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Abstract

Ultracold gases promise many applications in quantum metrology, simulation and computation. In
this context, optimal control theory (OCT) provides a versatile framework for the efficient preparation
of complex quantum states. However, due to the high computational cost, OCT of ultracold gases has
so far mostly been applied to one-dimensional (1D) problems. Here, we realize computationally
efficient OCT of the Gross—Pitaevskii equation to manipulate Bose—Einstein condensates in all three
spatial dimensions. We study various realistic experimental applications where 1D simulations can
only be applied approximately or not at all. Moreover, we provide a stringent mathematical footing for
our scheme and carefully study the creation of elementary excitations and their minimization using
multiple control parameters. The results are directly applicable to recent experiments and might thus
be of immediate use in the ongoing effort to employ the properties of the quantum world for
technological applications.

1. Introduction

Opver the last decade, the ever increasing experimental toolbox of atomic, optical and molecular physics has lead
to an exciting improvement in the control and understanding of complex quantum systems [ 1]. Recently, this
has resulted in an important shift of paradigm. While quantum systems were previously mostly studied to check
the validity of theoretical models, interest has now increased in their manipulation for specific technological
applications. Prototypical examples for this shift of paradigm are atomic interferometers for quantum enhanced
metrology [2—4], atomic field probes [5] and microscopes [6, 7], inertial sensors [8], atomic clocks [9], or
applications in quantum computing [10, 11] and quantum simulation [12].

In many cases, these applications rely on the controlled preparation of a well-defined quantum many-body
state with particular properties. One of the key experimental challenges is thus the efficient transfer of a system to
such a state. Optimal control theory (OCT) is a mathematical tool to devise control strategies for this transfer
[13]. Itis well studied in many physical systems, ranging from atoms and molecules to solid-state systems
[14-18].

In this work, we apply it to the control of a dilute atomic Bose—Einstein condensate (BEC), a system which is
well described by the three-dimensional (3D) Gross—Pitaevskii equation (GPE) [19, 20]. Such BECs form a
versatile experimental platform for the storage, manipulation and probing of interacting quantum fields with
high precision [1]. In a seminal work Hohenester et al [21] demonstrated that OCT [22] provides a highly
efficient way to realize the transfer of a BEC to a target state, vastly outperforming more simple schemes. In this
context, it has also been shown that OCT is robust against fluctuations and decoherence, and can also specifically

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


http://dx.doi.org/10.1088/1367-2630/17/11/113027
mailto:mennemann@acin.tuwien.ac.at
mailto:tim.langen@colorado.edu
http://dx.doi.org/10.1088/1367-2630/17/11/113027
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/11/113027&domain=pdf&date_stamp=2015-11-09
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/11/113027&domain=pdf&date_stamp=2015-11-09
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 17 (2015) 113027 J-F Mennemann et al

take into account experimental constraints [23]. This has recently lead to first experimental
demonstrations [24, 25].

OCT of BECs has so far been mostly used in one-dimensional (1D) settings, as the number of necessary
spatial discretization points and hence the numerical costs scale exponentially with the number of dimensions.
[26]. However, most experimental situations can only approximately be described by a 1D model, which has so
far limited the applicability of OCT to real-life situations.

In the following we demonstrate the first OCT of a BEC in all three spatial dimensions and study the physical
insights that come with this advance. As we demonstrate through a number of examples, extending optimal
control of BECs from 1D to 3D is the crucial step to bridge the gap from limited proof-of-principle experiments
to a general applicability of this powerful technique. For example, we show how collective excitations are
inevitably created as a result of the control. These excitations are directly connected to the nonlinear nature of
the GPE and can only be fully captured and minimized in a 3D treatment including multiple control parameters.

Finally, we provide a detailed description of all necessary numerical details to make our work the starting
point for the application of the presented technique in many future experiments.

2. The control problem
We start with a brief review of OCT, as well as of the description of BECs in terms of the GPE.

2.1. Gross—Pitaevskii equation
The mean-field dynamics of a BEC is described by the GPE

2
0 — ff—mAw + VA + g 9Py, 1)

where 1) = 1 (r, t) denotes a complex-valued wave function, with initial condition % (r, 0) = ¥, € L*>(R% C).
Here, V) = V (r, A(t))is an external potential that is characterized by a single or several control parameters
denoted by the vector A. Assuming that the wave function is normalized to unity, the coupling constant

g = N4n/?a; m~is defined by the mass m, the s-wave scattering length a,and the number N of atoms in the
BEC. For example, for ultracold gases of 8 Rb atoms, the atomic massis given by m = 1.44 x 10~%° kgand the
s-wave scattering length by a, = 5.24 nm. Measuring length in units of [y = 1 x pm, mass in units of the
atomic mass and time in units of t, = ml?//;, equation (1) can be written as

. 1
101 = —Eﬁw + WY + gl Py 2
which is the starting point for our considerations below.

2.2. Optimal control problem
We seek to find an optimal time-evolution of the m-component control parameter

A0, T)—=R" AXO)= Ao, X)) =Ap,

which steers the system from the initial state 1, at time zero to a desired state 14 at final time T. Without loss of
generality we assume that ¢y and 14 are ground state solutions of the stationary GPE corresponding to the
smooth external potentials Vi, and V, attimes ¢t = 0 and r = T, respectively, with fixed parameters Ay, Ar. To
find the time evolution we apply well-known techniques from OCT [21]. As cost functional, we use

Tv o = (1= [ o)) + 2 [T aaw] a, )

where (u, v) = f u (r)*v (r) dr denotes the standard scalar product of u, v € L?>(R?; C). The definition (3)is
R3

the generalization of the functional used in [21, 23, 26—30] to a multi-component control parameter A. The first
term in ] measures the proximity of ¢ to the desired state 14 at the end of the steering process. The expression
%(1/}) =1 — |{thg, ¥)|? isknown as the infidelity and provides a measure for the difference of ¢ and ¢4. In
detail, it quantifies the L*-norm of ¢’s component that is orthogonal to /4. The second term regularizes the
control trajectory to account for the fact that parameters can never be changed infinitely fast in a real experiment.
Here, v > 0 sets the penalty for fast variations of A (¢). For our examples below we find that already a very small
value v = 1 x 10~®yields a satisfactory regularization.

Our goal is to minimize J (A, 1) subject to the constraint that ¢ solves the GPE (equation (2)) with the initial
condition given by the respective ¢. To this end, one introduces the Lagrange function

2



10P Publishing

NewJ. Phys. 17 (2015) 113027 J-F Mennemann et al

ke [ [ g0+ 180 - vio - glopu) drar @
0o JR ' 2

where p(r, t) acts as a generalized Lagrange multiplier [22]. Atalocal minimum (A, 1, p) of ], all three
variational derivatives D,L(A, ¥, p) [6p], DyL (A, 9, p)[6¢]and DAL (A, 9, p)[6A] vanish for all admissible
variations Op, 61 and 8, respectively. The corresponding three conditions constitute the optimality system

. 1

10 = —5A¢ + WY + g 1Y), (54)

. 1
i0p = =~ Ap + Vap + 28 [UFp + g™, (5b)

a2
1A= —Re<w, (am)p>, (50)

together with the initial and terminal conditions

¥ (0) = vy, (6a)
ip(T) = —(ta, (1)) v, (6b)
A0) =Xy, AT = Ar. (6¢c)

In general, no analytical solutions are available for (5) with (6). Here we use an iterative method to find a
numerical approximation of the solution. For this purpose it is useful to introduce the reduced cost functional

FOO=T(A ), @)

where 1)\ denotes the unique solution of the GPE for a given control parameter curve A. The goal is to find a
local (or, preferably, even global) minimizer X* of 7.
The most straight-forward iterative procedure that can be employed is the method of steepest descent,

Netl = )\k—aka()\k), k=0,1,2, .... 8)
To determine an appropriate step size a ¥, we perform a line search in each iteration:

af = arg rninf()\k — an(Ak)). 9)

Here the upper index denotes the iteration step. A comment is due on the use of the gradient VJ (M) in (8).
Recall that the gradient of J at X with respect to a specific inner product (-,-)x on the space X of admissible
variations 6 is the uniquely determined element VJ € X such that (Vf, §A)x = DxJ (A)[6A]forall
admissible variations A € X. The gradient thus depends sensitively on the choice of the inner product (,-)x on
X.Ithasbeen pointed out already in [27] that any admissible variation A must have a finite value in the penalty
term, i.e., its weak time derivative 0,6 A must be square-integrable on (0, T), and must respect the boundary
conditions in (6¢), i.e., SA(0) = §A(T) = 0. A natural choice for (-,-)y is thus the H3 (0, T, R™)-scalar product,

T
(u, V) = f dru(r) - Brv(1)dt. (10)
0
A calculation, which we present in the appendix, shows that this choice of (-,-)x yields
d? A .

SV ] =28+ Re(w, (14)p), (11a)
[Viv]o =o, (11b)
[Viv]m =o, (11c)

wherein ) and p are solutions of (5a) and (6a) or (5b) and (6b), respectively. By definition, V  vanishes at the
boundariest = 0 and t = T, and so the iteration (8) preserves the boundary conditions (6¢). We emphasize that
the seemingly canonical choice of (-,-)x as the standard L*-scalar product would not allow to specify boundary
data for V], which would result in a severe loss of stability of the optimization algorithm.

2.3. Implementation

In the situations considered below we found that the method of steepest descent (see equation (8)) works
reliably. However, using more advanced methods the number of iterations needed to ensure convergence of the
algorithm can be reduced significantly. In fact, our solver is based on the nonlinear conjugate gradient scheme of
Hager and Zhang [31], which has also been employed in [27] for optimal control of the 1D GPE. We stress that

3
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Figure 1. Two-parameter optimal control of an elongated harmonic potential. The timescale of the controlis T = 9 ms. Initially
aligned along the y-direction, the condensate is dynamically transformed to be aligned along the x-direction. The black isosurface
corresponds to the external trapping potential that is controlled using OCT, the blue isosurfaces visualize the atomic density. Note that
for clarity only the lower half of the potential is shown. Also, here and throughout this work any trivial potential offset has been
removed for simplicity and easier visualization. Its only effect is an overall phase shift of the wave function which is of no relevance to
the optimization procedure. Animations of the full dynamics are available online [33].

all inner products and norms related to the nonlinear conjugate gradient scheme need to be expressed in terms
of the inner product given in equation (10).

The reduced cost functional (7) needs to be evaluated several times per iteration. Moreover, at the beginning
of each iteration a gradient vector needs to be determined using equation (11a). Solutions to the time-dependent
GPE (5a) and the adjoint equation (50) are obtained via the time-splitting spectral method [32]. Initial and
desired final states for a given potential are found by imaginary time propagation.

In order to accelerate the solving of the optimal control problem we perform all computations on the
graphics processing unit (GPU) of a powerful graphics card. To speed up the calculations and ensure
convergence of the algorithm we start each optimization with a coarse spatial grid and a relatively big time step
At. The result for X is used as an input for another round of optimization on a finer grid. This procedure is
repeated until the algorithm converges to a final time-evolution for A. A detailed description of our
implementation is given in the appendix.

3. Examples

In the following we demonstrate the results of our scheme by considering three applications of increasing
complexity, which are directly connected to recent experiments.

3.1. Harmonic oscillator potential

In the first application we study a BEC in an elongated harmonic potential. Initially, the trap frequencies are
chosen such that the condensate is aligned along the y direction. Using a suitable time-evolution of the trap
frequencies, we aim to rotate the condensate by 7/2, while keeping it in the ground state of the external
potential.

An example of the transition is visualized in figure 1. It can be understood as a toy example of a broad class of
experimental protocols in which the trapping geometry is changed, e.g. to mode match different traps [34], to
(de)compress atrap [35], to load an optical lattice [36] or to transfer condensates into dynamical potentials for
atomtronics [37, 38]. Conceptually similar pulsed manipulations are also performed to focus BECs in time-of-
flight expansion [39].




10P Publishing

NewJ. Phys. 17 (2015) 113027 J-F Mennemann et al

3.1.1. Trapping potential
The harmonic potential in this example is given by

Wx, v, 2) = %([Wx()\l)]zaﬂ + [Wy(/\z)]zy2 + wﬁz2),

wherein the frequencies w, and w, can be set independently via the control parameters A; and \,. More precisely,
we transform the external potential from an initial configuration with w, = wyandw, = wjattimet = Otoa
final configuration withw, = wland w, = w}f, atthe final time t = T.To this end, we parametrize w, and w, as

wx()\l) = wi + Al(wjj — w;),
wy()\z) = wj, + Az(wf — wj,),
with

A0)=0, N(T)=1,
2(0)=0, MN(T)=1.

We note that these parametrizations, as all others discussed below, are chosen as an example and can easily be
adjusted to the parameters accessible in a specific experimental realization.

3.1.2. Numerical simulations

In the following simulations the number of atoms is N = 5000, the final time is setto T = 9 msand

w, = 5 kHz. The initial configuration of the trapping potential is given by w; = 5kHzand wj, = 0.75 kHz, the
final configuration by w/ = 0.75 kHz and wf; = 5kHz.

Before we discuss the result of the optimal control algorithm we first consider a numerical simulation as a
benchmark, in which the control parameters A; and A, are varied linearly. The corresponding time-evolution of
the trap frequencies w, and w, is depicted in figure 2(a).

In order to investigate the overlap of ¢ with 1)4 beyond the end of the control we continue the time-evolution
with A(t) = A(T)fort > T.We proceed analogously in the other examples. As can be seen from figure 2(b)
the infidelity decreases only slightly until t = T'and shows a strong oscillation for ¢ > T. This behavior of the
infidelity indicates that the final state differs significantly from the desired state /4. This is also strikingly
visualized by example snapshots of the density at time t* = 22 ms in figures 2(c)—(e).

Next, we consider the result of the optimal control algorithm. Using X’ (t) =
[0.25 sin(wt/T) + t/T, —0.25 sin(wt/T) + t/T]fort € [0, T]asastarting point, the algorithm converges
to a solution that reduces the cost functional by four orders of magnitude. The time-evolution of the frequencies
wyand w, is shown in figure 2(f), the time-evolution of the corresponding infidelity in figure 2(g). It can clearly
be seen that the infidelity strongly decreases until the end of the control at t = T. Moreover, the infidelity
remains on a very lowlevel for t > T, indicating that the desired final state has been reached with high precision.
Consequently, the deviations of the density to the density of the desired state at time t = ¢* are very close to zero
as can be seen from figures 2(h)—(j). We note at this point that the evolution of the 3D wave functions can
naturally only be described here in limited detail. A supplementary video that visualizes these dynamics in
greater detail is available online [33].

3.2.Loading of a toroidal trap

In the second application we consider the loading of a toroidal trap as shown in figure 3. Such toroidal traps have
recently been employed to realize atomic analogues of electrical circuits to study superflow and hysteresis
[40—44].

3.2.1. Trapping potential
The trapping potential is given by a slightly elongated harmonic potential and a Gaussian function centered at
the origin of our coordinate system [40]

aA(x, 3, 2) = %([wx(/\)]zxz + wiy? + wﬁzz)
e (e )

In an experiment this Gaussian function could for example correspond to a red-detuned laser beam realizing a
repulsive dipole potential.

As illustrated in figure 3 we consider the transformation of the potential from an initial harmonic
configuration withw, = W' and V, = Oattimet = 0 toatoroidal configuration withw, = WJand vV, = Vi at
the final time t = T. Hence, a suitable parameterization of w, and V} is given by

5
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Figure 2. Two-parameter control of an elongated harmonic oscillator potential. The computational domain is chosen as
([-10, 10] x [—10, + 10] x [—2.5, 2.5]) pm?>. In the finest discretization level we use 128 X 128 X 32 grid points and a time step
size of At = 0.001 ms. Left column: without optimal control. Right column: optimal control. See text for details.

wx()\l) =w + /\1(w£ — wi), (12a)
Vo) = Vi x (%), (12b)
where

)‘1(0): 0) >\1(T) = 1)
X(0)=0, X(T)=1.
In equation (12b), x plays the role of a saturation function. The use of the saturation function ensures that V,

remains positive—and thus experimentally realizable—for any possible choice of A,. This does not restrict the
original control problem, as every experimentally realizable trajectory V; (#) > 0 can be parametrized through a

6
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Figure 3. Loading of a toroidal trap using two-parameter optimal control. Animations of the full dynamics are available online [33].
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Figure 4. Saturation function used in the toroidal trap and splitting examples.

suitable A\, (¢) in V' x (A2 (¢)). In fact, we choose all parameters for the external potential to be close to previous
experimental realizations. However, our approach also allows us to optimize more general situations where the
parametrization of the trapping potential is more complicated [45].

Similar saturation functions are commonly used in control theory to realize limits on control parameters. In
our particular case x is implemented using a piecewise cubic hermite interpolating polynomial (PCHIP). Its
functional form is shown in figure 4. The interpolating points are chosen such that y always remains positive.
Moreover, x (0) = 0Oand x (1) = 1.

3.2.2. Numerical simulations

The following simulations are carried out using Vi = h x 30 kHz, wy = 5 um, T = 9 msand N = 5000. The
frequencies w, = 2.5 kHz and w, = 5 kHz are kept constant during the simulation. The initial configuration of
the confinement potential is characterized by w; = 1 kHz and V, (t = 0)/h = 0 kHz, whereas the final
configuration is given by w/ = 2.5 kHz and V,(T)/h = V{.

As in the previous example we consider first the case where the parameters w, and V,, are changed linearly
(see figure 5(a)). Figure 5(b) reveals that the associated infidelity does not drop atall until t = T.For t > T we
observe a slight decrease of the infidelity. This can be attributed to the fact that, as time evolves, the density of the
condensate becomes more evenly distributed in the toroidal trapping potential, bringing its wavefunction closer
to 14. However, as can be seen from figures 5(c)—(e), the final wave function still differs strongly from the wave
function of the desired state after t* = 22 ms.
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Figure 5. Loading of a toroidal trap using two-parameter control. The computational domain is given by
See text for details.

Let us now discuss the result of the optimal control algorithm. An optimal time-evolution of the control
parameters is given in figure 5(f). Intuitively this control can be understood as the result of two separate time-
scales. During the first half of the control, the trap frequency w, is increased, while the limits imposed on A,
prohibit any change of V;,. During the second half, on the other hand, Vj is adjusted to its final value, while w, is

only subject to small corrections.

Until the end of the control this leads to a drop in the infidelity by approximately three orders of magnitude,
as visualized in figure 5(g). Furthermore, the infidelity remains bounded by 3 x 1073 for t > T, which is well
below the measurement sensitivity in typical experiments. Consequently, only slight deviations from the desired
wavefunction at time t* = 22 ms can be observed in figures 5(h)—(j).
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Figure 6. The splitting of a Bose—Einstein condensate, as realized by a radial deformation of an initially harmonic potential into a
double well [46]. The two gases in the final picture are completely decoupled, with no more overlap between the respective wave
functions. Animations of the full dynamics are available online [33].

3.3. Splitting

In terms of technological applications, a particular noteworthy realization of BECs is achieved using atom chips
[47,48]. On these chips micro-fabricated wires allow the precise manipulation of BECs using static, radio and
microwave fields. As a third application we thus consider the splitting of a single condensate into two identical
halves using such an atom chip [46]. A visualization is presented in figure 6. This splitting protocol has recently
been used to study the non-equilibrium dynamics of quantum gases, revealing subtle effects, such as
prethermalization [49-52], generalized statistical ensembles [53] and the light-cone-like emergence of thermal
correlations [54, 55]. Moreover, it forms the basic building block for integrated matter-wave

interferometers [56, 57].

3.3.1. Trapping potential

In the experiments the splitting is realized by dressing the static magnetic trapping potential with a

strong near-field radio-frequency (RF) field. The unscaled static potential is given by Viqaic = g i1 |Bl,
with the magnetic field B = (B, B, B,) being well approximated by the famous Ioffe—Pritchard

form

B, =B + %[}/2 — %(x2 + zz)].

The parameters are given by By = /avg/mege ftp, Bi = 4/ mw? BO/mFgF tgand B, = mwﬁ/mng fig. Inthe
following simulations we consider 87 Rb atoms which are trapped in the 55, /, F = 2, mp = 2 state where
gr = 1/2.The trap parameters are

wo = 2w X 390 kHz,
Wy = w, = w =27 X 2kHz,
wy = w) =27 X 85 Hz.
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The resulting dressed-state potential is given by [58]

2

fwge B|| + (BRM(f) )2’

= Sl \gF\MB 2

= gphptiE \/ARF (0)? + Qi (1)

with i = 2, wgp the frequency of the RF radiation and By, denoting the component of the linear polarized
dressing field Bgr that is aligned perpendicular to the static field. Asin [54] we use a detuning of

Agp(0) = —27 x 30 kHz from the mp = 2 — myp = 1 transition for the simulation. The Rabi-frequency is
parameterized by the control parameter A

Qrabi(A) = Q;kabi X(A): Q;kabi = 27 x 155 kHz
wherein

The control parameter A mimics the situation in experiments, where the double well potential is controlled by
changing the RF field amplitude through an RF current in a wire. For A = 0 we recover the static harmonic
potential, whereas A = 1 corresponds to a fully separated double well with no wave function overlap between
the two halves of the system. Since the Rabi-frequency is strictly positive in experiments we employ the same
saturation function y as in the previous example (see figure 4).

As the trapping potential is significantly changed during the splitting the atoms are radially displaced
from their equilibrium position in the harmonic trap. Consequently, strong dipole and breathing
oscillations are usually observed in experiments. This poses a strong limitation to the use of such systems as
interferometers [56]. The minimization of such excitations is therefore one of the main motivations for our
optimization.

3.3.2. Numerical simulations: single-parameter control
We illustrate the splitting procedure for N = 2000 atoms and T = 6 ms.

In a first step we again consider the case where the Rabi-frequency is increased linearly (see figure 7(a)). This
procedure is similar to the one that is typically used in experiments [49, 53]. At the final time # = T'the infidelity
has only decreased slightly as can be seen from figure 7(b). Moreover, the infidelity shows the expected strong
oscillations for ¢ > T. A snapshot of the density at time #* = 22.5 msis illustrated in figures 7(c)—(e), revealing
that there is a large discrepancy between the computed state ¢ and the desired state 4.

Next, we consider the result of the optimal control algorithm. We find that, irrespective of the specific choice
of the initial guess \’, the algorithm always converges to approximately the same minimizer of the cost
functional. The corresponding time-evolution of the Rabi-frequency is shown in figure 7(f). We observe that the
Rabi-frequency remains zero for the first few miliseconds. In fact, only about three miliseconds of the
optimization time T are used for the transformation of the external potential. This behavior persists even if we
increase the optimization time T, with the Rabi-frequency vanishing for an even longer initial period of time.
The precise timescale depends on the parameters of the trap, as the optimization algorithm tries to find a
compromise between longitudinal and radial directions.

Interestingly, our 3D control qualitatively resembles the result of a previous 1D optimization that
included beyond mean-field effects to model the distribution of atoms into the two final gases on the quantum
level [57]. In both cases, the initial BEC is first rapidly split into two halves. Subsequently, these two halves are
kept close enough to experience a tunnel coupling for a finite time-scale. This qualitative observation is very
interesting, as reducing relative number fluctuations can help to significantly enhance the sensitivity of such
interferometers. A detailed study of how useful our control can be in this context will be a natural extension of
this work.

As aresult of the optimal control algorithm the infidelity at the final time T'is reduced by more than two
orders of magnitude (see figure 7(g)). However, for ¢t > T we again observe a strong oscillation. Snapshots of the
density distribution at * = 22.5 ms are given in figures 7(h)—(j).

3.3.3. Bogoliubov—de Gennes analysis
Interestingly, the 6 ms period of the very regular infidelity oscillation shown in figure 7(g) for the optimized
splitting is approximately the same as the period of the infidelity oscillation depicted in figure 7(b) for the simple
linear splitting. This suggests that the character of the oscillation is determined by the intrinsic properties of the
BEC rather than by the splitting protocol.

Indeed, we demonstrate in the following that the oscillations are caused by collective excitations of the BEC,
which are created during, but irrespective of the details of the splitting process. To this end, we show that they are

10



10P Publishing

NewJ. Phys. 17 (2015) 113027

J-F Mennemann et al

a) f)
180
N N
o o
= ~ 120
g g
S S
= = 60
:
G S 0
1
0
g)
10°
1071

— 1 — [(sa, ¥())]?
—— |(vha, 02 ()]

Zinm

Figure 7. Splitting of a BEC using single-parameter optimal control. Left column: linear variation of the control parameter. Right
column: optimal control of the control parameter. We note that the time-evolution of | (14, 61, (t))|* in (g) has been scaled and
slightly shifted in time to account for the unknown phase and amplitude of the excitation. The computational domain is given by
([—4, 4] x [—15, + 15] x [—2, 2]) um> which is discretized by 96 x 128 x 48 grid points in the finest discretization level. The
corresponding time step is At = 0.001 ms. See text for details.

zin m

the result of a small deviation 6 ¢ from the desired state 14, which can be described within the Bogoliubov—de

Gennes (BdG) framework.

Let therefore ®(r, t) = ¢ (r)e #*// denote an eigenstate solution of the GPE. Here, 11 is the corresponding
chemical potential and ¢ is a solution of the stationary GPE, Hy¢ + g |¢|*¢ = u¢, with
Hy = —7/2/2mA + V.We consider a generic state 1) which deviates from the eigenstate solution by a small

fluctuation 6 ¥, i.e,

Y(r, t) =~ O(r, t) + 6Y(x, t).

(13)

11
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In alinear approximation (with respect to ¢ 1) this small deviation is given by
SY(r, t) = (u(r)e*i”’t + v*(r)eiw*’)e’iﬂt/ﬁ, (14)
where u, vand w are defined via the solutions of the BAG equations [59, 60]

Hy—p+2glof 8¢* "
~(s0?)" e 2gio V)

- m[;‘] (15)
We want to investigate small fluctuations 6 ¢ corresponding to some of the lowest energy eigenvalues /& in
equation (15). To this end, we proceed in a conceptually similar way to [61] where numerical methods are used
to investigate the stability and decay rates of non-isotropic attractive BECs. Like in [61] we consider the full 3D
problem. However, for the discretization of the operators in (15) we employ a high-order finite difference
discretization rather than working in a Fourier basis. By gradually increasing the spatial resolution of the finite
difference discretization we are able to verify the convergence of the algorithm. A detailed description of our
implementation is again given in the appendix.
As an example, we find that the first three eigenvalues converge towards w; = +314.54 Hz,
w, = £523.49 Hz and w; = £734.26 Hz. Subsequently, the corresponding eigenfunctions (u;, v;) are
normalized according to the norm [60]

‘[RS (uiz(r) — v,-Z(r))dr =1. (16)

Knowing the frequencies w; and amplitude functions u; and v;, it is possible to investigate the time-evolution
of the excitations given by equation (14). It turns out that | §3); (¢) |* can be well described by a simple periodic
oscillation in amplitude, while the shape remains mostly unchanged (see left column in figure 8). As u;and v; are
purely real-valued functions, which approximately fulfill v; = —u; (see right column in figure 8) we find
o (r, T;/2) = 6;(r, T;) and hence the effective oscillation periods are halved with respect to the eigenvalues
found above,ie. T ; = 7;/2 = 7/w;. Indetail we find T 1 = 9.99 ms, Togr, = 6.00 msand 7o 3 = 4.28 ms.

Note that the effective period of the second excitation is very close to the period of the oscillation of the
infidelity observed above. Indeed, plotting the time-evolution of | (14, 81, (¢)) |* along with the time-evolution
of the infidelity in figure 7(g) demonstrates clearly that the oscillation of the infidelity is dominated by the second
excitation. As further evidence, we extract the deviation of ¢ from 4 from our simulation. A comparison shows
again very good agreement with the time-evolution of 81, (¢) (see the appendix).

The fact that only the second but not the first excitation contributes to the observations can be understood
from symmetry arguments. The first excitation corresponds to an antisymmetric wave function with respect to
the longitudinal direction, whereas the second excitation is symmetric. During the splitting process, the halving
of the atom number in each of the two gases, as well as an overall change in the longitudinal trapping potential
leads to a symmetric change in the extension of the BEC in this direction. If the control is unable to compensate
for this change in extension, the second Bogoliubov—de Gennes mode is automatically excited.

This effect is especially pronounced for the linear splitting. In contrast to that, the optimal control algorithm
canstill reduce the infidelity at ¢t = T, but even a small deviation of the wave function from the stationary state
leads to a strong oscillation in the infidelity for t > T.

Once the wave function differs from the stationary state in the longitudinal direction it is impossible to stop
the observed oscillation by a simple variation of the Rabi-frequency. The BEC will thus oscillate for ¢ > T after
the end of the control.

A central role in this scenario is played by the longitudinal frequency w,. The smaller w, the longer the
extension of the condensate in the longitudinal direction. In analogy to a classical harmonic oscillator this
increases the susceptibility to small deviations from the equilibrium position. We have confirmed this intuition
with additional simulations, finding an even more pronounced excitation of the second mode for smaller w,.

This is particularly noteworthy with respect to experiments studying BECs in the 1D limit, where wy , > w,
[53]. Intuitively, such experiments should be very well described through a 1D approximation, where only a
reduced GPE for the x-direction has to be considered (see the appendix). Our results here show that such an
approach will, in general, also lead to a strong breathing oscillation. Even if the 1D control is able to reach the 1D
desired state with high precision, it does not necessarily describe the experimental reality and will thus fail in 3D.

3.3.4. Numerical simulations: two-parameter control

In the last part of this article we will show how the oscillations reported above can be eliminated using a more
sophisticated control scheme that is made possible by the 3D character of our control and that involves a
manipulation of the trapping potential along the longitudinal direction. In experiments on atom chips, this
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Figure 8. Solutions of the Bogoliubov—de Gennes equations using a 6th-order finite difference discretization for N = 2000 atoms.
Left: density of the first three (scaled) excitations 6t (r, t), 61, (x, t)and 895 (x, ) att = Togr1/2,t = Tegrn/2 and t = Togr3/2.
Right: normalized (with respect to the inner product (16)) amplitude functions # and v evaluated along the longitudinal direction at
x = x;and z = 0. All functions are purely real-valued.

manipulation can, for example, be realized using additional wire structures, which provide longitudinal
confinement independent of the main radial trapping structures [62].
In analogy to the previous examples, we consider the following parameterization of {2,,; and wy:

Qeari (M) = Uiy X (M), Dy = 27 x 155 kHz, (17a)
wy()\z) = wf A2 w*; = 27 X 85 Hz, (17b)
with

N(0)=0, N(T)=1,
MO =1, M) =1.

The only difference to the previous example is thus that the value of the longitudinal trap frequency w, is now
part of the control. Wesstill fix w, (t = 0) = 27 x 85 Hzand w, (t = T) = 27 X 85 Hz such that the initial
and desired final states remain unchanged.

Using X’ (¢) = [t/T, 1]for t € [0, T]asan initial guess the optimization algorithm converges to a solution
which reduces the cost functional by more than three orders of magnitude. The time-evolution of the
corresponding physical parameters is given in figure 9(a). As can be seen from figure 9(b) the infidelity remains
verylow for t > T.Snapshots of the density distribution at time * = 22.5 ms confirm that the deviation from
the desired state is extremely small, see figures 9(d)—(f).
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Figure 9. (a) Time-evolution of {24, and w,, corresponding to two-parameter optimal control of the splitting process. (b) Associate
infidelity. (c) Comparison of the infidelities for the linear and the optimal single- and two-parameter control. (d), (¢) and (f) snapshots
of the density at time t* = 22.5 ms.

In the given example we have chosen T = 7. In contrast to that, for atime T < 7., we find significantly
worse results. The minimum time scale T'is thus set by the oscillation period of the excitation that the control
aims to stop. This oscillation period is in turn set by the geometry of the trap. Each different experimental
situation will thus require carefully chosen parameters for the control.

4, Conclusion and outlook

In this work we have presented the first optimal control of the GPE in 3D. As we have shown, this situation is
inherently more difficult than the optimal control of the 1D GPE because of the nonlinear coupling of different
coordinate directions. We have performed a detailed analysis of the resulting small excitations, which we were
able to minimize by extending previous control schemes from a single to a multi-parameter control.

In contrast to 1D approximations our 3D approach allows the study of realistic potentials. This will have
direct impact on the quality of experiments and will therefore provide an important step in the ongoing effort to
use the properties of the quantum world for real life applications. Importantly, our scheme is not limited to the
examples discussed in this work but rather very flexible, with many more applications conceivable.

A straight-forward extension of our numerical solver could include the treatment of excited states. This
would allow the 3D study of a recent experiment, where the BEC was transferred to the first excited state of the
trapping potential via a 1D optimal control sequence [24]. Based on our observations we expect an even stronger
excitation of BAG-modes in such an experiment. In that context, another interesting application would be to
replace the cigar-shaped confinement potentials used in the splitting and vibrational state inversion experiments
by torus-shaped trapping potentials. Due to the different topology the issues related to the excitation of small
perturbations are expected to be strongly reduced.

Another obvious extension of this work could be to consider different cost functionals. More precisely, it
would be interesting to investigate whether it is possible to reduce the optimization times T by using other cost
functionals which are not based on the infidelity but rather on a conserved quantity like the total energy.
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Finally, interesting further directions include the study of beyond mean-field effects using the multi-
configurational time-dependent Hartree framework for bosons [63] or the optimization of finite temperature
states.
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Appendix

A.1. Gradient of the reduced cost functional

In the main text we have introduced the cost functional J (A, %) in (3) and the reduced cost functional

JO) =T\, 1) in (7). Recall that, for a given control A : (0, T) — R™ satisfying the boundary conditions
(6¢), 1 is the solution to the initial value problem (54) and (64) for the GPE with the corresponding potential
V. Below, we argue why the H'-gradient of J is given by the component A : (0, T) — R™ of the solution

(1, p, A)tothe system consisting of (5a), (5b) and

g%uxfyxy:R%p(aﬂay@, (18)

subject to the initial and terminal conditions (6a), (6b) and

A@©)=A(T) =0. (19)

Before discussing the gradient, we first calculate the variational derivative of J. As it is customary in the
context of optimization problems, we express the validity of the GPE (54) in the form of a constraint Z = 0, with
the contraint functional

Z(A ) = 0 + %Aw — i — g [P

By definition, v satisfies Z (X, ¥5) = 0, hence

JOO =L(A ¢ p)s (20)
where L denotes the Lagrangian which was defined in equation (4) of the main text.

T
LA, ¥, p) = (A, 1) + Re fo (p, Z(A, 1)) dt.

Equation (20) holds for arbitrary smooth functions p : (0, T) — L?(R?; C). For fixed p, differentiation of Jin
the direction 6\ yields

DAJ (MI8AT= DAL (A, tx, p)ISA] + DuL( A, v, p) (8¢,
= DT(A a)AT + Re [ DaZ(A da) I8N

+ Dy (A ) 160] + Re | " (5 Doz (A )50 b, @1

where §v is the variation in 1/ induced by the variation 0\ of A, i.e., it satisfies

DrZ (A, ) [6A] + Dy Z (A, ¥a)[6¥] = 0and 6 (0) = 0. For simplification of DyJ, we choose p, which has
been arbitrary up to this point, such that the last two terms in (21) cancel. Indeed, taking p as a solution to the
terminal value problem (5b) and (6b), it follows that
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DuJ (A 2)[80] + Re fOT <p, DyZ( A, w)[&m dr,
= —re( (g0 r(D)) " (¥0 86 (D)),
T . 1 2 2
+re [ (pri0iov + 2800 - ow - 2g a5 - gieut) an,

T /. 1 2 -
=Rej; <latP+EAP_V)\P_2g|wA|p_ng>6w>dt:0-

To arrive at this result, we have performed an integration by parts with respect to time, using the terminal
condition (6b) and the fact that 62 (0) = 0 thanks to the initial condition (6a). In view of these cancellations,
equation (21) simplifies to

R T T
D,\](/\)[(S)\]:yj; 8t>\«8t(6)\)dt—Ref0 (p, OAVA - (GN)¥) dr. (22)

We are now in the position to calculate the H 1—gradient of J. Recall that the Sobolev space H'(0, T; R™)
consists of all square integrable functions A € L2(0, T; R™) that possess a weak derivative 9, A € L(0, T; R™).
Functions A € H'(0, T; R™) are actually H6lder continuous, and therefore, they have well-defined
boundary valuesatt = Oand t = T.Itis natural to consider the reduced cost functional J as defined on
Hi (0, T; R™), which is the affine subspace of functions A € H!(0, T; R™) that satisfy the boundary
conditions (6¢). Indeed, any admissible control A: (0, T) — R" must produce a finite value in the penalty
term in J, which implies that 8; A € L?(0, T; R™). The tangent space to H>,1< (0, T; R™), i.e., the space of
possible variations ¢, is the linear subspace H(} (0, T; R™) ofall functions A € H'(0, T; R™) with
vanishing boundary values, A (0) = A(T) = 0. Thisisa Hilbert space with respect to the inner
product

(As Ay) = j; T oA - DAL,

By definition, the gradient of J with respect to the inner product ( - , - ) is the uniquely determined element
A € HL(0, T; R such that (A, 6A) = DyJ (A)[6A]for all variations S\ € HL(0, T; R™). Inview of (22), A
satisfies

f " O0A — 4N - Bu(N)de
0

T
= — f Re<p, O\ 1/)> - (6A)dt for all variations 6\ € H})(O, T; ]Rm), (23)
0

and A € H}(0, T; R™) induces the boundary conditions (19). To verify that the solution A to the boundary
value problem (18) and (19) satisfies (23), it sufficies to integrate by parts in the time integral on the left-hand
side, using that A (0) = OA(T) = 0.

A.2. Algorithms and implementation
A.2.1. Numerical evaluation of the cost functional. The evaluatation of the reduced cost functional (7) fora
given control curve A implicitly involves the computation of v, that s, the solution of the GPE. No analytical
solutions are available in general, so we use a numerical approximation. For brevity of notation, we write ¢
instead of vy in the following.

For the numerical computation of the first term in (3), thatis 1/2(1 — |{t4, ¥ (T))|*), we have to solve the
GPE (5a) with initial data (6a) for t € [0, T].Our simulations are performed on the spatial domain

Q0= [—Lx/z, Lx/z] x [—Ly/Z, Ly/Z] x [—Lz/z, LZ/Z]

with L, L, and L, chosen sufficiently large to capture the significant part of the rapidly decaying solution /.
For numerical discretization in time, we employ the following time-splitting spectral method [32]:

w(th) ~ e—iB,TAt/2e—iAAtefiB;At/2,L/}(tn), (24)

with operators A = —1/2A, Bt = Vo + g |1/Jf [>,andwith t, = nAt, n =0, ..., N — 1suchthat

NAt = T.Here A\"*1/2 = 1/2 (X(t,) + A(t,11)),and the choice of 1 is given below. Thus, the nth time
step consists of the following three sub-steps. First, solve 19,10 = (Vo172 + g |1 (#,)|*) 1 for a duration of

At /2 with initial value 1 (¢,); thus ¢, = 1 (t,,). The result is used as initial value for the free Schrédinger
equation 19,1 = —1/2A1), which is then solved for duration of At; the resultis /;f. Finally,

1019) = (Vom0 + g |1 )1 is solved with initial value 1/jf, again for a duration of At /2. The result of the third
sub-step is taken as 1 (¢, 1)-
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The free Schrodinger equation is solved using the Fourier spectral method. To this end, the wave function 1
is interpolated by a trigonometric polynomial on the grid points of the cartesian grid

(xjx, v zjz) = (~Le/2 + jotx, = L2 + j,ap, — LJ2 + j,02),

where Ax = L,/J,with j. = 0, ..., J, — letc. Thus, attime t,,, the wave function 1) (t,,) is represented by a 3D
array of complex numbers ¥ € Clolrk,
AsMat1ab code, the nth time step looks as follows:

w:exp(—li * (Vxn+l/2>—|—g * abs('t/))fz) * At/Z). * P

Y = fitn(Y);

P=M. x 1

b = ifftn (4);

w:exp(—li * (V)\wl/z)—l—g * abs('tb)fz) * At/Z). * s (25)

The array M represents the action of the free Schrédinger operator. Due to the vectorized implementation in
Matlab this procedure is highly efficient.

The method is of second order in time and of spectral accuracy in space, provided that 1) and V) are
sufficiently smooth. In comparison to a finite difference Crank—Nicolson scheme (see for example [21, 32]), the
solution of a linear evolution equation is avoided, and less grid points ] = ], J, ], are needed to achieve the same
quality of approximation for .

Typically, the numerical costs for our implementation (25) are dominated by the fast Fourier transforms
fftnand ifftn,whichareoforder O(J log J). However, in some simulations (splitting), the costs for
computing the external potential V y»+1/2 exceed that of the Fourier transforms.

For the numerical solution of the optimization problem, on the order of 10 to 100 evaluations of the cost
functional are needed. The respective solution of the time-dependent GPE is performed on the graphics
processing unit (GPU) of a powerful graphics card. Thanks to the vectorized implementation (25), it suffices to
initialize the arrays 1 and V once at the beginning, using the Mat 1ab command gpuArray. For handling the
intermediate results or for calling the data in the memory of the main processor at the end of the computation we
use the command gather. The trap potentials need to be updated in each time step. However, these
calculations can be performed in a vectorized way on the GPU as well.

Finally, we compute 1/2(1 — [(tg, ¥ (T))*) with ¢ (T) ~ ™), usinga quadrature formula. The integral

T
% f |0, A (t)|* dt is computed by a quadrature formula as well, using a finite difference formula of second
0

order for the approximation of the time derivative 0, A.

A.2.2. Numerical computation of the gradient. ~Accordingto (11a), the H'-gradient J (\) is obtained as
solution to the second order problem
d?
dr?
subject to the boundary conditions [V T(M)]1(0) = 0and [V] (M\)](T) = 0. The time derivatives are discretized
by second order finite differences.

To evaluate the right-hand side r(), the functions 1) and p need to be determined for t € [0, T1]. First, the
state equation (5a) is solved as described above. Then, the adjoint equation (50) is solved backwards in time, for
the terminal condition (6b). For solution of the adjoint equation, a time-splitting method is applied as well: we
alternately solve the equations id,p = Vyp + 2g |V *p + g?p* and i0,p = —1/2Ap. The free Schrodinger
equation is discretized by the Fourier-spectral method, and the value of 9, V) attime t = (n — 1/2) At is
computed by means of the complex-step derivative approximation [64].

For integration of the ajoint equation on the time interval [ (n — 1) At, nAt], an approximation of the wave
function 1" ~1/2 = 1/2 (p"~D 4 ¢)™)is needed. Since it is impossible to store the arrays 1) for every time
stepn = 0, ..., N onthe graphics card, the state equation is simultaneously solved backwards in time as well.
The procedure is sketched in figure A1 : the calculation of p"~! involves only two instances of the wave function
and the ‘old’ adjoint state—that is, 1™, )=, and p™. As soon as the approximations of 9"~ and p"~V
are available, also r"~1 can be computed. In this way it is enough to store at each time step four arrays in 3D, and
the values of all available r with n = 0, ..., N (the storage space of which is neglegible).

A further difficulty in the numerical computation of the adjoint equation arises from the conjugate-complex
quantity p* in gip?p*. Without going into details, we refer to the implementation in [27], which can be easily
applied to the 3D case. As in the case of the GPE the computation of r can be significantly accelerated by using

[ViV]=r), ) = A+ Re(w, (aWa)p) 26)
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Figure A1. Computation of the source term r needed to determine the gradient: the calculation of the array p*~1 involves only two
instances of the wave function 1), 15"~ and the current adjoint state p. As soon as the approximations of 1)~ D and p"~ 1 are
available, also r"~1 can be computed. At each time step only the gray shaded objects need to be stored in the memory of the graphics
card. The storage space for r*) with # = 0,..., N is negligibly small.

the graphics card. Still, the costs for the computation of the gradient are three to four times higher than for the
evaluation of the cost functional.

A.2.3. Computation of the initial and desired final states.  The initial and terminal states 1)y and 14 are assumed to
be ground state solutions of the stationary GPE. We compute them by imaginary time propagation [65, 66] (also
known as normalized gradient flow): the time step At in (25) is replaced by —iAt, and the wave function ¢ is
normalized after every time step. By using adaptive time stepping, we reach a sufficiently exact solution with
justifiable numerical costs.

A.2.4. Further details of the implementation.  For the numerical solution of the considered optimal control
problems we use a personal computer (i7 — 4770K CPU @3.50 Ghz x 8) and Matlab. The parts with the highest
numerical costs, thus the solving of the partial differential equations and the computation of the external
potentials, are performed on the graphics card (GeForce GTX TITAN), which accelerates the calculations
significantly. The evaluation of the Fourier transform, for example, on the finest space discretization can be
accelerated by a factor 4—6. In this context, it is important to mention that the CPU-version of £ £ tn in Matlab
is parallelized as well and hence uses all cores available on the CPU.

In general it is useful to initially solve each optimal control problem with a small number of Fourier modes
I+ J,»J-and with a relatively big time step At. Subsequently, the same optimal control problem is solved on a
finer mesh grid and with smaller time step, whereby as initial data X’ is used, obtained as approximated solution
in the computation before. We repeat this procedure until the computed control curve with respect to the old
discretization does not differ from the control curve of the finer discretization anymore.

We consider a sequence of discretization parameters

(0 10, 10, (an®) = (12, 12, 12, (an)@)

— e = (T, T, T, (an®0)

with JOFD > 7O, [0 > 7O JEHD 5 O and (an) @D < (A1) for £ = 2, ..., M. Typically on the
order of 10 to 100 iterations of the conjugate gradient method are needed for solving the optimal control
problems on the coarse grid. The computational time is of some minutes. The numerical costs for the
calculations of each single iteration increase rapidly with each discretization level. In the same time if one gets
near to the local minimum, less iterations for finding the local minimum are required. By means of the described
strategy each of the presented optimal control problems can be solved in several hours computing time with
respect to the finest discretization level.

A.3.Numerical solution of the 3D Bogoliubov—de Gennes equations
For numerical treatment of (15), we proceed analogously to [67]: a change of variables u = %(Wl — wy)and

v = %(wl + w,) transforms the system into:
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L%u+3m2HrWH&WH$ﬂ&{$} 27)

A double application of the operator decouples the eigenvalue problem,

(HO -+ ggbz)(Ho —u+ 3g¢2)wl = Iwp, (28a)

(Ho = 11+ 386%)(Ho — 1 + g0%)wr = Awy, (28b)

where A = 7%w?. Clearly, it suffices to solve the first eigenvalue problem (28a).

The eigenvalue problem Aw; = Aw, given in (28a) can only be solved using numerical methods. To this
end, the operator A = (Hy — p + g¢*)(Hy — p + 3 go?) is discretized via a 6th-order symmetric finite
difference formula. Clearly, ¢ und ;s need to be determined in advance and with high precision. Here, we solve

Hop + g o2 = pp, Hoy= —722m A+ V

using the same 6th-order finite difference discretization along with the imaginary time-stepping algorithm (see
above). In this context, the second-order time-splitting method is replaced by the classical Runge—Kutta method
of order 4. Subsequently, the chemical potential can be computed using the identity

p= f (1 IVomP + V) lomP +¢ |¢<r>|4)dr.
R\ 2

Once ¢ and p have been determined we need to solve the discretized eigenvalue problem (28a).

Naturally, we consider the same computational domain ([—4, 4] x [—15, + 15] X [—2, 2]) um?’ that
was used in the splitting experiment in section 3.3. Like in the original experiment we employ J, = 96, ], = 128
and J, = 48 grid points in the respective coordinate directions (in the finest discretization level). The resulting
large-scale eigenvalue problem is then solved efficiently by means of an iterative algorithm. For this purpose we
employ the Matlab function e i gs which only determines the most relevant eigenvalues and their
corresponding eigenfunctions: the algorithm yields the eigenvalues closest to a specified shift o which we setto a
value slightly larger than zero. (We are only interested in the first few non-trivial solutions of (28a)
corresponding to the eigenvalues of smallest magnitude.) The underlying algorithm of e 1 gs requires the
repeated solution of the linear system of equations

(A—oDx="b (29)

for a given right-hand side b. We employ the biconjugate gradients stabilized method (bicgstab)whichis
implemented in Matlab as well. Note that A — o I'is badly conditioned which is why the bi cgstab-routine
needs to be called with a preconditioner M = M, M, i.e. equation (29) is effectively replaced by

MY (A — ol)x = M~'b. We found that the algorithm converges reasonably fast when the factors M; and M,
are given by the matrices L and U obtained from a sparse incomplete LU-factorization. Such an approximate
factorization of A — oI can be computed using another Matlab function called i 1u. For further information
about the Matlab functions mentioned above we refer to the Matlab documentation and the literature cited
therein. The time needed to compute a few eigenvalue-eigenvector solutions of the Bogoliubov—de Gennes
equations depends strongly on the number of grid points J,, J, and J.. For the number of grid points reported
above the whole computation takes on the order of five hours computing time utilizing the above

mentioned CPU.

A 4. Extracting the excitation from the time-evolution of the wave-function

The small perturbation which causes the oscillation of the infidelity in the splitting example can be extracted
directly from the time-evolution of the wave function . To this end, we assume that ¢ (r, ¢) and 4 (r) are
almostidentical fort = T, i.e.,

Yt =T) ~ ey, 6O=arg I/nin H1/J(T) — eie/wdH.
[4

This assumption is in good agreement with our observations, where the minimum value of the infidelity is
reached at this point in time. In analogy to equation (13) we define the difference A := ¢ (x, t) — @ (x, 1),
which leads to the result

AY (X, 1) = P (x, t) — ellahy(r)e E=D/% > T,

Here, we have introduced an additional phase factor e?/# in order to take into account that we consider the

time-evolution of At startingat t = T. A snapshot of the density | Av (x, ) |* for t = 9 ms is shown in figure A2.
Itis quite obvious that the distribution of the density is very similar to the distribution of the density of the
second excitation depicted in figure 8.
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Figure A2. Density of AY (x, t)att = 9 ms.
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Figure A3. Initial state (a) and desired state (b) of the splitting example along the transversal x-direction The blue solid lines
correspond to the eigenstates of the 1D approximation using the effective coupling constant g, ,. Dashed lines correspond to the
eigenstates of the full 3D GPE evaluated along the x-direction for shifted values of y and z. Here, ¢, | (x) = ¢3p (x, 7.5 um, 1 um),
$3p,2 (%) = P3p(x, 7.5 pm, 0 pm), dsp, 5(X) = P3p(x, 0 pm, 1 pm)and ¢y, 4 (X) = P3p (x, 0 um, 0 prm). Each wave function has
been normalized to unity. (c) Optimal control of the Rabi-frequency corresponding to the 1D approximation. (d) Infidelity (1D-1D)
corresponding to the one-dimensional model and infidelity (1D-3D) when the same trajectory of the Rabi-frequency is applied in a
simulation using the 3D model.

A.5.1D approximation for the splitting of a BEC
We briefly discuss the 1D approximation for the splitting example. In this case, the reduced GPE for the
x-direction is given by

100 = -0t + VA6, 0, 00 + gy [0,

where the effective 1D interaction strength g, ; is found by integrating out the two transversal dimensions
[68,69]

gldmgj:i ij;|g7)(y,z)|4dydz. (30)

Here, ¢(y, z) := ¢(0, y, z) corresponds to the normalized ground-state solution of the 3D model in the
(x = 0)—plane.

With this approximation we find g 4, ~ h x 1300.44 Hz pum for N = 2000 atoms. This value describes the
situation along the whole x-axis and also leads to reasonable results away from the center of the cloud, as can be
seen from figures A3 (a)—(b). We then follow the same procedures as in the 3D case to find an optimal control
trajectory for the Rabi frequency.
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