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Abstract
We investigate a general scheme for generating, either dynamically or in the steady state, continuous
variable entanglement between twomechanical resonators with different frequencies.We employ an
optomechanical system inwhich a single optical cavitymode driven by a suitably chosen two-tone
field is coupled to the two resonators. Significantly largemechanical entanglement can be achieved,
which is extremely robust with respect to temperature.

1. Introduction

Entanglement is the distinguishing feature of quantummechanics and is the physical phenomenon according to
which only the properties of the entire systemhave precise values, while the physical properties of a subsystem
can be assigned only in reference to those of the other ones. It is now intensively studied because it corresponds
to peculiar nonlocal correlationswhich allows performing communication and computation tasks with an
efficiencywhich is not achievable classically [1].

Furthermore, for a deeper understanding of the boundary between the classical and quantumworld, it is
important to investigate up towhichmacroscopic scale one can observe quantumbehavior, and in particular
underwhich conditions entanglement betweenmacroscopic objects, each containing a large number of the
constituents, can arise. Entanglement between two atomic ensembles has been successfully demonstrated in [2],
while entanglement between two Josephson-junction qubits has been detected in [3, 4].More recently,
macroscopic entanglement has been demonstrated in electro-mechanical systems [5]: continuous variable (CV)
entanglement, similar to that considered by Einstein–Podolski andRosen (EPR) [6], has been generated and
detected between the position andmomentumof a vibrationalmode of a 15 μmdiameter Almembrane, and the
quadratures of amicrowave cavity field, following the theory proposal of [7].

Entanglement between twomechanical resonators (MRs)has been instead demonstrated only at the
microscopic level, in the case of two trapped ions [8], and between two single-phonon excitations in nano-
diamonds [9]. The realization of this kind of entanglement at themoremacroscopic level ofmicromechanical
resonators would be extremely important both for practical and fundamental reasons. In fact, on the one hand,
entangledMRs at distant sites could represent an important building block for the implementation of quantum
networks for long-distance routing of quantum information [10]; on the other hand, these nonclassical states
represent an ideal playground for investigating and comparing decoherence theories andmodifications of
quantummechanics at themacroscopic level [11–13].

Many different schemes have been proposed in the literature for entangling twoMRs, especially exploiting
optomechanical and electromechanical devices [14, 15], inwhich the twoMRs simultaneously interact with one
ormore electromagnetic cavity fields. References [16–18] considered the steady state of different systems of
driven cavities: [16] focused on twomirrors of a ring cavity, while [17] assumed to drive two independent linear
cavities with two-mode squeezed light transferring its entanglement to the cavity end-mirrors [18] instead
considered a double-cavity scheme inwhich one cavity couples to the relativemotion of twoMRs, and the
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second cavity to their center-of-mass; when the system is appropriately driven by squeezed light, such squeezing
is transferred to the twoMRswhich are then prepared in a stationary EPR-like state. Actually, steady-state
entanglement can be achieved, even if at a smaller value, alsowithout squeezed driving, either between two
movablemirrors in a Fabry–Perot cavity [19], between twomechanicalmodes of a singlemovablemirror [20],
or in the case of two semi-transparentmembranes interactingwith two driven cavitymodes [21].

A different approach for generating entangledMRs exploits conditionalmeasurements on lightmodes
entangled or correlatedwithmechanical degrees of freedom [22–27]. In this case, entanglement is generated at
themeasurement and it has afinite lifetimewhichmay be severely limited by the interaction of theMRswith
their reservoirs. A similar strategy has been provided to enhance the entanglement of twoMRs [28].More recent
proposal applied reservoir engineering ideas [29–33] to optomechanical scenarios, by exploiting suitablemulti-
frequency drivings and optical architectures in order to achievemore robust generation of steady state
entanglement between twoMRs [34–40], eventually profiting frommechanical nonlinearities and/or
parametric driving [41, 42].

In the present paperwe propose a novel optomechanical/electromechanical scheme for the generation of
remarkably large CV entanglement between twoMRswith different frequencies, which is also extremely robust
with respect to thermal noise. The scheme is particularly simple, involving only a single, bichromatically-driven,
optical cavitymode, and optimally works in a rotatingwave approximation (RWA) regimewhere counter-
rotating, non-resonant, terms associatedwith the bichromatic driving are negligible. The scheme shares some
analogies with the reservoir-engineering schemes of [34, 36, 38, 40], but itmay be used to generate robust
entanglement also in a pulsed regime, in the special case of equal effective couplings at the two sidebands, where
the systembecomes analogous to the Sørensen–Mølmer scheme for entangling trapped ions in a thermal
environment [43]. This latter scheme has been already considered in an optomechanical scenario byKuzyk et al
[44] for entangling dynamically two opticalmodes via their common interactionwith a singleMR.

The paper is organized as follows. In section 2we derive the effective quantumLangevin equations (QLEs)
describing the dynamics of the system in the RWA. In section 3we solve the dynamics in terms of themechanical
Bogoliubovmodes of the system [34, 36, 45], derive the steady state of the system in the stable case, and provide
simple analytical expressions for the achievablemechanical entanglement, showing its remarkable robustness
with respect to temperature. In section 4we instead consider the special case of equal couplings, when the system
can bemapped to the Sørensen–Mølmer scheme [43], inwhichmechanical entanglement is generated only
dynamically and slowly decays to zero at long times. In section 5we solve and discuss the exact dynamics of the
system in order to establish the conditions underwhich the RWAdoes not seriously affect the robust generation
of largemechanical entanglement. In section 6we discuss the experimental detection of such entanglement and
present some concluding remarks. In the appendices we provide some detail on the dynamical evolution of the
system, and present a careful derivation of the linearizedQLE in the RWA regime.

2. SystemHamiltonian andderivation of the effective Langevin equations

As shown infigure 1, we consider an optical cavitymodewith resonance frequencyωc and annihilation operator
â interacting via the usual optomechanical interactionwith two differentMRs, with frequenciesω1 andω2 and
annihilation operators b1

ˆ and b2
ˆ respectively. The cavitymode is bichromatically driven at the two frequencies

ω0+ω1 andω0−ω2, with the reference frequencyω0 detuned from the cavity resonance by a quantityΔ0=ωc−
ω0. If we describe the cavity field in a reference frame rotating at the frequencyω0, then the systemHamiltonian
is given by

H b b b b a a

g b b g b b a a

E E ae e h.c. . 1t t

1 1 1 2 2 2 0

1 1 1 2 2 2

1
i

2
i1 2

( ) ( )
( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
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† † †

† † †

†

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

  





w w= + + D

+ + + +

+ + +w w-

Thismeans that the cavitymode is simultaneously driven on the blue sideband associatedwith theMRwith
annihilation operator b ,1

ˆ and on the red sideband associatedwith theMRwith b .2
ˆ The nonzero detuningΔ0

makes the present scheme different from the one studied in the supplementarymaterial of [34]which restricts to
the resonant caseΔ0= 0.Ourmodel is instead related to the scheme proposed byKuzyk et al [44] for entangling
dynamically two opticalmodes via their common interactionwith a singleMR: herewewill dynamically
entangle twoMRs via their common interactionwith an opticalmode.

The systemdynamics can be efficiently studied by linearizing the optomechanical interaction in the limit of
large driving field. In this case the average fields for both cavity,α(t), andmechanical degrees of freedom,βj(t),
are large, and one can simplify the interactionHamiltonian at lowest order in thefieldfluctuations
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a t a t t

b t b t t

,

. 2j j j

ˆ ( ) ˆ ( ) ( )
ˆ ( ) ˆ ( ) ( ) ( )
d a

d b

= -

= -

Differently from the typical optomechanical settings inwhich the steady state average fields are time-
independent, here the bichromatic driving induces a time-dependent, periodic steady state average fieldwhich,
in turn, implies time-dependent effective coupling strengths for the linearized dynamics of the fluctuations. As
originally discussed in [46], and detailed in appendix B, approximated dynamical equations for the fluctuation
operators a tˆ ( )d and b tĵ ( )d can be derived, in the interaction picturewith respect to theHamiltonian

H b b b b ,0 1 1 1 2 2 2
ˆ ( ˆ ˆ ˆ ˆ )

† †
 w w= + by neglecting the non-resonant/time-dependent components of the effective

linearized interactions. It is possible to prove that this approach is justifiedwhen (see equation (B.21))

g
E

, , . 3j
j

j
j 1 2 ( )

w
k w w w-

The correspondingQLE including thermal noise and dissipation at ratesκ and γj for the cavity and the
mechanicalmode j 1, 2Î respectively, are
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,

i
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2

( )

w k

w k

=
- D +

=-
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are the (generally complex) linear optomechanical couplings, and ainˆ and bj
inˆ are standard input noise operators

with zeromean, whose only nonzero correlation functions are a t a t t tin inˆ ( ) ˆ ( ) ( )† d¢ = - ¢ , b t b tj j
in inˆ ( ) ˆ ( )†¢

n t t1j( ¯ ) ( )d= + - ¢ and b t b t n t t ,j j j
in inˆ ( ) ˆ ( ) ¯ ( )† d¢ = - ¢ where n k Texp 1j j B

1( )¯ ⎡⎣ ⎤⎦w= -
-

is themean

thermal phonon number of the jthMR,whichwe assume to stay at the same environmental temperatureT.
Moreover, we note that here the new cavity detuningΔ includes the time-independent frequency shift induced

Figure 1. Sketch of the proposed entanglement generation and detection scheme (a), and of the various pump andprobe laser
frequencies (b). The cavitymode is bichromatically driven at the two frequenciesω0+ω1 andω0−ω2. Large and robust entanglement
of the twomechanical resonators can be generated either dynamically or in the steady state. Twoweak probe fieldswith detuning

j, 1, 2,j
p

cj j
p

jw w wD = - = = are then sent into the cavity. By homodyning the probemode outputs, themechanical quadratures
(xj, pj) are thereforemeasured, which allows one to construct the correlationmatrix of the quadratures fromwhich entanglement can
be derived in a straightforwardway.
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by the optomechanical interaction, proportional to the dc component of the averagemechanical oscillation
amplitudeβj(t), that we here denote with j

dcb (see appendix B). Specifically

g2 Re . 8
j

j j0
1,2

dc ( )⎡⎣ ⎤⎦å bD = D +
=

Wewill see that the dynamics described by these equations allows to generate large and robust entanglement
between the twoMRs, either in the steady state or, in a particular parameter regime, during the time evolution
with aflat-top pulse driving.Wefirst notice that the system is stable when all the eigenvalues associatedwith the
linearized dynamics of equations (4)–(6)have negative real parts. The stability condition is quite involved in the
general case, but it assumes a particularly simple form in the case of equalmechanical dampings, γ1= γ2= γ. In
such a case, the system is stable if and only if

G G
2

1
4

2
. 92

2
1

2 2

2( )
( )

⎡
⎣⎢

⎤
⎦⎥

kg
g k

> - +
D

+

This stability condition reduces to the one derived in the supplementarymaterial of [34] in the caseΔ= 0.We
see that a nonzero detuning generally helps in keeping the system stable.

3.Dark and bright Bogoliubovmodes

The coherent dynamics corresponding to the equations (4)–(6), is described by the effective linearized
Hamiltonian

H a a G b G b a

G b G b a. 10

eff 1 1 2 2

1 1 2 2

( )
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ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ( )

† † †

†
* *

 



d d d d d

d d d

= D + +

+ +

Wecan always adjust the phase reference of eachMR (whichwill be determined by a local oscillator whichmust
be used tomeasure themechanical quadratures for verifying entanglement) so thatwe can take bothG1 and
G2 real.

Equation (10)naturally suggests to introduce two effectivemechanicalmodes allowing to simplify the
systemdynamics.We assume for themomentG2>G1, which is a sufficient condition for stability (see
equation (9)), and define

G b G b
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1 2
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d d
d d=

+
= +
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d d
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+
= +

where
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G

G
, tanh . 132

2
1
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2
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Equations (11), (12) define a Bogoliubov unitary transformation of themechanicalmode operators, which can
also bewritten as

b

S r b S r

e e

, 14

r b b b b r b b b b
1,2 1,2

1,2

1 2 1 2 1 2 1 2( ) ( )ˆ ˆ

ˆ ( ) ˆ ˆ ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †

b d

d

=

= -

d d d d d d d d- - -

with S rˆ ( ) the two-mode squeezing operator. The Bogoliubovmode 1b̂ describes the ‘mechanical darkmode’,
which does not appear inHeff, i.e., is decoupled from the cavitymode and therefore is a constant ofmotion in the
absence of damping, while 2b̂ is the ‘bright’mode interactingwith the cavitymode. This is equivalent to say that
the darkmode 1b̂ is the normalmode of theHamiltonian dynamics with eigenvalue equal to zero. The other two
normalmodes of the systemwill be linear combinations of 2b̂ and a.ˆd The Bogoliubovmode description has
been already employed in cavity optomechanics, associated to two opticalmodes in [34, 45], and to two
mechanicalmodes in [36, 38] (see appendix A for a derivation of the normalmodes of the system and a study of
itsHamiltonian dynamics).

3.1. Stationary entanglement for different couplings
For a realistic description of the systemdynamics wemust include cavity decay andmechanical dissipation. It is
convenient to rewrite theQLE in terms of the Bogoliubovmodes, which in the case when γ1= γ2≡ γ assume the
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simple form

a a ai i 2 , 152
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and the inter-mode correlation

m r r r n ncosh sinh 1 . 211 2( )¯ ( ) ¯ ¯ ( )= + +

If 1 2g g¹ a dissipative coupling termbetween the twoBogoliubovmodes appears, which however does not have
relevant effects because it is proportional to 1 2∣ ∣g g- which is typically very small with respect to all other
damping rates.

The dynamics associatedwith equations (15)–(17) is simple: the brightmechanicalmode 2b̂ is cooled by the
cavity, while the correlated reservoir create finite correlations between dark and brightmodes. In particular, the

matrix of correlation for the vector of operators b = , , , ,1 2 1 2( ˆ ˆ ˆ ˆ )
† †

b b b b whose elements are

j k j k,{ } { } { } b b=b is given, at the steady state, by
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with the number of excitation of the cooled brightmode and the correlations between the twoBogoliubov
modes respectively given by
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2
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+

2

2
, 27( )d

g k
=

D
+

andC−can be seen as an effective collective optomechanical cooperativity. The steady state correlationmatrix
can be expressed in terms of the originalmodes b1 and b2 by inverting the Bogoliubov transformation introduced
in equations (11) and (12). The result is
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The entanglement betweenmodes b1 and b2,measured bymeans of the logarithmic negativity [47, 48], can be
easily expressed in terms of thesematrix elements as [49]

E

n n m n n
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1 4 . 31

N

b b b b b1 2
2

1 2
2( )

[ ]

¯ ¯ ¯ ¯ ¯ ( )

n

n

= -

= + + - + -

When the collective cooperativityC−is sufficiently large, i.e., C m r ,¯ ( )-  then m r¯ ( )b is negligible (see
equation (24)). This is theworking regime inwhichwe are particularly interested, because in this case, the second
Bogoliubovmode can be cooled close to its ground state (n r n r2

cool
2
eff¯ ( ) ( ) ), corresponding to an entangled

state for the originalmechanicalmodes. In this case the steady state correlationmatrix for the Bogoliubov
modes, in equation (22), reduces to the correlationmatrix of a state given by the product of two thermal states
with occupancies n r1

eff¯ ( ) and n r2
cool¯ ( ) respectively. For the twoMRof interest, associatedwith the operator b1

ˆ
and b ,2

ˆ such a state is just a two-mode squeezed thermal state [50]

S r S r , 32n r n r1,2 ,th ,th1
eff

2
coolˆ ˆ ( ) ˆ ˆ ˆ ( ) ( )¯ ( ) ¯ ( )r r r= Ä -

where S rˆ ( ) is given in equation (14), and
n

n
n n

1
33n

n

n

n,th
0

1( )
ˆ ¯

¯
∣ ∣ ( )¯ år =

+
ñá

=

¥

+

is the densitymatrix of the thermal equilibrium state of a resonator with occupancy n.¯ Such a state is entangled
for sufficiently large r and not too largemean thermal excitation number.

This prediction of large stationary entanglement is confirmed infigure 2, wherewe plot the time evolution of
the entanglement between the twoMRs, quantified in terms of the logarithmic negativityEN, obtained from the
solution of equations (4)–(6). Figure 2 refers to an experimentally achievable set of parameters, γ= 10 s−1,
κ= 105 s−1,G2= 105 s−1,Δ= 103 s−1, and to different values ofmean thermal phononnumbers n n, ,1 2¯ ¯ and of
the ratioG1/G2.We see that remarkable values ofEN are achieved at low temperatures, and that stationary
mechanical entanglement is quite robust with respect to temperature because one has an appreciable value ofEN
; 0.32 even for n n2000, 10001 2¯ ¯= = . The time to reach the steady state is essentially given by the inverse of the
cooling rate of the bright Bogoliubovmode, which is approximately given by ts; (κ2+Δ2)/ ( 2 k) (see
equations (15)–(17)).

Equation (32) suggests that one could achieve large stationary entanglement between the twoMRs by taking
a large two-mode squeezing parameter r, and a large collective cooperativityC− 1 in order to significantly cool
the bright Bogoliubovmode.However the corresponding optimization of the systemparameters, and especially
of the two couplingsG1 andG2, is far frombeing trivial. In fact, r increases when G G ,1 2 which however
implies, at afixed value ofG2, a decreasing value of  and therefore ofC−(see equations (13) and (25)); moreover
increasing r has also the unwanted effect of increasing m r¯ ( )b that is the correlations between the twoBogoliubov
modes (see equations (21) and (24)).
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However, a judicious choice of parameters is possible, allowing to get very large stationarymechanical
entanglement, even in the presence of non-negligible values of the thermal occupancies n1¯ and n .2¯ At a given
value ofG1, this is obtained by taking a sufficiently large value of the associated single-mode cooperativity,
C G2 1,1 1

2 kg=  and correspondingly optimizing the value ofG2, i.e., of r. In fact, the logarithmic negativity
associatedwith the stationary state of equation (32) can be evaluated in terms of the parameter

n r r r
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. 35

2
cool

2
2

1
2

1

2 2
1

( )

( )

¯ ( ) ¯ ¯

( ) ( )

⎡⎣ ⎤⎦
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥


d

= + +

´ -
-

+ +

The dependence ofEN versus r, for given values of C n1 1¯ and n ,2¯ shows amaximumand then decays to zero for
large r (see figure 3which refers toC1= 2× 104 and n n200, 1001 2¯ ¯= = ). This behavior is described by a very
simple approximated expression valid in the limit C e e ,r r

1
2 2-  with not very large n ,1,2¯ andwhen δ, ò→ 0

(corresponding to ,g kD  ),

n n
C

2e 1
e

4
36r

r
2

1 2

2

1
( )¯ ¯ ( )n ~ + + +-

Figure 2.Time evolution of the logarithmic negativity EN starting from an initial uncorrelated state with the opticalmodefluctuations
âd in the vacuum state and eachMR in its thermal statewithmean phonon number: (i) n n G G0, 0.9951 2 1 2¯ ¯= = = (black line); (ii)

n n G G200, 100, 0.9181 2 1 2¯ ¯= = = (blue line); (iii) n n G G1000, 500, 0.821 2 1 2¯ ¯= = = (green line);
n n G G2000, 1000, 0.751 2 1 2¯ ¯= = = (red line); the other parameters are γ= 10 s−1,κ= 105 s−1,G2= 105 s−1,Δ= 103 s−1.

Figure 3.EN at the steady state versus r for γ= 10 s−1,κ= 105 s−1,G1= 105 s−1,Δ= 0, implying a cooperativityC1= 2× 104, and
n n200, 100.1 2¯ ¯= = The full red line refers to the steady state solution of theQLE in equations (15)–(17), that is given by equation (31),
the blue dashed line is evaluatedwith the approximated value of ν reported in equation (34), and the black dashed line corresponds to
the approximation in equation (36).
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which exhibits aminimum (hence corresponding tomaximum entanglement) as a function of r at

r r
C

n n

1

4
ln

8

1
, 37opt 1

1 2¯ ¯
( )

⎛
⎝⎜

⎞
⎠⎟=

+ +


given by .n n

C
opt 2 1 1 2

1

( ¯ ¯ )n ~ + + For values of rmuch larger ormuch smaller than this value, the resonatorsmay

not be entangled.When r is increased to very large values r r ,opt  is reduced and the cooling dynamics
becomes slow as compared to the standardmechanical dissipation, which takes place at rate n 1 ,j( ¯ )g~ + so
that the correlations between theMRs cannot be efficiently generated.On the other hand, at small r ropt the
Bogoliubovmodes are essentially equal to the originalmodes, so that the cavity cools only the second resonator,
and also in this casemechanical entanglement can not be observed. Figure 3 also shows that the simplified
expression of equation (36) provides a simple but valid approximation for largeC1 and a very good estimate of
the optimal value of the two-mode squeezing parameter r, i.e., ofG1/G2, given by equation (37). The
corresponding value of the logarithmic negativity is

E
C

n n

1

2
ln

2 1
38N

1

1 2( )¯ ¯
( )

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥~

+ +

and shows that once that the ratioG1/G2 is optimized, the achievable stationary entanglement between the two
MRs increases with increasing C n n .1 1 2( ¯ ¯ )+

The above analysis of the stationary entanglement of the twoMRs extends the results of [34] in various
directions. First of all, ourmodel extends to the case of nonzero detuningΔ amodel discussed in the
Supplementarymaterial of [34].We see that a nonzero detuning has a limited effect of the dynamic of
entanglement generation, providing only an effective increase of n ,2

cool¯ which however becomes negligible as
soon as kD  (see equation (35)).Moreover, [34] provided an explicit expression forEN only for the case of
negligible thermal occupancies and not too large values of r, while the present discussion applies for arbitrary
values of r n, 1¯ and n .2¯

4.Dynamical evolution in the case of equal couplings

In the special case of equal couplingsG1=G2≡G, i.e., 0, = the Bogoliubovmodes cannot be defined
anymore and the description of the preceding section cannot be applied. The dynamics is nonetheless interesting
and still allows for the generation of appreciable entanglement between the twoMRs, even though only at finite
times and not in the stationary state.We notice that in this special case, our scheme becomes analogous to that of
[44], that showed that two appropriately driven opticalmodes can be entangledwith a pulsed scheme by their
common interactionwith aMR.More precisely, theQLE of equations (4)–(6) are the same as those studied in
[44] but now referred to twomechanicalmodes coupled to the same opticalmode, i.e., with exchanged roles
between optical andmechanical degrees of freedom.

The physicalmechanism at the basis of the generation of dynamical entanglement can be understood by
looking at theHamiltonian evolution of the system at equal couplings. Suchmechanism essentially coincides
with the one proposed for entangling internal states of trapped ions byMilburn [51] and by Sørensen and
Mølmer [43], andfirst applied to an optomechanical setup byKuzyk et al [44]. In the present case, the common
interactionwith the bichromatically driven opticalmode dynamically entangles the twoMRs, and at special
values of the interaction time the opticalmode is decoupled from the twoMRs andmechanical entanglement
can be strong.

At equal couplings it is convenient to rewrite the effectiveHamiltonian after linearization of equation (10) in
terms ofmechanical and optical quadratures, using the expressions b x p ji 2 1, 2,j j j

ˆ ( ˆ ˆ )d = + = and

a X Yi 2 .ˆ ( ˆ ˆ )d = + One gets

H X Y G x X p Y
2

2 , 39eff
2 2( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( ) =

D
+ + -+ -

where x x x p p p2 , 21 2 1 2ˆ ( ˆ ˆ ) ˆ ( ˆ ˆ )=  =   are linear combinations of the two position andmomentum
operators of the twoMRs. TheHeisenberg evolution of these lattermechanical operators can be solved in a
straightforwardway, by exploiting the fact that x̂+ and p̂- are two commuting conserved observables. One gets
(see also [43, 44, 51])

x t x p t p

x t x
G

t t p

0 , 0 ,

0
2

sin 0 40
2

2

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ( ) ˆ ( ) ( )

= =

= +
D

D - D

+ + - -

- - -
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G
t x

G
tY

G
t X

p t p
G

t t x

2
1 cos 0

2
sin 0

2
1 cos 0 ,

0
2

sin 0 41

2

2

2

2

( ) ˆ ( )

ˆ ( ) ( ) ˆ ( )

ˆ ( ) ˆ ( ) ( ) ˆ ( ) ( )

+
D

- D

-
D

D +
D

- D

= -
D

D - D

+

+ + +

G
t p

G
tX

G
t Y

2
1 cos 0

2
sin 0

2
1 cos 0 . 42

2

2
( ) ˆ ( )

ˆ ( ) ( ) ˆ ( ) ( )

+
D

- D

-
D

D -
D

- D

-

Relevant interaction times are thosewhen theMRdynamics decouple from that of the optical cavity, and this
occurs at tm= 2mπ/Δm= 1, 2,K, where

x t x m
G

p0 2
2

0 , 43m

2

2( )ˆ ˆ ( ) ˆ ( ) ( )p= -
D

- - -

p t p m
G

x0 2
2

0 . 44
2

2
ˆ ( ) ˆ ( ) ˆ ( ) ( )p= +

D+ + +

Thismap describes a stroboscopic evolution inwhich the twoMRs becomemore andmore entangled, because it
corresponds to the application of the unitary operator

U
G m

x p

G m
b b b b b b b b

exp i
2

exp i
2

1 . 45

m

2

2
2 2

2

2 1 1 2 2 1 2 1 2( )
( )ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )
† † † †

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

p

p
d d d d d d d d

= -
D

+

= -
D

+ + + +

+ -

This ideal behavior is significantlymodified by the inclusion of damping and noise, especially the one associated
with the cavitymode, which acts on the faster timescale 1/κ and seriously affects the cavity-mediated interaction
between the twoMRs, as soon asκ becomes comparable toΔ.Mechanical entanglement is large for largeG/Δ
andwe expect well distinct peaks forEN at interaction times tm, in the ideal parameter regime G .kD  In
themore realistic regime inwhichGΔ andκ are comparable, the peakswill bewashed out, butwe still expect an
appreciable value for themechanical entanglement for a large interval of interaction times. This is confirmed by
the numerical solution of the time evolution associatedwith theQLE shown infigure 4, which refers to the
parameter set γ= 10 s−1,κ= 105 s−1,G= 105 n ns , 200, 100,1

1 2¯ ¯= =- and to three different values of the
detuning,Δ= 103 s−1 (black dashed line),Δ= 104 s−1 (red full line), andΔ= 105 s−1 (blue full line).We see
that an appreciable value ofEN (even though smaller than the one achievable at the same n1¯ and n2¯ after the
optimization ofG1/G2 of the previous Section) is reached for a large interval of interaction times t. Therefore
even at equal couplings (and nonzero detuning) one can entangle the two resonators with a pulsed experiment.
Mechanical entanglement instead vanishes in the stationary state.

Figure 4.Time evolution of EN in the case of equal couplings for the parameter set γ= 10 s−1,κ= 105 s−1,G= 105

n ns , 200, 100,1
1 2¯ ¯= =- and for three different values of the detuning:Δ= 103 s−1 (black dashed line),Δ= 104 s−1 (red full line),

andΔ= 105 s−1 (blue full line).
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5. Effect of the counter-rotating terms study of the exact dynamics

The derivation of the effective linearized dynamics of appendix B suggests that the counter-rotating terms that
we have neglectedmay play an important role when themechanical frequencies are not too largewith respect to
the other parameters (see also the comments in the supplementarymaterial of [34]). It is therefore interesting to
study their effect by comparing the above predictions, both in the case ofG2>G1 and in the case of equal
couplings, to the solution of the exactQLE obtainedwithout neglecting the various time-dependent terms.

In appendix Bwe describe the derivation of the effective linearized equations that we have studied in the
preceding sections and that is based on the elimination of fast rotating terms and on the expansion of the
linearized coupling strength at lowest order in gj. Here we analyze the limit of validity of these approximations by
solving numerically the systemdynamics with the inclusion of the non-resonant terms expanded at different
orders in powers of gj. Infigures 5 and 6 the red lines are evaluatedwithout the non-resonant terms (i.e., the
treatment of the preceding sections), while the green and the blue ones take into account the full dynamics. In
particular the green lines are computed by expanding the average fieldsα(t) andβj(t) (that have been introduced
in equation (2) and discussed in appendix B), at the lowest relevant order in powers of g, while for the blue ones
they have been expanded at sixth order in powers of g.Moreover, the green line results are found considering
only the steady state solution forα(t) andβj(t), while the blue lines are computed taking into account their full
dynamics (that includes also the transient regime before the steady state is reached)with initial conditionα
(0)=βj(0)= 0.

Infigure 5we compare the time evolution of the entanglement evaluatedwith andwithout the time-
dependent termswhenG2>G1. The parameters used in these plots are consistent with those used infigure 2.
Specifically the three red curves infigures 5 (a), (b) and (c), that are barely visible because almost entirely covered
by the green curves, are equal to the three lowest curves infigure 2.We observe that the green and the red lines
are always very close,meaning that the linearized RWA treatment is a very good approximation of the full
dynamics whenα(t) andβj(t) can be expanded at lowest order in g. Nevertheless, we note that if themechanical

Figure 5.Comparison of the time evolution of EN evaluatedwith andwithout the non-resonant terms, whenG2>G1. The red lines
are evaluatedwith themodel described by equations (4)–(6) that does not take into account the non-resonant terms The green lines
are evaluatedwith equation (B.23), which takes into account the non-resonant terms by considering the expansion of the steady state
solutions ofα(t) andβj(t), atfirst order in g as defined in equation (B.22). The blue lines are evaluated insteadwith equation (B.19) by
considering the expansion forα(t) andβj(t), calculated iteratively with equations (B.6), (B.9)–(B.12), up to sixth order in g; in
particular these results take into account the full dynamics of the average fieldsα(t) andβj(t), with initial conditionα(0)=βj(0)= 0,
and not only the steady state as in the case of the green lines. The solid lines refer toω2= 100κ andω1= 50κ, while the dashed lines
refer toω2= 50κ andω1= 25κ. The other parameters areG2=κ,Δ= 0.01κ, γ= 10−4κ, and g= 10−4κ.Moreover in (a)
G n n0.918 , 200, 100;1 1 2¯ ¯k= = = in (b) G n n0.82 , 1000, 500;1 1 2¯ ¯k= = = in (c) G n n0.75 , 2000, 1000.1 1 2¯ ¯k= = =

Figure 6.Comparison of the time evolution of EN evaluatedwith andwithout the non-resonant terms, whenG1=G2. The insets
report the corresponding average photon number a a .ˆ ˆ†d d Red, green and blue lines are evaluated as infigure 5. The solid lines are
found forΔ= 0.01κ and the dashed lines forΔ= 5κ. In (a) n0.03 , 58 , 100 , 21 2 1¯g k w k w k= = = = and n 1;2¯ = in (b)

n0.01 , 58 , 100 , 21 2 1¯g k w k w k= = = = and n 1;2¯ = in (c) n0.001 , 51 , 100 , 201 2 1¯g k w k w k= = = = and n 10.2¯ = The other
parameters areG1=G2=κ and g= 10−4κ.
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frequencies are not large enough and higher order terms are taken into account together with the full dynamics
ofα(t) andβj(t), then the results can be significantly different as described by the blue curves. Specifically, the
solid-blue lines are evaluated for sufficiently large values of themechanical frequencies so that the condition in
equation (3) is well fulfilled, and the effective linearized RWAdynamics recovers with significant accuracy the
one determinedwith the inclusion of the non-resonant termsThe dashed-blue lines are instead evaluated for
smaller frequencies. In this case it is evident that the non-resonant terms have a significant role in the system
dynamics and that the lowest order expansion of the coefficientsα(t) andβj(t) does not provide an accurate
description.Wenote that according to equation (3), in order to eliminate the fast rotating terms, the ratiosωj/Gj

have to bemuch larger than one. Although the dashed-blue curves are evaluated for a ratioω1/G1 of roughly 25,
which can be considered significantly large, we have found, indeed, that it is not enough for a faithful
approximation of the systemdynamics with themodel discussed in the preceding sections. The conclusive
analysis of these cases would, possibly, require a non-perturbative approach that is beyond the scope of the
present work. Afinal remark is in order.We have verified that the discrepancy between the dashed-blue lines and
the red ones is due to the combined effect of the higher order terms and of the transient initial dynamics ofα(t)
andβj(t). Specifically, whenwe consider either the lowest order terms and the transient dynamics, or the higher
order terms and only the steady state ofα(t) andβj(t), the corresponding results for the entanglement dynamics
are very similar to the red lines.

Infigure 6we study the case of equal couplingsG1=G2. In this case solid and dashed lines differ in the values
of the cavity detuningΔ. In general largerΔ (dashed lines) corresponds to smaller entanglement, and the results
evaluated by including the counter-rotating terms tends to exhibit larger entanglement than the corresponding
ones obtainedwithout the non-resonant terms. The solid curves are foundwith smallerΔ. In this case red, green
and blue lines are very closewhen themechanical dissipation is sufficiently large as infigure 6 (a). Larger
discrepancies are foundwhen themechanical dissipation is reduced as infigures 6 (b) and (c), especially at
relatively large time.We observe in fact that, while the red curves for the entanglement decay to zero at large
time, the corresponding green and blue lines seem to approach afinite sizable value. As shown by the insets,
when this different behavior is observed, the average photon number in the cavity tends to diverge. This is a
signature of the fact that the full dynamics including counter-rotating terms is actually unstable, even though the
RWAdynamics without these terms is stable (see equation (9)).We have confirmed the unstable nature of the
time-dependent dynamics by calculating the Floquet exponents of the dynamical equations of the system. In
fact, whenα(t) andβj(t) are considered in their steady state, one has a systemof linear differential equationswith
periodic, time-dependent coefficients (see appendix B), and the Floquet theory can be applied in this case [52];
we have verified that for the parameters offigure 6 there is always at least one positive Floquet exponent,
meaning that the system is unstable. This implies that, in general, the corresponding results are well-grounded
only for relatively short time until the populations are not exceedingly large. On the other hand, our results show
that in a pulsed experiment with the parameters offigure 6, these instabilities do not constitute a serious
hindrance to the creation of significant entanglement atfinite times.

Therefore, when themechanical frequencies are sufficiently large ( 10j
2w k) (and, limited only to the case

of equal couplings, when alsomechanical damping is not too small), the effective linearized RWAdynamics
obtained by neglecting the counter-rotating terms approximates with very good accuracy the full system
dynamics.

6. Strategies for the experimental detection ofmechanical entanglement

Wefinally discuss how to detect the generatedmechanical entanglement between the twoMRs at different
frequencies. The present entanglement describes EPR-like correlations between the quadratures of the twoMRs
and therefore we need to performhomodyne-like detection of these quadratures. In the linearized regimewe are
considering the state of the twoMRs is aGaussianCV state, which is fully characterized by thematrix of all
second-order correlations between themechanical quadratures. Therefore from themeasurement of these
correlations one can extract the logarithmic negativity EN. One does not typically have direct access to the
mechanical quadratures, but one can exploit the currently available possibility to perform low-noise and highly
efficient homodyne detection of optical andmicrowave fields, and implement an efficient transfer of the
mechanical phase-space quadratures onto the optical/microwavefield.

As suggested in [53] and then implemented in the electromechanical entanglement experiment of [5], the
motional quadratures of aMR can be read by homodyning the output of an additional ‘probe’ cavitymode. In
particular, if the readout cavitymode is driven by amuchweaker laser so that its back-action on themechanical
mode can be neglected, and resonant with the first red sideband of themode, i.e., with a detuning

j, 1, 2,j
p

jwD = = the probemode adiabatically follows theMRdynamics, and the output of the readout cavity

aj
out is given by (see figure 1) [53]
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a
G

b a ji , 1, 2, 46j
j
p

j j
out in ( )

k
d= + =

with Gj
p the very small optomechanical couplingwith the probemode. Therefore using a probemode for each

MR, changing the phases of the corresponding local oscillator, andmeasuring the correlations between the
probemode outputs, one can then detect all the entries of the correlationmatrix and from themnumerically
extract the logarithmic negativity EN.

6.1. Concluding remarks
Wehave studied in detail a general scheme for the generation of large and robust CV entanglement between two
MRswith different frequencies through their couplingwith a single, bichromatically driven cavitymode. The
scheme extends and generalizes in various directions similar schemes exploiting driven cavitymodes
[34, 36, 38, 44] for entangling twoMRs or two cavitymodes. The scheme is able to generate a remarkably large
entanglement between twomacroscopic oscillators in the stationary state, i.e., with virtually infinite lifetime, and
it is quite robust because one can achieve appreciably large CV entanglement evenwith thermal occupancies of
the order of 103. The scheme is particularly efficient in the limit where counter-rotating terms due to the
bichromatic driving of the cavitymode are negligible, andwe have verifiedwith a careful numerical analysis that
this is well justifiedwhen the twomechanical frequencies are sufficiently large 10 .j

2w k
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AppendixA.Normalmodes andHamiltonian dynamics

It is straightforward to see that the diagonal formof the interactionHamiltonian of equation (10) is

H , A.1eff 0 1 1 1 1 1 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† † †  l b b l a a l a a= + +

where

acos sin , A.21 2ˆ ˆ ˆ ( )a qb qd= +

acos sin , A.32 2ˆ ˆ ˆ ( )a qd qb= -

define the other two normalmodes together with the darkmode ,1b̂ introduced in equation (11), with θ defined
by the condition tan 2 2 ,q = - D while the eigenvalues are given by 00 1l l= = 2 2( ˜ ) lD - D =

2,( ˜ )D + D with 4 .2 2˜ D = D +
The normalmodes allows to understand the dynamics in the absence of optical andmechanical damping

processes. In fact, from equation (A.1) one can easily derive theHeisenberg evolution of themechanical bosonic

operators. By inverting equations (11), (12) one has, b t r t r t b tcosh sinh1 1 2 2
ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

†
d b b d= - =

r t r tcosh sinh2 1
ˆ ( ) ˆ ( )

†
b b- and using tj ( )a = je 0 , 1, 2,t

j
i ( )a =l andβ1(t)=β1(0), one gets

b t r

r
t t t

r
t t
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sinh exp i
2
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2

sin
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˜ ˜ ˆ ( )

˜
ˆ ( ) ( )

†⎡
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⎤
⎦⎥

⎡
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⎡
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⎤
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-
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D
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D D
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sinh 0

cosh exp i
2
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2

i cos 2 sin
2

0

i cosh sin 2 exp i
2

sin
2

0 . A.5

2 1

2

ˆ ( ) ˆ ( )
˜ ˜ ˆ ( )

˜
ˆ ( ) ( )

†

⎡
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⎤
⎦⎥

⎡
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⎤
⎦⎥

⎡
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⎤
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d b

q b

q d

=-

+ -
D D

+
D

+ -
D D

Wenow look for special time instants at which the twomechanicalmodes can be strongly entangled. A necessary
condition for such dynamical entanglement is that at these times, the cavitymodemust be decoupled from the
mechanicalmodes and equations (A.4), (A.5) show that it occurs when tsin 2 0,D̃ = i.e.,
t p p2 4 1, 2, .p

2 2p= D + = ¼ At these time instants one has
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b t r r b

r r b

cosh e sinh 0

sinh cosh 1 e 0 , A.6
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† †⎡⎣ ⎤⎦d d

d

= -
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where p 1 .p ( ˜ )f p= + D D In particular, if e 1i p = -f one gets

b t r b r bcosh 2 0 sinh 2 0 , A.8p1 1 2( )ˆ ˆ ( ) ˆ ( ) ( )
†

d d d= +

b t r b r bcosh 2 0 sinh 2 0 , A.9p2 2 1( )ˆ ˆ ( ) ˆ ( ) ( )
† †

d d d= - -

i.e., the state of the twoMRs at time tp is the result of the application of the two-mode squeezing operator with
squeezing parameter r S r2 , 2ˆ ( ) (see equation (14)) to their initial state. In the usual case of an initial thermal state
for the twoMRswithmean thermal phonon numbers n ,j¯ the state at time tp is therefore a two-mode squeezed
thermal state [50] (see equation (32)), with logarithmic negativity [47, 48]

E t n n r

n r n n r

1

2
ln 1 cosh 8

1 sinh 8 4 1 cosh 4 , A.10

N p
2 2

4 2 2 2 2

( ) ( )
( ) ( )

¯ ¯

¯ ¯ ¯ ( )

⎡
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⎤
⎦⎥

=- + +

- + + +

- +

+ - +

where n n n .1 2¯ ¯ ¯=  For the relevant case of not too small values of the squeezing parameter r,EN can bewell
approximatedwith its value at equalmean thermal phonon number n 0,¯ =-

E t r n4 ln 1 , A.11N p( ) ¯ ( )⎡⎣ ⎤⎦- ++

showing that at this interaction time, the entanglement between theMRcan be very large, even if starting from a
relatively hot state, by properly tuning the ratioG2/G1, i.e., the intensity of the two tones. This largemechanical
entanglement is achievedwhen the condition e 1i p = -f is also satisfied for a given integer p. This is obtained for
any odd pwhenΔ= 0, or by properly adjusting the value of  for a given 0,D ¹ i.e., if

d p d

p d
d d p d p

2

4
odd, 0 2 , . A.12p

2 2
2

( )
( )

( ) = D
-
-

< < ¹

This dynamical scheme for the generation of CVmechanical entanglement is similar to the Bogoliubov scheme
proposed in [45] for entangling two optical cavitymodes. It is extremely hard however to use it for entangling
twomechanicalmodes as in the present case, because the cavity decay rate is comparable to  andΔ in typical
situations, thereby strongly affecting the idealHamiltonian dynamics described here.

Appendix B. Linearization of the optomechanical dynamicswith two-frequency drives

The systemdynamics is described by the followingQLE
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where, here, differently from the description used in section 2, we are representing the cavity field in a reference
frame rotating at the frequencyω0− (ω2−ω1)/2, andwe have introduced the frequencies

2
.2 1w

w w
=




The other parameters and operators are defined in themain text.
If we perform a time dependent displacement, for both cavity andmechanical degrees of freedom, of the

form
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,
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theQLE reduce to the form
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where the new driving terms,A(t) andBj(t) read
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When g1 and g2 are sufficiently small andwe choseα(t) andβj(t) such thatA(t)= 0 andBj(t)= 0, then the
nonlinear terms, i.e. the last terms in the two equations (B.3) and (B.4), can be neglected. The equationsA(t)= 0
andBj(t)= 0 define a set of nonlinear differential equations with periodic driving for the parametersα(t) and
βj(t). The solution can be evaluated perturbatively in the small parameters g1 and g2[46]. Herewe assume
g1= g2≡ g andwe observe that the solutions forα(t) andβj(t), with initial conditionα(0)=βj(0)= 0, contain,
respectively, only even and odd powers of g,
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The equations for each component of these expansions can bewritten in the form
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and the driving terms are defined recursively as
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In particular they can always be rewritten as sums of exponential functions of the form
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with p n p n p n, , ,( ) ( ) ( )c c za b a and p n,( )zb time-independent complex coefficients, whose specific form can be computed

iteratively.Moreover, the expression for tp ( )( )a and tj
p ( )( )b are found integrating equation (B.7) and are given by
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Wenote that all the coefficients p n,( )za and p n,( )zb have non-positive real parts, Re , Re 0,p n p n, ,[ ] [ ]( ) ( ) z za b thus the

large-time solutions t tp p
st( ) ( )( ) ( )a a ¥ º and t tj

p
j
p
,st( ) ( )( ) ( )b b ¥ º are found from equation (B.12) by

keeping only the terms for which p n,( )za and p n,( )zb are purely imaginary, that can be shown to be equal to ni w+

with n odd and even integer respectively. In particular tp
st ( )( )a and tj

p
,st

˜ ( )( )b are periodic functions (with period
2π/ω+)which contains frequency components that are, respectively, odd and evenmultiples ofω+,
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where z andwj are defined in equation (B.8), and tp n,˜ ( )( )ca and tp n,˜ ( )( )cb are the coefficients that correspond to

those particular parameters p n,( )za and p n,( )zb that are imaginary.

B.1. Resonant and non-resonant terms

TheQLE, in the interaction picturewith respect to theHamiltonian H a a b b b b ,0 1 1 1 2 2 2
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Before proceeding, we note thatwe can include the dc component ofβj(t) into the cavity detuning, hence we

introduce g g2 Re ,
j j p
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Moreover we can isolate the resonant terms of theQLE, namely the termswith time-independent coefficients,
by considering the lowest order frequency components ofα(t), i.e.
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Therebywe find
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where F t F t,a b1
( ) ( ) and F tb2

( ) account for the termswith time-dependent coefficients and are given by
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In particular we can introduce the linearized coupling strength G g1
tot( ) a= - and G g ,2

tot( ) a= + withα± defined
in equation (B.16). The expressions introduced in equation (7) correspond to the expansion of these parameters
at zeroth order in g (see also equation (B.22)).

We are interested in the regime inwhich the terms in equations (B.20)with time-dependent coefficients are
negligible. They can be neglectedwhen g t g t, , min , , .j j jst ,st 1 2 1 2∣ ( )∣ ∣ ¯ ( )∣ { ∣ ∣}a b k w w w w- In particular

this condition is truewhen it is valid for the lowest order term in the expansion in power of g. In details, the non
resonant terms can be neglectedwhen
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When this condition is fulfilled the parametersα(t) andβj(t) can be safely expanded at the lowest order in g.
Specifically they can be approximated as
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Moreover the parameters t¯ ( )a defined in equation (B.18) are zero. Using these expressions theQLE in
equation (B.19) can be rewritten as
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When the time-dependent coefficients are neglected these equations reduce to equations (4)–(6).
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