in figure 3(b), thereby
progressing towards the steady-state with F; > 0.99. The transitions of entanglement depth k are indicated by
black, purple, green, and red lines of figure 3(b) for the average trajectory p (¢). For pumping time t;, ~ 100/T",
the many-body system exhibits a full quadripartite entanglement with a moderate atom number N = 6, and
reach {A, y }|s — {1.5 X 107%, 2 x 10™*}, as the atoms are pumped to the desired eigenstate | ¢;). In the
appendix E, we also discuss our numerical result for the formation of stationary hexapartite entanglement for
N = 10 atoms with Fg > 0.99 (see figure E2).

3.3. Finite-size scaling of steady-state entanglement

Next, we move on to the question of finite-size scaling behavior of the stationary many-body entanglement.
Although the full dynamical simulation for large Nis beyond our computational capability, the steady-state
entanglement can be established by analyzing the unique eigenstate | ¢;) that meets the dark resonance condition
& = &, forwhich J; i1 = —Jj 2. Perturbations by higher-order interactions are negligible, as

Z;“;ZI Jiitx] / |J;it1] < 1072 We truncate our analysis up to next-nearest-neighbor interactions for the
following discussion. We define the entanglement depth k in accord with the concept of k-producibility for
qubits [1, 42], thereby identifying the minimal depth for genuine k,,-partite entanglement to produce the
purported state p,_ (for details, see appendix E).

We directly diagonalize the many-body Hamiltonian ny for &, and characterize the resulting entanglement
depth k of the stationary eigenstate | ;) up to N — 128. Figure 4 captures our result of { A, . — 0} for the dark
state|€)) = |Wida ® |g---g)p, where | Wy )4 is the k-partite symmetric W state. Due to the nonlinear sensitivity of
our witness for some region k, we characterize the scaling of the minimal entanglement depth k,,, < k. The

6
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Figure 4. Finite-size scaling behavior of many-body entanglement depth. Multipartite entanglement behavior of the many-body
system p, is probed with quantum uncertainty witness A for y. — 0 by way of direct diagonalization of I:Ixy asafunction of atom
number N. We obtain stationary eigenstates p, = |e1) (€], exhibiting up to hectapartite entanglement for N = 126 atoms. The
shaded area refers to the physical region formed by convex combination of all pure and mixed states for a given N, thereby representing
the state space for which entanglement depth k can be defined with k < N. The uncertainty boundaries for 20-partite, 40-partite, 60-
partite, 80-partite, 100-partite entanglement are shown as dashed lines.

shaded area represents the physical region, whereby k,,,-partite entanglement could be defined for a given N, and
the dashed lines are the uncertainty bounds for 0 ~ 100-partite entanglement (with 20-partite increments).
Remarkably, we observe a favorable scaling up to genuine ‘hectapartite’ (k,,, = 100) entanglement for N = 126
atoms.

4. Experimental feasibility

Our entanglement pumping scheme is experimentally feasible. By exciting *’Rb atoms to Rydberg state

[r) = [1008, /,) with local mixing of decohering state |e) = |5P, /»), quadripartite entangled states could be
prepared for Fy > 0.99 within the pumping time t,, = 60 us intheregion 1.9(2.3) um < ag(a;) < 2.1(2.5) pm
with parameters Cs = 56 THz um®, I, ~ 1 kHz,I' = 10 MHz, and with driving fields Q = 1 GHz in the far-off
resonant limit  ~ 400 GHz (effective Rabi frequency ~10 MHz), and dg = 5.8 pum [50-53]. The limit for any
driven-dissipative approach with Rydberg lattice gases will be the photoionization lifetime ¢, > 10 ms for the
given Q [54], thereby t,, < t,. Instead, if we reduce the fidelity threshold F, — 0.9 (I;/T" = 10™?), the steady state
can be achieved within ¢, = 600 ps < 1s < t, for relaxed parameters I' = 1 MHz,Q2 = 50 MHz, and

dp = 9.6 um over the region of 3.8(4.5) pm < ag(a;) < 3.9(4.7) pm. Inappendix G, we have discussed a wide
range of experimental parameters with Rb and Cs, including direct UV excitationto |r) = |nP; ;) state with

le) = |78 /2), which offerslower I, — 300 Hz and therebyimproved fidelity F ~ 1 — O, /T") for fixed Q2, T
[55]. For example, with |r) = |100P; ,), we expect to obtain high fidelity F; > 0.99 with moderate driving field

Q) = 50 MHz and lattice constants (ag, a;) ~ 3 g m.

In our driven-dissipative protocol, the dark state is selected by optimizing the set of parameters for the lattice
constants (ag, a;) in the limits of (i) strong saturation (Q/T}, Q?/6T;) > 1and (ii) local dissipation I'/T} > 1.
Indeed, within the single-excitation subspace, the parameters (ag, 4;) determines the full spectrum of the XY
spin Hamiltonian H,,, thereby setting the conditions for dark-state engineering (appendix E). By virtue of locally
enhanced decoherence for edge atoms, we then isolate a single eigenstate | €;), as the unique dark state. As shown
in figures 2 and 3, our method can stabilize high-fidelity steady-state entanglement over a wide range of lattice
parameters (see also appendix G for the experimental parameters).

One crucial benefit of our method for quantum-reservoir engineering is that the dark state | ;) is stabilized
by many-body interactions and local decoherence, and that it offers built-in error-correcting features and
robustness against variation in the driving fields and decay rates. This prediction is supported by the wide range
of laboratory parameters (over many orders of magnitude) in tables G1 and G2, which allow high-fidelity
entanglement. Experimentally, the lattice parameters (ag, a;) can be coarse-tuned by locally monitoring the
flourescence for the edge atoms. When the dark state is fully populated, the successful passage into the steady
state may be confirmed by the observation of inhibited atomic scattering.

The bottleneck for any driven-dissipation protocol is the relaxation time scale t,, to reach the desired steady
state. As further discussed in appendix G, the quantum jumps in the n = 1 subspace occur in a characteristic
time ~ O(N?) due to the time scale for the quantum walk of | 7"} to reach the ‘reservoir’ atoms at the edge. On
the other hand, if we were to address every ‘zeros’ for the dark state equations (E.5) and (E.6) in appendix E) by

7
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2 with Nig > 2 reservoir atoms, the pumping time £, ~ O(Njy,) scales linear to the number Ny, of eigenstates
{|€,,) } within the single-excitation subspace, where Ny is the number of system atoms. The relaxation time for
figures 2 and 3 and E2 is consistent with the scaling ¢, ~ O(Nyy;, ). As discussed in appendix G, our method can
be applied to generate stationary hectapartite entanglement within #, ~ 10 ms < t, for N = 126 atoms with
optically accessible (ag, 4;) > 1 pum, where ¢ is the photo-ionization time. Compared to direct adiabatic
passage with time-varying fields [36, 37], the range of entanglement L ~ Nay/2 = 63 pm surpasses the
blockade radius dg = 9.6 m by more than six fold, testifying the intrinsic scalability of our method with
engineered driven-dissipation.

In terms of the initialization of the atoms in the 1D lattice, the atoms would need to be confined in each well
with unit filling factor. In practice, such alow entropy state could be achieved by the superfluid-Mott insulator
transition or by the manipulation of laser-induced atomic collisions with blue-detuned potentials [56]. The 1D
staggered triangular lattice can be realized in a free-space superlattice configuration [57]. Since the general
principle of our protocol is not necessarily confined to a particular lattice configuration, one could explore other
configurations in 1D and 2D with arbitrary trap potential landscapes created by spatial light modulators in [58].

Alternatively, it is possible to load a mesoscopic number of atoms N; at each lattice site with weak optical
confinement perpendicular to the lattice plane [57], and use the effective spin-1/2 degree of freedom under
collective Rydberg blockade [22]. This may be particularly crucial for realistic experimental settings, where the
collectively enhanced Rabi frequency Q™) = /N, can be used to circumvent the small single-photon Rabi
frequency with limited optical power. The effect of the finite atomic wavepackets in the potential landscape is
negligible with the steady-state entanglement fidelity bounded by F > 1 — O(6A,/A,), in which F > 0.95 for
the typical values of zero-point fluctuation of atoms in dipole traps (appendix G). Our method does not rely on
the dynamics of coherent delocalization and Anderson localization for disorded spin arrays is not a relevant
phenomena for the relaxation to steady-state entanglement.

For N >> 126, atoms can be embedded in photonic crystal waveguides to mediate effective atom-atom
interactions. Dispersive optical interactions near band edges can induce dipole—dipole oscillations FIxy and
‘Rydberg’ blockades F, with tailored scaling Agj ) ~ ¢ %i between low-lying excited atoms [59, 60]. Decay rates

I = I" can be controlled by the density of states [61].

5. Conclusion

We have examined the conditions under which driven-dissipative dynamics displays a rich family of many-body
entangled states, and have provided a criteria for the purported entanglement. By way of engineered driven-
dissipation, genuine multipartite entangled states can be prepared efficiently as steady states of the dissipative
time evolution through continuous optical driving from arbitrary initiate states, and the stationary
entanglement shows a favorable long-range behavior up to entanglement depth k,,, = 100 for N = 126 atoms.
In comparison to other work with coherent Rydberg excitation, our method allows the deterministic production
of many-body entangled states over length scales unlimited by the blockade radius. More generally, the
delocalization dynamics for our lattice Hamiltonian ny in the high-order subspace 1 (see appendix B) can be
extended to examine locality estimates of many-body systems [62—64] and bosonic sampling for quantum
algorithms [65]. Massively entangled W states with N > 2 stabilized by engineered driven-dissipation may be
applied for ‘all-versus-nothing’ tests of extreme nonlocality [66]. Our work paves the way for the stabilization of
exotic entangled states with an open many-body system enabled by well-controlled Rydberg-mediated laser
interactions and local decoherence [1-3], as well as for the advanced protocols with dissipative quantum
computing and reservoir engineering.

Note: A related proposal for stationary many-body entanglement has been presented recently in [67] with
resonant dipole—dipole interactions (RDDIs) between two Rydberg ensembles. In [68], our work has been
generalized to the stabilization of arbitrary many-body states in a system-independent manner.
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Appendix A. Control of spontaneous emission rates

As discussed in the main text, for reservoir sites i € B, atoms initially in the Rydberg state |r) with decay rate I,
radiatively couple to a highly decohering state |e) with decay rate I, > T; so thatatoms in bipartition B can
behave as an effective ‘reservoir’ channel for the ‘system’ atoms in partition A. In this section, we discuss how we
could manipulate the spontaneous emission rate I} of the Rydberg state | r) for the ‘reservoir’ atoms.

Asillustrated in figure 1(a), we consider a A-type energy level diagram, where |r) is dressed with |e) by
auxiliary field with Rabi frequency 2. In the rotating-wave frame of the dressing laser, the Hamiltonian is given
by

Hy = 8469 + (65 + o). (A1)

The resulting optical Bloch equations are, then
68 = =0l + iAo' + QoY) (A.2)
o = =0l + iQu0'l, (A.3)

where 7, , = I, /2 and A is the detuning for the dressing field (2, relative to the transition |e) « |r).In
writing equations (A.2) and (A.3), we have neglected the Langevin noise forces 15,“, and assumed c-number

counterparts for & (’) — Uﬂl),. Hence, we find that the atomic coherence a(gir) (t) between |g), |r) obeys the
following equation of motion

50 — (I8 + 7 )5@el-30)0 4 QRge(-18-0) = o, (A4)
with 5 = oWe " and A = i, + A
Figure A1 shows the dynamics of Rydberg population o® (1) = a(’) (l) obtained by numerically solving
equations (A.2) and (A.3) for the parameters of figures 2—4 with I, = 1041" The black solid (dashed) line is the
atomic dynamics for Qy = 10T} (4 € {10%T}, ..., 9 x 10T} } with 10°T} increments). The red line is the result
ofatomic decay I' > 10°T;, with Q; = 10°T;. Aswe increase Q; — I}, we find that the effective decay rate for
the reservoir atoms scales with I ~ 4|, |> /T, upto Q; ~ 0.1I,.
In order to understand the dynamics, we formally integrate equation (A.2) to obtain
agg e b — 0, f oWeiAtgs ~ id () g—ilt . Assuming slowly varying amplitude o, ¥ for 2y < ~,, we obtain
the following equation of motion
G iQ;
oy = — (7 + T) @, (A.5)
e 1§24 |2
|A |2
|r) = [1008S, /,) and |e) = |5P; /,) have decay rates with I, /T, ~ 104. Hence, decay rates for reservoir sites could
be enhanced up to 4 order of magnitude with I' /T, — 10

where the effective decay rateis given by v, = ~, + 5> with T' = 29,4 As further discussed below,

Appendix B. Optical pumping to arbitrary n-subspace in an anharmonic Rydbergladder

Now, let us discuss the possibility of optically pumping the system p of N atoms to an arbitrary target ;-
excitation subspace with n; < N — 2, for which n, = 1 in the main text. This is achieved by a set of 1, lasers
resonantly driving the two-photon transitions n — n + 2 (n € {0, ..., n, — 1})with effective Rabi
frequencies Q5" (see figure B1 (a)) and the three-photon transition n, — 2 — n, + 1with effective Rabi
frequency Q" (see figure B1(b)). Because £ dissipates the levels n — n — 1, the atomic population is pumped
to the target subspace 1, (see figure B1(b)). For the case of n, = 1, QI is provided by a single global field 2 for
the entire atoms (see figure B1(c)).

The efficacy of this procedure to address only a particular transition n — n’ depends on the anharmonicity
in the Rydberg spectrum V, = (1| V;, |n), where V, = Z A 5059 and |n) represents the most shifted

state of the n subspace. The V,, is obtained by degenerate Rydberg configurations with n-nearest neighbor

excitations (e.g., [1) = |11, ..., T &, 1> ---> &))- The Rydberg spectrum is then given by
n—1 n
Vi=30 > AP (B.1)
i=1j=i+1
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Figure Al. Enhancement in the decay rate v,; =~ |Q, [*/T; asa function of the strength of dressing field €. The parameters are
I, = 10T}, and resonant dressing Ay = 0.

The transition energy for n — n + 2 isthen

n
Viea = Vo= 230 AQTTY 4 AR, (B.2)
i=1

so that the anharmonicity is given by

6‘/11+2,n — A(Pl,nle) + Ag,n+2)' (B3)

As shown in figure B1(b), for a given target subspace n,, we terminate the two-photon excitations to
n; — 1 — n, + 1. Allsubspaceswithn € {0, ..., n, — 1, n, + 1} are resonantly connected by two-photon
transitions Q(Z”) with detunings 6 5,2) = (Va2 — V;)/2 and by three-photon £2; coupling with detuning
6 5131),2 = V41— Vi—2) / 3, except for the 1, subspace (see figure B1(b)). The Rydberg blockade condition for
the two-photon transition n — n + 2 is then given by

Vsom > WP, (B.4)

where w® = [T? + 2|Q%” [? is the ‘two-photon’ power-broadened width of the transition n — 1 + 2 and
QY = 202/6' is the effective Rabi frequency. Critically, w(® ~ 242 Q?/6% < wy, so that the higher-order
two-photon excitations (e.g.,n = 1 — n = 3) can be blocked even for extended samples L >> dj.

Appendix C. Feasibility of pumping to single-excitation subspace with large N

For n, = 1, by driving the two-photon transition n = 0 — n = 2 with 6% = (V5 — VO)/Z = Ag’z)/Z, the
atoms are pumped to a decoherence-free subspace (DFS) for atoms A of the n, = 1 subspace (see figure 2(d)). As
discussed in the main text, the DFS is defined by the space spanned by superpositions of {| Fl-(el%} },and the
subspace is set for the reservoir atoms B. In this case, high pumping efficiency to n, = 1isassured if the higher-
order transition n = 1 — n = 3isblockaded for the least shifted state |1}, 7, &, ..., &y_1> rvyofn =3
subspace, thereby A;I’N D4 Aif’N D> wéz). For the 1D lattice in figure 1(a), our dissipative pumping scheme
works in the region ay/dg =~ 0.1 even for N = 126 in the extended sample regime L >> dg, where we take

Q = 50T, I'/I, = 10%and £ = a;/a, ~ ¢/3.For the case of Rb with |r) = | 1008, /,), the blockade distance is
dp = 9.6 um < L = 63 um,so that (ay, a;) ~ (900, 1000 nm).

Appendix D. Derivation of effective spin Hamiltonian

In the off-resonant limit |§ — Agj )| > wy, we obtain the effective Hamiltonian H.¢ (equation (2)) by
truncating the perturbative expansion to the second order and by time-averaging highly oscillating terms [69],

10
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Figure B1. (a) Anharmonic Rydberg spectrum for two-photon transition 3. Dotted (solid) line represents the energy level for non-
interacting atoms (the most shifted energy level with Rydberg interaction). (b) A setof #n, — 1two-photon transitions n — n + 2
(with n € {0, ..., n, — 1})areresonantly driven at Rabi frequencies {Q2” }, in tandem with a three-photon laser Qs for

n; — 2 — n, + larerequired to pump atoms to the target subspace #,. Non-coupled subspace A of n excitations remains dark
throughout the entire driving processes. The target eigenstate is | ;) = (pr1ea Xpib1 |?((;,-)) Ja ® |g--g)s. (c) Asingle laser is required

todriven = 0 — n = 2 for target subspace n, = 1, (d) For § = 6§, atoms are pumped to the target eigenstate
le) = ZieA ;1|4 ® |g---g)p, whereby decoherence is enhanced for atoms B.

[ET 2 ] (nt )
m> Mm il wptwy )t
=S b deitwn-ar Z hhme— + hee |, (D.D

mn W mn
. . . o A Lot o 1T i iHot 17 a—iHot
with the interaction Hamiltonian given by H; = Znﬂ hye it 4 h e’ where Hy = e™'Hje !,

o = 1(1/2)(1/w,, + l/wn)]fl,c;’mn = [(1/2)(1/wy — 1/w,)]7}, and w,, is the detuning between the laser
frequency and the Rydberg-shifted transition. In particular, weuse H = H, + H; with

N N
Hy=Y 66y — > AY5V8, (D.2)
i=1 i<j
QZ( oy + 63), (D.3)

with a(’) = |u); (v|for u, v € {g, r} and blockade shift Agj) = CplXi — X | 2.
We obtain the following effective Hamiltonian

- LA + L y(o050 4 ), (D.4)

i<j

which corresponds to a XY model I:Ixy with spin—spin interaction J;;and magnetic field Aﬁ), thereby Her = ny-
After the population is pumped to the 7, subspace (see figure B1(b)), the coherent atomic dynamics is governed
by H,, within the n, subspace.

For n, = 1, the necessary Raman couplings (J;) and light shifts (A{”) are generated by the global field 2 with

detuning § = Ag’i“)/z,forwhich

11
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=) 202 N
Ay = W(l Sy (D.5)
P J=1
200?
Ji = Sor (L= 1) (D.6)
p

NG . y N "
where f, = [1 - W"U/z] . The exchange term J; involves Raman transitions between |#) and |r;1)>

through the ground states | G) with the 202 / Ag’”' D term, and through the n = 2 manifolds |F§-2)> with the

1
—Zszij / AS’H Y term. The global field 2 also resonantly drives # = 0 — n = 2 transition with the two-mode
squeezing Hamiltonian

. 202 o
_ ~ (i) A (i+1)
H2 = ZW(U+ (o + hC) (D7)
=1 P
Since we have increased the decay rates I;c g = I', the population is driven to the n, = 1 subspace via H, (see
figure B1). Asillustrated in the inset of figure E1 (a), the atomic dynamicsin n, = 1 subspace is dictated by H,,,
whose coefficients are fully determined by the ratio A;;/A, ;1 in a scale-invariant fashion (with overall factor
ZQz/Ag’iJrl)). Generally, let us express the eigenstate | ¢,,) of Hy, inn, = las|e,) = Zi ;7).

Appendix E. Diagonalization of effective Hamiltonian

For the 1D staggered triangular lattice in figure 1(a), the position vectors are given by X; = { (k — 1)ay, 0} for
oddsites (i = 2k + 1)andby X; = {ag cos 8 + (k — 1)ay, aq sin 8} for evensites (i = 2k), with cos 0 = £/2
and £ = a;/ay. Under this geometry, the parameter £ can fully describe the effective Hamiltonian H,,. Figure
E1(b) shows the finite-range behavior of the nonlocal coupling rate J;; between | 7)) « | 1’}”} in the vdW
interacting regime (p = 6). For the sufficiently large £ > 1, we find that the rate J;; significantly diminishes for
sites [i — j| > 2 due to the ~1/r% vdW scaling. In the following discussion, we thereby truncate our analysis up
to next-nearest neighbor interactions with the sparse-array H,, as

N L N L
Ay == AJ6 + 3 (6969 + he), (E.1)
i=1 i<j
with
(] 2 C_
EX 4+27—56_N f0r1—1,N
AW _ ) J 2 for i —
= E>< 6+27—£5_N ori=2,N—1 (E.2)
%x(6+—2f§5—N) for2 <i< N — 2,
] for|i —j| =1
Iy =91 x (575) forli—jl =2 (E3)
0 for |i —j| > 2

with overall factor ] = 40?2 / Ag’” D,
Eigenstates |¢,) = Zi @, |FV) with aviep,,, = 0 can be obtained by controlling the ratio between nearest
and next-nearest terms for J;; with £. As discussed in figure E1(a), this process is analogous to the behavior of

coherent population trapping, where destructive quantum interference occurs for the excitation pathways that
connects the ‘bright’ state |Fi(l)> (decayrate I ~ 10%T}) to ‘metastable’ states |7 ) (decayrate I}). The

j=i
emergence of ‘dark state’ for such a toy model provides an insight on our choice of interaction parameter
E— &= ¢/3 for symmetric (antisymmetric) eigenstates, whereby J; ;. = —J; ;1 ». For instance, in the case of
N = 4with
-] J =] 0
A J o ] -]
H,, = , E.4
=17 7 o g (E.4)
o -7 J -]
destructive interference in the form J;, = —Ji3and /3 = —J54 occurs for a;; = ay,; = 0.For N >> 4, the

eigenstate | ¢;) with ;e 1 = 0 cannot be obtained by locally considering the atoms near the boundaries (i.e.,

12
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Figure El. (a) Interaction strength J;; and light shift Aﬁ) of the effective Hamiltonian H,, are given by Raman transition R |r(1))
via two path mediated by | G) and | Fi(j-) ). (b) The power law scaling behavior of spin—spin coupling strength Ji; with 1D staggered
triangular lattices for § = ¢/3 (blue)and &, ~ 0.36 (red). For &, the spatial range of Jij depicts a monotonic power-law decay, whereas
jig-jag oscillatory pattern exists for &,.

atoms1, 2, 3and N — 2, N — 1, N). Instead, the uniqueness of the dark state | ;) is a manifestation of the
many-body interferences for Jj, Aﬁ) ,leadingto avjcp 1 = 0.Nonetheless, J; ;11 = —J; i+, provides areasonable
guiding principle for us to guess the dark resonance conditions for atoms near the edges for a certain value of N,
due to symmetric sparse characteristics of H,,

We confirmed this prediction by solving the full spectrum of the sparse Hamiltonian matrix ﬁx}, with
Jji—ji>2 — 0and by numerically simulating the stationary state of the master equation. We obtain two sets of
eigenstates |¢,) = Zi @, |FV) with ou , = a,, = 0 forarbitrary Nthatmeets Ji; 1 = —J;;2at £ = §as
below

setl: N=4+6m(m=20,1,...)
{aip}=1{0,1,1,0,-1,-1,01,1,0, ..., — 1, — 1,0, 1, 1, 0}, (E.5)
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Figure E2. Dynamic formation of steady-state entanglement for N = 10 in the extended sample regime. The dark state | ) of the
driven-dissipative dynamics is hexapartite entangled, as derived in equations (23) and (24). The entanglement fidelity Fy is maximized
at (&, ag) = (1.1997, 0.28) to Fs — 0.993.

set2: N=6+10m(m=0,1, ...)
{aip}={0,1,1,1,1,0,-1,-1,-1,-1,0,1,1, 1,1, 0, ...

-1,-1,-1,-1,0,1, 1, 1, 1, 0}. (E.6)

Therefore, our method could produce stationary k-partite entanglement in the form of an eigenstate
ler) = [Wida ® |g---g)pwithk = 2 + 4m (set(E.5)) and k = 4 + 8m (set (E.6)), plotted as blue dots in figure
F1 (b). In the main text, we present our numerical result for the Markovian dynamics with the steady state
corresponding to set (E.5) (set (E.6)) for figure 2 (figure 3) with N = 4 (N = 6). In figure E2, we present our result
for N = 10, thereby producing hexapartite multipartite entanglement in the steady state with fidelity F > 0.99.
In the hindsight, we can attribute the existence of symmetric entangled steady states in equations (E.5) and (E.6)
to the special structure of H,. As ny is sparse, highly symmetric, a kind of commensurability requirement is
imposed to the eigenstate under the restriction that the coefficients at the edges are zero.

Even if we were to consider the case J;_jj~> = 0, our result would not have changed much for § = §. The
truncation would slightly modify the exact eigenstate as | ;) — |¢;) + |8¢;) with (6¢;|¢;) = 0. Roughly
speaking, (O¢;|O¢;) scales linear to the energy perturbation up to aleading order. Since the energy perturbation to
Agj) ~ 1 / rij6- isat most 6, = Ag’i“' ) / Ag’” D ~ 1072 (see figure E1(b)), the perturbation to the entanglement
fidelity is at most 6F =~ 102, which is well within the numerical uncertainty of the quantum trajectory method
(see figure 3). In terms of dark resonance J; ;. = —J; i1 the higher-order interactions Jj;_jj- for £ = § (blue
dots) are suppressed by at least 10 relative to Ji ; 1, J; i1 - By taking N — oo, the higher-order contributions
Zzi ,|Jii+x| would still be far too negligible to have any impact on the final state with Zzi Miiex] < 1072 x
min(|J;;i+1], |iis2]), leadingto F =~ 0.99.

The infinitesimally reduced fidelity can then be recovered to F — 1by displacing £ to an optimal value by
the more general condition J;, = *Z,@ 50,1114 for | €1) at the expense of having a slightly modified steady

states, i.e.,a new eigenstate | ;) = |W')4 ® |g---g)s. Due to the inherent symmetry of the system, this modified
steady state | W) would only marginally differ from the original one. Furthermore, the original steady state | ;)
could be recovered by re-adjusting the arrangement of the atoms. In any case, the only sensitive parameter that
determines the optimal fidelity is the ‘branching’ ratio I, /T" ~ 10~4, which sets the balance between the
lifetimes for dissipative and coherent evolutions, thereby the final fidelity F ~ 1 — O, /T).

On the other hand, in the region of { < 1 (Jji—jj>2 2 Jji—j|=1> Jji—j|=2)> the optimal value § cannot be
predicted by the dark resonance conditions of the sparse-array matrix H,,. In this case, J;; displays zigzag
oscillatory decay as shown in figure E1(b), and higher-order terms Jj;_;|~, must be included in the analysis.

Appendix F. N-partite uncertainty witness

In this section, we describe our method of constructing the N-partite uncertainty witness [46]. Our
entanglement witness { A, y. } consists of identifying the boundaries Ag‘ ~Dforall possible states ﬁb(k’ b
produced by convex combinations of pure (k — 1)-partite entangled states | w(hk’ D) as well as their mixed
siblings with less k. As shown in [46], the lower bound of Ag‘ ~Djs attained by taking a convex set of

{A ([)lfk’ Dy, ”, (ﬁ)b(k’ D)} for all pure states ,bh(k’ D= Iwg" Dy (zbg" Y. 1In figure 3, we depict the boundaries
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Figure F1. (a) k-partite uncertainty bounds A for k € {1, ..., 128} and N,,=128. Shaded regions indicate the parameter spaces for
which ambiguity exists for A% 2 A¥+D, due to the nonlinear sensitivity of A. For such regions, we conservatively quote the
minimum value k,,, for the genuine k-partite entanglement with A (p) < A}]k"‘). (b) The minimum entanglement depth k,, certified
by {A, y,} (red dots), and the entanglement depth k in the purported eigenstate |€;) = |[Wi)a ® |g---g)s (blue dots), with fully
balanced k-partite W state | W), .

A(bl), A(bz), A(If) for all possible realizations of fully separable states, bipartite entangled and tripartite entangled
states, respectively, by following the procedures of [47, 48].

Generally, we can determine the projection operators I = | W) (W |withi € {1, ..., 2"} for arbitrary
number of systems N, = 2" with the recursive relationship

|Womy — %(‘ WD, G(m—1)> n ‘G(mfl), Wi(m71)>)’

from the initial condition | W\'}) = 1/3/2 (Igr) £ |rg)). Here, |[W{™) = (1/4/2") Zizmlfi(l)> and
|G"™) = |g---g) for N, atoms. As discussed in [46], we then construct the uncertainty witness A = Zi (8211;)
to identify the bounds { Ag‘ Dl for (k — 1)-partite entanglement up to k < N,,. For convenience, we set the
maximal N, > Nj to belarger than the number N, of atoms in A, so that we could distinguish the entanglement
depth kforany k < Nj.

For figure 4, we assumed the stationary limit, so that . — 0.In order to verify the minimum bounds A(bk’ b,

we only need to optimize the overlap of pure (k — 1)-partite entangled states of the form |¢g" DYy = | G kT U)

®Zf_ ! Q; Ifi(1)> with one of the projectors | W;). This is achieved when the test state is a balanced (k — 1)-partite
W-state (i.e., |a;| = 1/+k — 1). Figure F1 depicts the uncertainty bounds Ag‘_l) withk € {1, ..., N,,}
calculated for y, = 0and N, = 27 = 128. The shaded regions represent the parameter spaces for which
ambiguity exists for the tiered structure A ZAE,H Y. This is caused by the nonlinear structure of

A(] z/)gk)) <w§f‘) ) to POVM values IT;. For such regions, we conservatively quote the minimum value of k,,, and
certify the presence of genuine entanglement depth k,, + 1stored in the purported state p with A(p) < Ag‘”‘)
(see figure F1(b)).Hence, the entanglement depth k,,, (red dot) is a conservative estimate, which can be detected
in an experiment, as opposed to the model-dependent analysis of k (blue dot) for the pure state form

le)) = |Wi)a ® |g---g)s (i-e., by counting the number of non-zero probability amplitudes in | W;) ).
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Figure G1.(a) N-atom Rydberg blockade. Effective Rabi frequency between |g) and |r) is given by Q2. (b) Level diagram for *>Rb atom.
The effective transition between |g) and | ) is formed by a two-photon transition via the intermediate excited state |e’), with
Ig) = 15S1,2)> l€') = |5Ps,5),and |r) = |n,S, /2). X is the one-photon detuning respect to |e’) by field §2; (\; =~ 474 nm)and §is
the two-photon detuning by the field €2, (\; >~ 795 nm).

Appendix G. Experimental parameters with alkali atoms

Let us consider *Rb atoms interacting with optical field near the transition between |g) = |5S, /) and

|r) = |npS1/2) with two-photon Rabi frequency 2 = €€,/ X and detuning 6 that globally addresses the
atomic sample. As shown by figure G1, this could be achieved by a two-photon transition with Rabi frequencies
), Q, viathe intermediate state |e’) = |5P; ;) with one-photon detuning X. The Rydberg excitation spectrum
displays a highly nonlinear excitation spectrum # due to the dipole—dipole interaction Agj ) = Colti — 7 [P,
with the most shifted level given by configuration states consisting of nearest-neighbor excitations | 71(31 0

with Ag’”l).

In order to achieve the parameter sets of figures 2—4, we take the principal quantum number 2, = 100 so
that|r) = [1008; s, m; = 1/2). The radiative lifetime is given by 7 = 7, (), where nf = n,, — 6, isthe
effective principal number and 6, is the quantum defect. With 7 = 1.43 nsand ov = 2.94 for [ 1008, /,) [24], we
find that the Rydberg lifetimeis 7, = 1 ms (i.e., I, ~ 1kHz). On the other hand, I, ~ 38 MHz for |e). Since
I' — T, in the limit of strong dressing fields €2, for ‘reservoir’ atoms, I' — 10T, can be achieved in an
experiment.

Bysetting €, = 10 GHz and &' = 10§, (i.e., 2 = 1 GHz), the photo-ionization rate can be determined
by

2
I 2t [ 2
e = —— X Op = — Ors G.1
7 w ( I, ) G1)

where I, = 38 MHz is the spontaneous decay rate for |e’), I, = 4.5 mW cm™ ~ is the saturation intensity for
lg) — |¢/Yand o, < 2 x 1077 A is the photo-ionization cross-section that couples the Rydberg state | 100S; /2)
to the continuum free-electron wavefunctions [24]. Hence, we find that the photo-ionization lifetime is limited
to 7, = 1/y, > 10ms >1/I; [54].

The blockade shift Agj) is determined by Rydberg coefficient C,, for which we take Cs = 56 THz pm® for
the vdW interaction between two Rydbergatoms in |r) = |1008S, s, m; = 1/2) [50-53]. For Q = 1 GHzand
N = 6, the blockade shift for nearest-neighbors is A% ™) = 800 GHz (ay/ds ~ 0.35), while the power-
broadened linewidth for the transition |g) « |r)is wy =~ /2 Q2. The resulting blockade radius is
dp ~ {/Cs/wy = 5.8and 1.9(2.3) um < ag(ay) < 2.1(2.5) pm forE, >~ 0.99. In terms of spatial localizations,
the variance of the lattice constants would need to be less than 6a, da;<< 200 nm in order to achieve F; >~ 0.99.
This could be readily achieved in deep optical lattice experiments with zero-point motion éx ~ 10 nm [70].
Hence, Rydberg atoms interacting in the strong blockade regime with the lattice constants
ag, a1 =~ 1 um > X\o/2 (figures 2—4) can be spatially resolved, so that €); can be locally addressed to the reservoir
sites without the requirement for diffraction-limited imaging resolutions \o/2 [71]. Therefore, the pumping
time for F, =~ 0.99forN = 6isthen t, ~ 6 x 10%/I" = 60 us, which is not limited by the photo-ionization
time 7,,>> 10 ms.

In addition, if we reduce the fidelity threshold E, — 0.9(I;/T" = 10~3), the steady state can be achieved
within £, = 600 us < 1s < t; for relaxed parameters I' = 1 MHz, {2 = 50 MHz, and dg = 9.6 jum over the
region of 3.8(4.5) pm < ag(a;) < 3.9(4.7) pm as shown in table G1. Since the quantum jumpsinthen = 1
subspace occur on a time-scale of ¢; ~ O(N 2) due to the random walk for | Ff“) until it reaches the ‘reservoir’
siteswith I} y = I' >> T}, we expect that the pumping time to reach stationarity also scales as ¢, ~ O(N?). On
the other hand, if we were to address every ‘zeros’ in equations (E.5) and (E.6) with {24, the pumping time
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Table G1. Summary of experimental parameters to achieve steady-state entanglement with
fidelity F, for *°Rb. The set of parameters are given by Rydberg state |r) = [100S, /,) with
decayrate I, = 1 kHz, decoheringstate |e) = |5P; /,) with I, = 36 MHz, and van der Waals
coefficient |Cg| = 56 THz pm®. The error bars in ag, 4, indicate the range of lattice con-
stants, which allow robust entanglement production with F, > 0.9.

/T, Q/T F, Q dg a a t

(MHz) (um) (um) (um) (us)
10* 10° 0.99 10* 4.0 11507 1.459% 20
10° 10° 0.99 10° 5.8 2.0%0¢ 24434 20
10* 50 0.98 5.0 x 102 6.6 24103 2.970¢ 30
10* 30 0.97 3.0 x 102 7.1 2.7503 3.370% 40
104 15 0.92 1.5 x 102 8.0 3.3102 3.9102 55
10 100 0.92 102 8.6 3.3502 3970 400
103 50 0.91 50 9.6 3.870! 4,691 600

Table G2. Summary of experimental parameters to achieve steady-state entanglement with fidelity F,for'** Cs. The set of
parameters are given by Rydberg state |r) = |100P; /,) with decay rate I, = 330 Hz, decohering state

le) = |78, ) withl, ~ 36 MHz, and van der Waals coefficient | Cs| = 88 THz pm®. The error bars in o, a; indicate the
range of lattice constants, which allow robust entanglement production with F;, > 0.9.

/T, Q/T A 0 dy ao a t

(MHz) (pm) (um) (um) (s)
10 103 0.99 33 x 10° 5.2 15408 1.8159 60
10* 102 0.99 3.3 x 102 7.6 27798 3.2102 60
10 50 0.98 1.7 x 102 8.5 3.1%97 3.8708 90
10 30 0.97 102 9.2 3.570% 42753 120
10* 15 0.92 50 10 43102 51492 160
3 % 10° 102 0.96 102 9.2 35104 42438 210
103 102 0.92 33 11 42106 51707 1200
10 50 0.91 17 13 50101 6.0101 1800

t, ~ O(N) will scale linear to the number N of eigenstates {|¢,,) } spanning n = 1. Hence, even for N = 126
atoms with (ag, a;) >~ (0.9, 1 um), the condition Ag’N -0 Ag’N -0 wg(,z) is satisfied so that the atomic
sample can efficiently relax into the steady state | ;).

We have also considered the case for '** Cs where direct UV excitation to |r) = |100P; ) state is possible
[55]. We set the decohering state to |e) = |7S; /) (I, =~ 36 MHz). Because |100P; /) offers lower I,— 330 Hz
[24], the steady-state entanglement fidelity F ~ 1 — O(I,/T") can be improved relative to the case of | 1005, /)
with the fixed parameters in table G2 . For example, if we choose {2 = 50 MHzand I = 1 MHzas above, the
resulting fidelity for N = 6is Fy (|100P;/5)) = 0.96 > F;(]100S, /2)) = 0.91. The resulting lattice constants for
N = 126 atomsare (a9, @) ~ (1.0, 1.2pum) 2 1 pm so that they are optically addressable, thereby allowing for
steady-state hectapartite entanglement. The photo-ionization lifetime may also be significantly improved, as
demonstrated in [55].

In conclusion, we estimate that our method could be extended to generate 100-partite entangled steady
states with the parameters {2, 5, 6, X, |g), |¢’), |r) }. Further improvement in the entanglement depth k may

2
be possible by optimizing the driving field €2 under the constraint 2 > T, foragiven |r), which reduces the

ionization time #,. [54]. Alternative strategies, including the use of photonic crystals with atoms in low-lying
electronic states, will be discussed elsewhere.

References

[1] Amico L, Fazio R, Osterloh A and Vedral V 2008 Entanglement in many-body systems Rev. Mod. Phys. 80 517

[2] DiehlS, Micheli A, Kantian A, Kraus B, Biichler H P and Zoller P 2008 Quantum states and phases in driven open quantum systems
with cold atoms Nat. Phys. 4878

[3] Verstraete F, Wolf M M and Cirac J 12009 Quantum computation and quantum-state engineering driven by dissipation Nat. Phys.
5633

[4] Kastoryano M J, Wolf M M and Eisert ] 2013 Precisely timing dissipative quantum information processing Phys. Rev. Lett. 110 110501

[5] Campisi M, Hanggi P and Talkner P 2011 Colloquium: quantum fluctuation relations: foundations and applications Rev. Mod. Phys.
83771

[6] Plenio M B, Huelga S F, Beige A and Knight P L 1999 Cavity-loss-induced generation of entangled atoms Phys. Rev. A 59 2468

[7] Schneider S and Milburn G J 2002 Entanglement in the steady state of a collective-angular-momentum (Dicke) model Phys. Rev. A 65
042107

17


http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1103/PhysRevLett.110.110501
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/PhysRevA.59.2468
http://dx.doi.org/10.1103/PhysRevA.65.042107
http://dx.doi.org/10.1103/PhysRevA.65.042107

10P Publishing

NewJ. Phys. 17 (2015) 113053 SKLeeetal

[8] Plenio M B and Huelga S F 2002 Entangled light from white noise Phys. Rev. Lett. 88 197901
[9] Braun D 2002 Creation of entanglement by interaction with a common heat bath Phys. Rev. Lett. 89 277901

[10] Jakobezyk L2002 Entangling two qubits by dissipation J. Phys. A: Math. Gen. 35 6383

[11] Kraus B, Biichler HP, Diehl S, Kantian A, Micheli A and Zoller P 2008 Preparation of entangled states by quantum Markov processes
Phys. Rev. A 78042307

[12] Muschik C A, Polzik E S and CiracJ 12011 Dissipatively driven entanglement of two macroscopic atomic ensembles Phys. Rev. A 83
052312

[13] Kastoryano M J, Reiter F and Serensen A $ 2011 Dissipative preparation of entanglement in optical cavities Phys. Rev. Lett. 106 090502

[14] Cho]J, Bose S and Kim M S 2011 Optical pumping into many-body entanglement Phys. Rev. Lett. 106 020504

[15] Vollbrecht K G H, Muschik C A and Cirac J12011 Entanglement distillation by dissipation and continuous quantum repeaters Phys.
Rev. Lett. 107 120502

[16] Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen ] M, Cirac J I and Polzik E $ 2011 Entanglement generated by dissipation
and steady state entanglement of two macroscopic objects Phys. Rev. Lett. 107 080503

[17] LinY et al 2013 Dissipative production of a maximally entangled steady state of two quantum bits Nature 504 415

[18] Shanker Sefal2013 Autonomously stabilized entanglement between two superconducting quantum bits Nature 504 419

[19] Barreiro] T eral2011 An open-system quantum simulator with trapped ions Nature 470 486

[20] Schindler P et al 2013 Quantum simulation of dynamical maps with trapped ions Nat. Phys. 9 361

[21] Jaksch D, CiracJ1, Zoller P, Rolston S L, C6té R and Lukin M D 2000 Fast quantum gates for neutral atoms Phys. Rev. Lett. 85 2208

[22] Lukin M D et al 2001 Dipole blockade and quantum information processing in mesoscopic atomic ensembles Phys. Rev. Lett. 87 037901

[23] Saffman M, Walker T G and Mglmer K 2010 Quantum information with Rydberg atoms Rev. Mod. Phys. 822313

[24] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)

[25] Rao D D Band Melmer K 2013 Dark entangled steady states of interacting Rydberg atoms Phys. Rev. Lett. 111 033606

[26] Carr AW and Saffman M 2013 Preparation of entangled and anti-ferromagnetic states by dissipative Rydberg pumping Phys. Rev. Lett.
111033607

[27] Olmos B, Gonzélez-Férez R and Lesanovsky 12009 Fermionic collective excitations in a lattice gas of Rydberg atoms Phys. Rev. Lett. 103
185302

[28] Weimer H, Miiller M, Lesanovsky I, Zoller P and Biichler H P 2010 A Rydberg quantum simulator Nat. Phys. 6 382

[29] Lee TE, Hiffner H and Cross M C 2012 Collective quantum jumps of Rydberg atoms Phys. Rev. Lett. 108 023602

[30] Zhao B, Glaetzle AW, Pupillo G and Zoller P 2012 Atomic Rydberg reservoirs for polar molecules Phys. Rev. Lett. 108 193007

[31] AtesC, Olmos B, Li W and Lesanovsky I 2012 Dissipative binding of lattice bosons through distance-selective pair loss Phys. Rev. Lett.
109233003

[32] Glaetzle AW, Nath R, Zhao B, Pupillo G and Zoller P 2012 Driven-dissipative dynamics of a strongly interacting Rydberg gas Phys. Rev.
A 86043403

[33] Honing M, Muth D, Petrosyan D and Fleischhauer M 2013 Steady-state crystallization of Rydberg excitations in an optically driven
lattice gas Phys. Rev. A 87 023401

[34] LesanovskyIand Garrahan J P 2013 Kinetic constraints, hierarchical relaxation, and onset of glassiness in strongly interacting and
dissipative Rydberg gases Phys. Rev. Lett. 111 215305

[35] Petrosyan D, Honing M and Fleischhauer M 2013 Spatial correlations of Rydberg excitations in optically driven atomic ensembles Phys.
Rev. A87 053414

[36] Wilk T et al 2010 Entanglement of two individual neutral atoms using Rydberg blockade Phys. Rev. Lett. 104 010502

[37] Isenhower L etal 2010 Demonstration of a neutral atom controlled-NOT quantum gate Phys. Rev. Lett. 104010503

[38] Schauf3 P et al 2012 Observation of spatially ordered structures in a two-dimensional Rydberg gas Nature 491 87

[39] DudinY O and Kuzmich A 2012 Strongly interacting Rydberg excitations of a cold atomic gas Science 336 887

[40] Peyronel T et al 2012 Quantum nonlinear optics with single photons enabled by strongly interacting atoms Nature 488 57

[41] Schempp H et al 2014 Full counting statistics of laser excited Rydberg aggregates in a one-dimensional geometry Phys. Rev. Lett. 112
013002

[42] Giihne O and Toth G 2009 Entanglement detection Phys. Rep. 474 1

[43] Serensen A S and Melmer K 2001 Entanglement and extreme spin squeezing Phys. Rev. Lett. 86 4431

[44] Hofmann H F and Takeuchi S 2003 Violation of local uncertainty relations as a signature of entanglement Phys. Rev. A 68 032103

[45] Duan L-M 2011 Entanglement detection in the vicinity of arbitrary Dicke states Phys. Rev. Lett. 107 180502

[46] Lougovski P, van EnkS]J, ChoiKS, Papp S B, Deng H and Kimble H ] 2009 Verifying multipartite mode entanglement of W states New
J. Phys. 11 063029

[47] Papp S B, ChoiK S, Deng H, Lougovski P, van Enk S J and Kimble H J 2009 Characterization of multipartite entanglement for one
photon shared among four optical modes Science 324 764

[48] ChoiKS, Goban A, Papp S B, van Enk S J and Kimble H ] 2010 Entanglement of spin waves among four quantum memories Nature
468 412

[49] Lewenstein M, Cirac]Iand Zoller P 1995 Master equation for sympathetic cooling of trapped particles Phys. Rev. A51 4617

[50] Singer K, Stanojevic ], Weidemiiller M and Cété R 2005 Long-range interactions between alkali Rydberg atom pairs correlated to the
ns—ns, np—np and nd—nd asymptotes J. Phys. B: At. Mol. Opt. Phys. 38 5295

[51] Walker T G and Saffman M 2008 Consequences of Zeeman degeneracy for the van der Waals blockade between Rydberg atoms Phys.
Rev. A77 032723

[52] DudinY O, LiL, Bariani F and Kuzmich A 2010 Observation of coherent many-body Rabi oscillations Nat. Phys. 8 790

[53] Balewski] B etal2013 Coupling a single electron to a Bose—Einstein condensate Nature 502 664

[54] Saffman M and Walker T G 2005 Analysis of a quantum logic device based on dipole—dipole interactions of optically trapped Rydberg
atoms Phys. Rev. A72 022347

[55] Hankin AM et al 2014 Two-atom Rydberg blockade using direct 6S to nP excitation Phys. Rev. A 89 033416

[56] Griinzweig T, Hilliard A, McGovern M and Andersen M F 2010 Near-deterministic preparation of a single atom in an optical microtrap
Nat. Phys. 6951

[57] Jo G, GuzmanJ, Thomas C K, Hosur P, Vishwanath A and Stamper-Kurn D M 2012 Ultracold atoms in a tunable optical Kagome
lattice Phys. Rev. Lett. 108 045305

[58] Barredo D et al 2014 Demonstration of a strong Rydberg blockade in three-atom systems with anisotropic interactions Phys. Rev. Lett.
112183002

[59] Shahmoom E and Kurizki G 2013 Non-radiative interaction and entanglement between distant atoms Phys. Rev. A 87 033831

18


http://dx.doi.org/10.1103/PhysRevLett.88.197901
http://dx.doi.org/10.1103/PhysRevLett.89.277901
http://dx.doi.org/10.1088/0305-4470/35/30/313
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1103/PhysRevA.83.052312
http://dx.doi.org/10.1103/PhysRevA.83.052312
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1103/PhysRevLett.106.020504
http://dx.doi.org/10.1103/PhysRevLett.107.120502
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1038/nature12801
http://dx.doi.org/10.1038/nature12802
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nphys2630
http://dx.doi.org/10.1103/PhysRevLett.85.2208
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/PhysRevLett.111.033606
http://dx.doi.org/10.1103/PhysRevLett.111.033607
http://dx.doi.org/10.1103/PhysRevLett.103.185302
http://dx.doi.org/10.1103/PhysRevLett.103.185302
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1103/PhysRevLett.108.023602
http://dx.doi.org/10.1103/PhysRevLett.108.193007
http://dx.doi.org/10.1103/PhysRevLett.109.233003
http://dx.doi.org/10.1103/PhysRevA.86.043403
http://dx.doi.org/10.1103/PhysRevA.87.023401
http://dx.doi.org/10.1103/PhysRevLett.111.215305
http://dx.doi.org/10.1103/PhysRevA.87.053414
http://dx.doi.org/10.1103/PhysRevLett.104.010502
http://dx.doi.org/10.1103/PhysRevLett.104.010503
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1126/science.1217901
http://dx.doi.org/10.1038/nature11361
http://dx.doi.org/10.1103/PhysRevLett.112.013002
http://dx.doi.org/10.1103/PhysRevLett.112.013002
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1103/PhysRevA.68.032103
http://dx.doi.org/10.1103/PhysRevLett.107.180502
http://dx.doi.org/10.1088/1367-2630/11/6/063029
http://dx.doi.org/10.1126/science.1172260
http://dx.doi.org/10.1038/nature09568
http://dx.doi.org/10.1103/PhysRevA.51.4617
http://dx.doi.org/10.1088/0953-4075/38/2/021
http://dx.doi.org/10.1103/PhysRevA.77.032723
http://dx.doi.org/10.1038/nphys2413
http://dx.doi.org/10.1038/nature12592
http://dx.doi.org/10.1103/PhysRevA.72.022347
http://dx.doi.org/10.1103/PhysRevA.89.033416
http://dx.doi.org/10.1038/nphys1778
http://dx.doi.org/10.1103/PhysRevLett.108.045305
http://dx.doi.org/10.1103/PhysRevLett.112.183002
http://dx.doi.org/10.1103/PhysRevA.87.033831

10P Publishing

NewJ. Phys. 17 (2015) 113053 SKLeeetal

[60] Douglas] S etal 2015 Quantum many-body models with cold atoms coupled to photonic crystals Nat. Photonics 9 326

[61] Goban A et al 2014 Atom-light interactions in photonic crystals Nat. Commun. 5 3808

[62] Lieb E Hand Robinson D W 1972 The finite group velocity of quantum spin systems Commun. Math. Phys. 28 251

[63] Eisert], van den Worm M, Manmana S R and Kastner M 2013 Breakdown of quasi-locality in long-range quantum lattice models Phys.
Rev. Lett. 111 260401

[64] Lee SKetal2015 Localization and diffusion of many-body entanglement in long-range interacting disordered lattice spin models in
preparation

[65] Childs AM, Gosset D and Webb Z 2013 Universal computation by multiparticle quantum walk Science 339 791

[66] HeaneyL, Cabello A, Santos M F and Vedral V 2011 Extreme nonlocality with one photon New J. Phys. 13 053054

[67] Rao D D Band Mglmer K 2014 Deterministic entanglement of Rydberg ensembles by engineered dissipation Phys. Rev. A 90 062319

[68] Reiter F, Reeb D and Serensen A S 2015 Scalable dissipative preparation of many-body entanglement preprint (arXiv:1501.06611)

[69] James D F V and Jerke J 2007 Effective Hamiltonian theory and its applications in quantum information Can. J. Phys. 85 625

[70] Goban A etal 2012 Demonstration of a state-insensitive, compensated nanofiber trap Phys. Rev. Lett. 109 033603

[71] Bakr W S, Gillen] I, Peng A, Félling S and Greiner M 2009 A quantum gas microscope for detecting single atoms in a Hubbard-regime
optical lattice Nature 462 74

19


http://dx.doi.org/10.1038/nphoton.2015.57
http://dx.doi.org/10.1038/ncomms4808
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1103/PhysRevLett.111.260401
http://dx.doi.org/10.1126/science.1229957
http://dx.doi.org/10.1088/1367-2630/13/5/053054
http://dx.doi.org/10.1103/PhysRevA.90.062319
http://arXiv.org/abs/1501.06611
http://dx.doi.org/10.1139/P07-060
http://dx.doi.org/10.1103/PhysRevLett.109.033603
http://dx.doi.org/10.1038/nature08482

	1. Introduction
	2. Driven-dissipative preparation of many-body entangled states
	2.1. Schematics
	2.2. Rydberg-mediated laser transitions and local decoherence
	2.3. Emergence of dark multipartite entangled states for open-system dynamics

	3. Results
	3.1. Open-system dynamics for bipartite atomic entanglement
	3.2. Evolution of many-body entanglement and uncertainty-based entanglement witness
	3.3. Finite-size scaling of steady-state entanglement

	4. Experimental feasibility
	5. Conclusion
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	Appendix E.
	Appendix F.
	Appendix G.
	References



