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Abstract

We investigate a general scheme for generating, either dynamically or in the steady state, continuous
variable entanglement between two mechanical resonators with different frequencies. We employ an
optomechanical system in which a single optical cavity mode driven by a suitably chosen two-tone
field is coupled to the two resonators. Significantly large mechanical entanglement can be achieved,
which is extremely robust with respect to temperature.

1. Introduction

Entanglement is the distinguishing feature of quantum mechanics and is the physical phenomenon according to
which only the properties of the entire system have precise values, while the physical properties of a subsystem
can be assigned only in reference to those of the other ones. It is now intensively studied because it corresponds
to peculiar nonlocal correlations which allows performing communication and computation tasks with an
efficiency which is not achievable classically [1].

Furthermore, for a deeper understanding of the boundary between the classical and quantum world, it is
important to investigate up to which macroscopic scale one can observe quantum behavior, and in particular
under which conditions entanglement between macroscopic objects, each containing a large number of the
constituents, can arise. Entanglement between two atomic ensembles has been successfully demonstrated in [2],
while entanglement between two Josephson-junction qubits has been detected in [3, 4]. More recently,
macroscopic entanglement has been demonstrated in electro-mechanical systems [5]: continuous variable (CV)
entanglement, similar to that considered by Einstein—Podolski and Rosen (EPR) [6], has been generated and
detected between the position and momentum of a vibrational mode of a 15 ym diameter Al membrane, and the
quadratures of a microwave cavity field, following the theory proposal of [7].

Entanglement between two mechanical resonators (MRs) has been instead demonstrated only at the
microscopic level, in the case of two trapped ions [8], and between two single-phonon excitations in nano-
diamonds [9]. The realization of this kind of entanglement at the more macroscopic level of micromechanical
resonators would be extremely important both for practical and fundamental reasons. In fact, on the one hand,
entangled MRs at distant sites could represent an important building block for the implementation of quantum
networks for long-distance routing of quantum information [10]; on the other hand, these nonclassical states
represent an ideal playground for investigating and comparing decoherence theories and modifications of
quantum mechanics at the macroscopic level [11-13].

Many different schemes have been proposed in the literature for entangling two MRs, especially exploiting
optomechanical and electromechanical devices [14, 15], in which the two MRs simultaneously interact with one
or more electromagnetic cavity fields. References [16—18] considered the steady state of different systems of
driven cavities: [16] focused on two mirrors of a ring cavity, while [ 17] assumed to drive two independent linear
cavities with two-mode squeezed light transferring its entanglement to the cavity end-mirrors [ 18] instead
considered a double-cavity scheme in which one cavity couples to the relative motion of two MRs, and the
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second cavity to their center-of-mass; when the system is appropriately driven by squeezed light, such squeezing
is transferred to the two MRs which are then prepared in a stationary EPR-like state. Actually, steady-state
entanglement can be achieved, even if at a smaller value, also without squeezed driving, either between two
movable mirrors in a Fabry—Perot cavity [ 19], between two mechanical modes of a single movable mirror [20],
or in the case of two semi-transparent membranes interacting with two driven cavity modes [21].

A different approach for generating entangled MRs exploits conditional measurements on light modes
entangled or correlated with mechanical degrees of freedom [22-27]. In this case, entanglement is generated at
the measurement and it has a finite lifetime which may be severely limited by the interaction of the MRs with
their reservoirs. A similar strategy has been provided to enhance the entanglement of two MRs [28]. More recent
proposal applied reservoir engineering ideas [29-33] to optomechanical scenarios, by exploiting suitable multi-
frequency drivings and optical architectures in order to achieve more robust generation of steady state
entanglement between two MRs [34—40], eventually profiting from mechanical nonlinearities and/or
parametric driving [41, 42].

In the present paper we propose a novel optomechanical/electromechanical scheme for the generation of
remarkably large CV entanglement between two MRs with different frequencies, which is also extremely robust
with respect to thermal noise. The scheme is particularly simple, involving only a single, bichromatically-driven,
optical cavity mode, and optimally works in a rotating wave approximation (RWA) regime where counter-
rotating, non-resonant, terms associated with the bichromatic driving are negligible. The scheme shares some
analogies with the reservoir-engineering schemes of [34, 36, 38, 40], but it may be used to generate robust
entanglement also in a pulsed regime, in the special case of equal effective couplings at the two sidebands, where
the system becomes analogous to the Serensen—Melmer scheme for entangling trapped ions in a thermal
environment [43]. This latter scheme has been already considered in an optomechanical scenario by Kuzyk et al
[44] for entangling dynamically two optical modes via their common interaction with a single MR.

The paper is organized as follows. In section 2 we derive the effective quantum Langevin equations (QLEs)
describing the dynamics of the system in the RWA. In section 3 we solve the dynamics in terms of the mechanical
Bogoliubov modes of the system [34, 36, 45], derive the steady state of the system in the stable case, and provide
simple analytical expressions for the achievable mechanical entanglement, showing its remarkable robustness
with respect to temperature. In section 4 we instead consider the special case of equal couplings, when the system
can be mapped to the Serensen—-Meglmer scheme [43], in which mechanical entanglement is generated only
dynamically and slowly decays to zero at long times. In section 5 we solve and discuss the exact dynamics of the
system in order to establish the conditions under which the RWA does not seriously affect the robust generation
of large mechanical entanglement. In section 6 we discuss the experimental detection of such entanglement and
present some concluding remarks. In the appendices we provide some detail on the dynamical evolution of the
system, and present a careful derivation of the linearized QLE in the RWA regime.

2. System Hamiltonian and derivation of the effective Langevin equations

As shown in figure 1, we consider an optical cavity mode with resonance frequency w. and annihilation operator
4 interacting via the usual optomechanical interaction with two different MRs, with frequencies w; and w, and
annihilation operators b, and b, respectively. The cavity mode is bichromatically driven at the two frequencies
wo + w; and wy — w,, with the reference frequency wy detuned from the cavity resonance by a quantity Ay = w, —
wo. If we describe the cavity field in a reference frame rotating at the frequency wy, then the system Hamiltonian
is given by

H = Zunb, by + /by by + /iNodla
+ ﬁ[gl(él + 151"“) + gz(l;z + E;")]a*a

n ﬁ[(Ele‘W + Epe)al + h.c.]. )

This means that the cavity mode is simultaneously driven on the blue sideband associated with the MR with
annihilation operator l;l, and on the red sideband associated with the MR with 52. The nonzero detuning A,
makes the present scheme different from the one studied in the supplementary material of [34] which restricts to
the resonant case Ay = 0. Our model is instead related to the scheme proposed by Kuzyk et al [44] for entangling
dynamically two optical modes via their common interaction with a single MR: here we will dynamically
entangle two MRs via their common interaction with an optical mode.

The system dynamics can be efficiently studied by linearizing the optomechanical interaction in the limit of
large driving field. In this case the average fields for both cavity, a(#), and mechanical degrees of freedom, 3(%),
are large, and one can simplify the interaction Hamiltonian at lowest order in the field fluctuations
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Figure 1. Sketch of the proposed entanglement generation and detection scheme (a), and of the various pump and probe laser
frequencies (b). The cavity mode is bichromatically driven at the two frequencies wy + w; and wy — w,. Large and robust entanglement
of the two mechanical resonators can be generated either dynamically or in the steady state. Two weak probe fields with detuning

Af =wj — w}’ = wj, j = 1, 2, are then sent into the cavity. By homodyning the probe mode outputs, the mechanical quadratures
(xj, pj) are therefore measured, which allows one to construct the correlation matrix of the quadratures from which entanglement can

be derived in a straightforward way.

sa(t) = a(t) — a(),
8b; (1) = b;(t) — B;(1). 2

Differently from the typical optomechanical settings in which the steady state average fields are time-
independent, here the bichromatic driving induces a time-dependent, periodic steady state average field which,
in turn, implies time-dependent effective coupling strengths for the linearized dynamics of the fluctuations. As
originally discussed in [46], and detailed in appendix B, approximated dynamical equations for the fluctuation
operators 64 (t) and 619 (t) can be derived, in the interaction picture with respect to the Hamiltonian

Hy= 7 (v b bl + wy b bz) by neglecting the non-resonant/time-dependent components of the effective
linearized interactions. It is possible to prove that this approach is justified when (see equation (B.21))

g].% ,H<<wj,|w17w2|. (3

The corresponding QLE including thermal noise and dissipation at rates x and +; for the cavity and the
mechanical mode j € 1, 2 respectively, are

66 = — (i + iA)6d — iG,6b, — iGy8b, + VIR A", @
§b, — _%551 —iGéa" + b, Q)
M2 ken jin
Oby = —228b, — G sa + ymby, ©
where
E
G=—2571
w — A+ ik
E
G=—— 872 @)
wr + A — ik

are the (generally complex) linear optomechanical couplings, and 4™ and l;jin are standard input noise operators
with zero mean, whose only nonzero correlation functions are (4™ (t)a™ (¢')') = &§(t — t'), < l;]-m (t)b; (t’)7>
=@ + DOt — t'yand < 5;“ (t)-r;;;“ (t/)> = ;6 (t — t"), where iy = [exp (/ﬁ,uj/kB T) — 1]71 is the mean

thermal phonon number of the jth MR, which we assume to stay at the same environmental temperature T.
Moreover, we note that here the new cavity detuning A includes the time-independent frequency shift induced
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by the optomechanical interaction, proportional to the dc component of the average mechanical oscillation
amplitude 3j(t), that we here denote with 3 ‘}C (see appendix B). Specifically

A=ANy+2 Zgj Re[ﬂ?“]. ®
i=1,2

We will see that the dynamics described by these equations allows to generate large and robust entanglement
between the two MRs, either in the steady state or, in a particular parameter regime, during the time evolution
with a flat-top pulse driving. We first notice that the system is stable when all the eigenvalues associated with the
linearized dynamics of equations (4)—(6) have negative real parts. The stability condition is quite involved in the
general case, but it assumes a particularly simple form in the case of equal mechanical dampings, v; =7, =+.In
such a case, the system is stable if and only if

AN
o > o] - 21+ 2] ©)

This stability condition reduces to the one derived in the supplementary material of [34] in the case A = 0. We
see that a nonzero detuning generally helps in keeping the system stable.

3. Dark and bright Bogoliubov modes

The coherent dynamics corresponding to the equations (4)—(6), is described by the effective linearized
Hamiltonian

A = /1 AT + 7 (Glééf + Gzééz)éaﬁ
+ (G1*6131 + G;k&z}j)(sa. (10)

We can always adjust the phase reference of each MR (which will be determined by a local oscillator which must
be used to measure the mechanical quadratures for verifying entanglement) so that we can take both G, and
G, real.

Equation (10) naturally suggests to introduce two effective mechanical modes allowing to simplify the
system dynamics. We assume for the moment G, > G;, which is a sufficient condition for stability (see
equation (9)), and define

. .
_ Gabbi + Gidb, _ 8by cosh r + &;; sinh 7, (an

B,
_ Gadhy + Gudb,

B — 6by cosh r + 61511- sinh , (12)

=

where

G =.G; — G?, tanhr:ﬁ. (13)
2

G

Equations (11), (12) define a Bogoliubov unitary transformation of the mechanical mode operators, which can
also be written as

By = e—r(551+6£;;—§5161;2)651 2er(65f55§—551552)
=3(r)8b1 28 (—), (14)

with § (r) the two-mode squeezing operator. The Bogoliubov mode (3, describes the ‘mechanical dark mode’,
which does not appear in H.g, i.e., is decoupled from the cavity mode and therefore is a constant of motion in the
absence of damping, while (3, is the ‘bright’ mode interacting with the cavity mode. This is equivalent to say that
the dark mode 3, is the normal mode of the Hamiltonian dynamics with eigenvalue equal to zero. The other two
normal modes of the system will be linear combinations of 3, and 8. The Bogoliubov mode description has
been already employed in cavity optomechanics, associated to two optical modes in [34, 45], and to two
mechanical modes in [36, 38] (see appendix A for a derivation of the normal modes of the system and a study of
its Hamiltonian dynamics).

3.1. Stationary entanglement for different couplings
For a realistic description of the system dynamics we must include cavity decay and mechanical dissipation. It is
convenient to rewrite the QLE in terms of the Bogoliubov modes, which in the case when y; = 7, =~yassume the
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simple form
84 = —(r + 1A)éa — iGB, + 2k am, (15)
bi=—2b+ A 1)
B = —%Bz — iGoa + ﬁ@zina (17)

where BJI " j = 1, 2, are two correlated thermal noise operators whose only nonzero correlation functions are
<Bjin(t)3jm(t’)T> = [ﬁfff(r) + 1]6(t - t’),
(B @' B () = ma(e - ),
(B 03" () = (5”@ B () ) = ms (e - 7). (18)

with the effective mean thermal phonon numbers

it (r) = i cosh? r + (ﬁz + l)sinh2 1 (19)
A (r) = 1, cosh® r + (n‘1 + l)sinh2 7 (20)

and the inter-mode correlation
m(r) = cosh r sinh r(ﬁ1 + 7 + 1). 21)

If v, = 7, adissipative coupling term between the two Bogoliubov modes appears, which however does not have
relevant effects because it is proportional to |y, — ~, | which is typically very small with respect to all other
damping rates.

The dynamics associated with equations (15)—(17) is simple: the bright mechanical mode BZ is cooled by the
cavity, while the correlated reservoir create finite correlations between dark and bright modes. In particular, the

matrix of correlation for the vector of operators 3 = (Bl, Bz, BIT, ,5’;), whose elements are
{Cslix = < {8} {Bk > is given, at the steady state, by

ﬂ ﬁleff + 1 0

0 m
] 0 0 T_ZZCOOI +1
C (22)
T A o 0 i
0 A m 0,
with the number of excitation of the cooled bright mode and the correlations between the two Bogoliubov
modes respectively given by
= cool eff (1 — 6) C_
;" (r) = n (r)[l—— ) (23)
’ ’ 1+ 62+ C.
and
_ _ 2(1 4+ 16
(1) = () ———d 1D 1)
2(L+i6) + (1 —€e)C_
where
2
C_= E’ (25)
VK
e=—1—, (26)
¥+ 2K
p—— @7)
¥+ 2K

and C_can be seen as an effective collective optomechanical cooperativity. The steady state correlation matrix
can be expressed in terms of the original modes b; and b, by inverting the Bogoliubov transformation introduced
in equations (11) and (12). The resultis
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Cy=U Cs ur
0 my fip+1 0
my 0 0 fipy + 1
28
ﬁbl 0 0 n—’lb ( )
0 fipy my 0,
with
cosh r 0 0 —sinhr
0 coshr —sinhr 0
v ' 29
0 —sinhr coshr 0 (29)
— sinh r 0 0 cosh 1,
and where now
fiyy = ﬁleff + sinh? r(l + ﬁleff 4 ﬁzmol)
— 2 coshr sinh r Re(n‘qg),
fipy = n‘fo"l + sinh? r(l + ﬁleff + ﬁZCOOI)
— 2 coshr sinhr Re(n’qﬁ),
1y = cosh? r 1z + sinh? r n‘q}"
— cosh r sinh r(l + szff + r—lzcool)‘ 0

The entanglement between modes b, and b,, measured by means of the logarithmic negativity [47, 48], can be
easily expressed in terms of these matrix elements as [49]

Ey = max[0, —In v],

1/:1+ﬁb1+ﬁb2—\/4‘rfzb|2+(ﬁb1—ﬁb2)2. (1)

When the collective cooperativity C_is sufficiently large, i.e., C_ > 1 (r), then #13(r) is negligible (see

equation (24)). This is the working regime in which we are particularly interested, because in this case, the second
Bogoliubov mode can be cooled close to its ground state (r‘zzc""l (r)y < nfff (r)), corresponding to an entangled
state for the original mechanical modes. In this case the steady state correlation matrix for the Bogoliubov
modes, in equation (22), reduces to the correlation matrix of a state given by the product of two thermal states
with occupancies ¢ (r) and 75°°' (r) respectively. For the two MR of interest, associated with the operator by
and b,, such a state i just a two-mode squeezed thermal state [50]

Pra =S Pt iyin @ Pt i, nS (= 1) (32)
where § (r) is given in equation (14), and
0 an
Prn = 27—y ) (] (33)

=o(1+ ﬁ)"“

is the density matrix of the thermal equilibrium state of a resonator with occupancy 7. Such a state is entangled
for sufficiently large r and not too large mean thermal excitation number.

This prediction of large stationary entanglement is confirmed in figure 2, where we plot the time evolution of
the entanglement between the two MRs, quantified in terms of the logarithmic negativity En, obtained from the
solution of equations (4)—(6). Figure 2 refers to an experimentally achievable set of parameters, y=10s" ',
k=10"s"",G,=10°s"', A=10’s", and to different values of mean thermal phonon numbers iy, 7,, and of
the ratio G;/G,. We see that remarkable values of Ey are achieved at low temperatures, and that stationary
mechanical entanglement is quite robust with respect to temperature because one has an appreciable value of Ey,
=~ (.32 even for /iy = 2000, 7, = 1000. The time to reach the steady state is essentially given by the inverse of the
cooling rate of the bright Bogoliubov mode, which is approximately given by #, ~ (k* 4 A/ (G?*k) (see
equations (15)—(17)).

Equation (32) suggests that one could achieve large stationary entanglement between the two MRs by taking
alarge two-mode squeezing parameter r, and a large collective cooperativity C_>> 1 in order to significantly cool
the bright Bogoliubov mode. However the corresponding optimization of the system parameters, and especially
of the two couplings G; and G,, is far from being trivial. In fact, r increases when G; — G,, which however
implies, at a fixed value of G,, a decreasing value of G and therefore of C_(see equations (13) and (25)); moreover
increasing r has also the unwanted effect of increasing 715 (r) that is the correlations between the two Bogoliubov
modes (see equations (21) and (24)).
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Figure 2. Time evolution of the logarithmic negativity Ey starting from an initial uncorrelated state with the optical mode fluctuations
6d in the vacuum state and each MR in its thermal state with mean phonon number: (i) 7i; = 7, = 0, G; = 0.995G, (black line); (ii)
i, = 200, i, = 100, G; = 0.918G, (blueline); (iii) 7, = 1000, 71, = 500, G; = 0.82G, (green line);

fi; = 2000, fi; = 1000, G; = 0.75G, (red line); the other parameters are y= 10 s Le=10°s"1,G,=10°s ", A=10"s"".
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Figure 3. Ey at the steady state versus rfor y=10s~ ', s = 10>s~ ', G; = 10°s ', A = 0, implying a cooperativity C; = 2 x 10, and

i, = 200, i, = 100. The full red line refers to the steady state solution of the QLE in equations (15)—(17), that is given by equation (31),
the blue dashed line is evaluated with the approximated value of v reported in equation (34), and the black dashed line corresponds to
the approximation in equation (36).

However, a judicious choice of parameters is possible, allowing to get very large stationary mechanical
entanglement, even in the presence of non-negligible values of the thermal occupancies 7, and 7. At a given
value of Gy, this is obtained by taking a sufficiently large value of the associated single-mode cooperativity,

G = 2G}/k7y > 1,and correspondingly optimizing the value of G,, i.e., of r. In fact, the logarithmic negativity
associated with the stationary state of equation (32) can be evaluated in terms of the parameter

Vg —0 = [ﬁ+(r) + 1](cosh2 r + sinh? r)

— \/ﬁ,(r)z + 4[ﬁ+(r) + 1]2 sinh? r cosh? r, (34)
where 714.(r) = ﬁfff (r) + ﬁ2°°°1 (r),and ﬁzco"l (r) can be explicitly rewritten in terms of the cooperativity C; as
s (r) = [ﬁz cosh? r + (ﬁ1 + l)sinh2 r]

- (1 — E)C]
sinhzr(l + 62) + G

(35)

The dependence of Ey versus r, for given values of C, 73 and 7, shows a maximum and then decays to zero for
large r (see figure 3 which refers to C; =2 x 10*and 5, = 200, 7, = 100). This behavior is described byavery
simple approximated expression valid in the limit C; > €% >> e~ %, with not verylarge i, ,, and when 6,¢ — 0
(correspondingto vy, A < k),

2r

Ve 2e T 4 (1 + @ + ﬁz): (36)

1
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which exhibits a minimum (hence corresponding to maximum entanglement) as a function of r at

1 8
r~r°®t= —1In _ & ) (37)
4 i+ iy + 1
given by 1Pt ~ W . For values of rmuch larger or much smaller than this value, the resonators may
1

not be entangled. When ris increased to very large values r >> r°P', G is reduced and the cooling dynamics
becomes slow as compared to the standard mechanical dissipation, which takes place at rate ~y (7; + 1), so
that the correlations between the MRs cannot be efficiently generated. On the other hand, at small » < r°P* the
Bogoliubov modes are essentially equal to the original modes, so that the cavity cools only the second resonator,
and also in this case mechanical entanglement can not be observed. Figure 3 also shows that the simplified
expression of equation (36) provides a simple but valid approximation for large C, and a very good estimate of
the optimal value of the two-mode squeezing parameter r, i.e., of G,/ G,, given by equation (37). The
corresponding value of the logarithmic negativity is

G

1
By~ gin 2(1+ﬁ1+ﬁ2)

(33)

and shows that once that the ratio G; /G, is optimized, the achievable stationary entanglement between the two
MRs increases with increasing G/ (7i; + ).

The above analysis of the stationary entanglement of the two MRs extends the results of [34] in various
directions. First of all, our model extends to the case of nonzero detuning A a model discussed in the
Supplementary material of [34]. We see that a nonzero detuning has a limited effect of the dynamic of
entanglement generation, providing only an effective increase of 7i5°°!, which however becomes negligible as
soonas A < k (see equation (35)). Moreover, [34] provided an explicit expression for Ey only for the case of
negligible thermal occupancies and not too large values of r, while the present discussion applies for arbitrary

values of r, 7; and 7.

4. Dynamical evolution in the case of equal couplings

In the special case of equal couplings G; = G, = G, i.e., G = 0, the Bogoliubov modes cannot be defined
anymore and the description of the preceding section cannot be applied. The dynamics is nonetheless interesting
and still allows for the generation of appreciable entanglement between the two MRs, even though only at finite
times and not in the stationary state. We notice that in this special case, our scheme becomes analogous to that of
[44], that showed that two appropriately driven optical modes can be entangled with a pulsed scheme by their
common interaction with a MR. More precisely, the QLE of equations (4)—(6) are the same as those studied in
[44] but now referred to two mechanical modes coupled to the same optical mode, i.e., with exchanged roles
between optical and mechanical degrees of freedom.

The physical mechanism at the basis of the generation of dynamical entanglement can be understood by
looking at the Hamiltonian evolution of the system at equal couplings. Such mechanism essentially coincides
with the one proposed for entangling internal states of trapped ions by Milburn [51] and by Serensen and
Mpglmer [43], and first applied to an optomechanical setup by Kuzyk et al [44]. In the present case, the common
interaction with the bichromatically driven optical mode dynamically entangles the two MRs, and at special
values of the interaction time the optical mode is decoupled from the two MRs and mechanical entanglement

can be strong.
Atequal couplings it is convenient to rewrite the effective Hamiltonian after linearization of equation (10) in
terms of mechanical and optical quadratures, using the expressions 6b; = (£; + iﬁj ) / J2 j = 1,2,and

o4 =& + i?)/\/f.Onegets

Ao = %(}22 + ?2) + /G2 (2.X - p.¥), (39)

where 2. = (& = %)/2, p. = (p, & p,)/~/2 arelinear combinations of the two position and momentum
operators of the two MRs. The Heisenberg evolution of these latter mechanical operators can be solved in a
straightforward way, by exploiting the fact that £, and ) are two commuting conserved observables. One gets
(seealso [43,44,51])

() = 2:00), p (1) =p(0),
£.(t) = %_(0) + %Gj(sin At — At)p (0) (40)
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Figure 4. Time evolution of Ey in the case of equal couplings for the parameter sety=10s"', k =10°s" ', G=10"
s~ @ = 200, i, = 100, and for three different values of the detuning: A = 10 s~ ! (black dashed line), A = 10*s ™' (red full line),
and A =10°s™ ! (blue full line).

2G? N
+ F(l — cos At)x,(0)

— G2 sin AtY (0) + %(1 — cos At)X(O),
A A
A N 2G? . .
p.(t) =p(0) — F(Sln At — At£4(0) (41)

2G? R
+ F(l — cos At)p (0)

GV2 G2
A

sin AtX (0) — T(1 — cos At)Y (0). (42)

Relevant interaction times are those when the MR dynamics decouple from that of the optical cavity, and this
occursatt,,=2mn/Am=1,2,...,where

G? .
&,(tm) = %.(0) — 2m7r2A—2p_(0), (43)

n ~ 2G?
5.0 = (O + 2mm=-5,0. (44)

This map describes a stroboscopic evolution in which the two MRs become more and more entangled, because it
corresponds to the application of the unitary operator

2nG™m R
U, = exp[—l N (xi + p2)]

2 A At At on A
_ exp[—i“zzm (5191 §by + 6b) 6by + 1 + 6, 5b; + 5171552)]. (45)

This ideal behavior is significantly modified by the inclusion of damping and noise, especially the one associated
with the cavity mode, which acts on the faster timescale 1/~ and seriously affects the cavity-mediated interaction
between the two MRs, as soon as k becomes comparable to A. Mechanical entanglement is large for large G/A
and we expect well distinct peaks for Exat interaction times t,,,, in the ideal parameter regime G > A > k.In
the more realistic regime in which GA and  are comparable, the peaks will be washed out, but we still expect an
appreciable value for the mechanical entanglement for a large interval of interaction times. This is confirmed by
the numerical solution of the time evolution associated with the QLE shown in figure 4, which refers to the
parameter sety=10 s k=10°s"1,G=10s"L, Ai; = 200, /i, = 100, and to three different values of the
detuning, A =10°s~* (black dashed line), A = 10*s ™! (red full line), and A = 10° s~ * (blue full line). We see
that an appreciable value of Ex (even though smaller than the one achievable at the same 7 and 7, after the
optimization of G;/G, of the previous Section) is reached for a large interval of interaction times t. Therefore
even at equal couplings (and nonzero detuning) one can entangle the two resonators with a pulsed experiment.
Mechanical entanglement instead vanishes in the stationary state.
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Figure 5. Comparison of the time evolution of Ey evaluated with and without the non-resonant terms, when G, > G;. The red lines
are evaluated with the model described by equations (4)—(6) that does not take into account the non-resonant terms The green lines
are evaluated with equation (B.23), which takes into account the non-resonant terms by considering the expansion of the steady state
solutions of a(#) and 3(t), at first order in g as defined in equation (B.22). The blue lines are evaluated instead with equation (B.19) by
considering the expansion for a(#) and J3(t), calculated iteratively with equations (B.6), (B.9)—~(B.12), up to sixth order in g in
particular these results take into account the full dynamics of the average fields a(t) and 3;(#), with initial condition a(0) = 3;(0) =0,
and not only the steady state as in the case of the green lines. The solid lines refer to w, = 100x and w; = 50k, while the dashed lines
refer to w, = 50k and w; = 25k. The other parameters are G, = k, A =0.01x, 7= 104k, andg= 10~ *k. Moreover in (a)

G, = 0918k, i = 200, i, = 100;in (b) G, = 0.82k, A = 1000, i, = 500;in (c) G; = 0.75k, i, = 2000, i, = 1000.
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Figure 6. Comparison of the time evolution of Ey evaluated with and without the non-resonant terms, when G; = G,. The insets
report the corresponding average photon number {64764). Red, green and blue lines are evaluated as in figure 5. The solid lines are
found for A = 0.01x and the dashed lines for A =5k.1In (a) v = 0.03x, w; = 58k, w, = 100k, A, = 2and 7, = 1;in (b)

v = 0.01k, w; = 58k, w, = 100k, iy = 2and i, = 1;in(c) v = 0.001k, w; = 51K, w, = 100k, = 20 and 75, = 10. The other
parameters are G; = G, = kand g= 10"*x.

5. Effect of the counter-rotating terms study of the exact dynamics

The derivation of the effective linearized dynamics of appendix B suggests that the counter-rotating terms that
we have neglected may play an important role when the mechanical frequencies are not too large with respect to
the other parameters (see also the comments in the supplementary material of [34]). It is therefore interesting to
study their effect by comparing the above predictions, both in the case of G, > G; and in the case of equal
couplings, to the solution of the exact QLE obtained without neglecting the various time-dependent terms.

In appendix B we describe the derivation of the effective linearized equations that we have studied in the
preceding sections and that is based on the elimination of fast rotating terms and on the expansion of the
linearized coupling strength at lowest order in g;. Here we analyze the limit of validity of these approximations by
solving numerically the system dynamics with the inclusion of the non-resonant terms expanded at different
orders in powers of g;. In figures 5 and 6 the red lines are evaluated without the non-resonant terms (i.e., the
treatment of the preceding sections), while the green and the blue ones take into account the full dynamics. In
particular the green lines are computed by expanding the average fields a(f) and 5(¢) (that have been introduced
in equation (2) and discussed in appendix B), at the lowest relevant order in powers of g, while for the blue ones
they have been expanded at sixth order in powers of g. Moreover, the green line results are found considering
only the steady state solution for a(f) and 3(t), while the blue lines are computed taking into account their full
dynamics (that includes also the transient regime before the steady state is reached) with initial condition «
0)=5(0)=0.

In figure 5 we compare the time evolution of the entanglement evaluated with and without the time-
dependent terms when G, > G,. The parameters used in these plots are consistent with those used in figure 2.
Specifically the three red curves in figures 5 (a), (b) and (c), that are barely visible because almost entirely covered
by the green curves, are equal to the three lowest curves in figure 2. We observe that the green and the red lines
are always very close, meaning that the linearized RWA treatment is a very good approximation of the full
dynamics when a(t) and 3;(t) can be expanded at lowest order in g. Nevertheless, we note that if the mechanical
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frequencies are not large enough and higher order terms are taken into account together with the full dynamics
of a(t) and 3(1), then the results can be significantly different as described by the blue curves. Specifically, the
solid-blue lines are evaluated for sufficiently large values of the mechanical frequencies so that the condition in
equation (3) is well fulfilled, and the effective linearized RWA dynamics recovers with significant accuracy the
one determined with the inclusion of the non-resonant terms The dashed-blue lines are instead evaluated for
smaller frequencies. In this case it is evident that the non-resonant terms have a significant role in the system
dynamics and that the lowest order expansion of the coefficients a(f) and 3,(¢) does not provide an accurate
description. We note that according to equation (3), in order to eliminate the fast rotating terms, the ratios w;/G;
have to be much larger than one. Although the dashed-blue curves are evaluated for a ratio w; /G, of roughly 25,
which can be considered significantly large, we have found, indeed, that it is not enough for a faithful
approximation of the system dynamics with the model discussed in the preceding sections. The conclusive
analysis of these cases would, possibly, require a non-perturbative approach that is beyond the scope of the
present work. A final remark is in order. We have verified that the discrepancy between the dashed-blue lines and
the red ones is due to the combined effect of the higher order terms and of the transient initial dynamics of a(t)
and 3(#). Specifically, when we consider either the lowest order terms and the transient dynamics, or the higher
order terms and only the steady state of a(t) and 3j(t), the corresponding results for the entanglement dynamics
are very similar to the red lines.

In figure 6 we study the case of equal couplings G; = G,. In this case solid and dashed lines differ in the values
of the cavity detuning A. In general larger A (dashed lines) corresponds to smaller entanglement, and the results
evaluated by including the counter-rotating terms tends to exhibit larger entanglement than the corresponding
ones obtained without the non-resonant terms. The solid curves are found with smaller A. In this case red, green
and blue lines are very close when the mechanical dissipation is sufficiently large as in figure 6 (a). Larger
discrepancies are found when the mechanical dissipation is reduced as in figures 6 (b) and (¢), especially at
relatively large time. We observe in fact that, while the red curves for the entanglement decay to zero at large
time, the corresponding green and blue lines seem to approach a finite sizable value. As shown by the insets,
when this different behavior is observed, the average photon number in the cavity tends to diverge. Thisisa
signature of the fact that the full dynamics including counter-rotating terms is actually unstable, even though the
RWA dynamics without these terms is stable (see equation (9)). We have confirmed the unstable nature of the
time-dependent dynamics by calculating the Floquet exponents of the dynamical equations of the system. In
fact, when a(t) and 3(¥) are considered in their steady state, one has a system of linear differential equations with
periodic, time-dependent coefficients (see appendix B), and the Floquet theory can be applied in this case [52];
we have verified that for the parameters of figure 6 there is always at least one positive Floquet exponent,
meaning that the system is unstable. This implies that, in general, the corresponding results are well-grounded
only for relatively short time until the populations are not exceedingly large. On the other hand, our results show
that in a pulsed experiment with the parameters of figure 6, these instabilities do not constitute a serious
hindrance to the creation of significant entanglement at finite times.

Therefore, when the mechanical frequencies are sufficiently large (w; 2 10%£) (and, limited only to the case
of equal couplings, when also mechanical damping is not too small), the effective linearized RWA dynamics
obtained by neglecting the counter-rotating terms approximates with very good accuracy the full system
dynamics.

6. Strategies for the experimental detection of mechanical entanglement

We finally discuss how to detect the generated mechanical entanglement between the two MRs at different
frequencies. The present entanglement describes EPR-like correlations between the quadratures of the two MRs
and therefore we need to perform homodyne-like detection of these quadratures. In the linearized regime we are
considering the state of the two MRs is a Gaussian CV state, which is fully characterized by the matrix of all
second-order correlations between the mechanical quadratures. Therefore from the measurement of these
correlations one can extract the logarithmic negativity Ey. One does not typically have direct access to the
mechanical quadratures, but one can exploit the currently available possibility to perform low-noise and highly
efficient homodyne detection of optical and microwave fields, and implement an efficient transfer of the
mechanical phase-space quadratures onto the optical/microwave field.

As suggested in [53] and then implemented in the electromechanical entanglement experiment of [5], the
motional quadratures of a MR can be read by homodyning the output of an additional ‘probe’ cavity mode. In
particular, if the readout cavity mode is driven by a much weaker laser so that its back-action on the mechanical
mode can be neglected, and resonant with the first red sideband of the mode, i.e., with a detuning

Aﬁ-’ =w,j=1,2, the probe mode adiabatically follows the MR dynamics, and the output of the readout cavity
a?" is given by (see figure 1) [53]
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G! .
a®™ = i—L8b; +al", j=1,2, (46)
j TR T J
with GJP the very small optomechanical coupling with the probe mode. Therefore using a probe mode for each
MR, changing the phases of the corresponding local oscillator, and measuring the correlations between the
probe mode outputs, one can then detect all the entries of the correlation matrix and from them numerically
extract the logarithmic negativity Ex.

6.1. Concluding remarks

We have studied in detail a general scheme for the generation of large and robust CV entanglement between two
MRs with different frequencies through their coupling with a single, bichromatically driven cavity mode. The
scheme extends and generalizes in various directions similar schemes exploiting driven cavity modes

[34, 36, 38, 44] for entangling two MRs or two cavity modes. The scheme is able to generate a remarkably large
entanglement between two macroscopic oscillators in the stationary state, i.e., with virtually infinite lifetime, and
itis quite robust because one can achieve appreciably large CV entanglement even with thermal occupancies of
the order of 10°. The scheme is particularly efficient in the limit where counter-rotating terms due to the
bichromatic driving of the cavity mode are negligible, and we have verified with a careful numerical analysis that
this is well justified when the two mechanical frequencies are sufficiently large w; 2 10°.
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Appendix A. Normal modes and Hamiltonian dynamics

Itis straightforward to see that the diagonal form of the interaction Hamiltonian of equation (10) is

Aeir = /\oBy Br+ a6y + 7hd] (A1)

where
& = cos 03, + sin 054, (A.2)
&y = cos #6a — sin 932, (A.3)

define the other two normal modes together with the dark mode Bl, introduced in equation (11), with 0 defined
by the condition tan 20 = —2G/A, while the eigenvalues are given by A\g = 0\ = (A — A)/2)\, =

(A + A)/2,with A = A + 4G
The normal modes allows to understand the dynamics in the absence of optical and mechanical damping
processes. In fact, from equation (A.1) one can easily derive the Heisenberg evolution of the mechanical bosonic

operators. By inverting equations (11), (12) one has, 651 (t) = cosh r@l (t) — sinh rﬁ; (t)6l;2 )=
cosh r[i’z (t) — sinh rB;f (t)and using o (1) = ewozj 0),j = 1, 2,and B;() = (1(0), one gets

(5151(t) = cosh r@l 0)
— sinh r exp [ig][cos ﬂ — icos 26 sin E]B; 0)
2 2 2
— isinh r sin 26 exp 1%] sin %5& 0) (A4)

8b>(t) = — sinh 3, (0)

+ cosh r exp[—iﬁ] cos ﬂ + 1cos 20 sin E]BZ(O)
2] 2 2
+ i cosh r sin 20 exp[ —i%] sin %6& (0). (A.5)

We now look for special time instants at which the two mechanical modes can be strongly entangled. A necessary
condition for such dynamical entanglement is that at these times, the cavity mode must be decoupled from the
mechanical modes and equations (A.4), (A.5) show that it occurs when sin At/2 = 0, i.e.,

ty = 27Tp/\/A2 + 4G%*p = 1, 2, .... At these time instants one has
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651(1?[,) = [cosh2 r — ei% sinh? r] b, (0)
+ sinh r cosh r (1 - ei%)&?; 0), (A.6)

65; (tp) = [eid’p cosh? r — sinh? r] 65; 0)

— sinh 7 cosh r(l — ei‘/)p)él;l 0), (A.7)

where ¢, = mp(1 + A/ A).Inparticular, ife> = —1onegets
5151(57) = cosh 2r(51;1(0) + sinh 2r(51;2-‘- (0), (A.8)
6bj(tp) = —cosh 2r(51;; (0) — sinh 2r(51;1 (0), (A.9)

i.e., the state of the two MRs at time t, is the result of the application of the two-mode squeezing operator with
squeezing parameter 27, S (2r) (see equation (14)) to their initial state. In the usual case of an initial thermal state
for the two MRs with mean thermal phonon numbers 7i;, the state at time #, is therefore a two-mode squeezed
thermal state [50] (see equation (32)), with logarithmic negativity [47, 48]

EN(tp) =— %ln [ﬁ2 + (ﬁ+ + 1)2 cosh 8r

- \/(1@ + 1)4 sinh? 87 + 47 (ﬁ+ + 1)2 cosh? 4r], (A.10)
where 71, = 7 £ 7. For the relevant case of not too small values of the squeezing parameter r,Ey can be well
approximated with its value at equal mean thermal phonon number 7i_ = 0,

5«%):4r—h4ﬁ++1} (A.11)

showing that at this interaction time, the entanglement between the MR can be very large, even if starting from a
relatively hot state, by properly tuning the ratio G,/Gj, i.e., the intensity of the two tones. This large mechanical

entanglement is achieved when the condition el% = —1is also satisfied for a given integer p. This is obtained for
any odd p when A =0, or by properly adjusting the value of G foragiven A = 0, i.e.,if
d@2p —d
Qf, = AZL dodd, 0 <d<2p, d=p. (A.12)
4(p — ay

This dynamical scheme for the generation of CV mechanical entanglement is similar to the Bogoliubov scheme
proposed in [45] for entangling two optical cavity modes. It is extremely hard however to use it for entangling
two mechanical modes as in the present case, because the cavity decay rate is comparable to G and A in typical
situations, thereby strongly affecting the ideal Hamiltonian dynamics described here.

Appendix B. Linearization of the optomechanical dynamics with two-frequency drives

The system dynamics is described by the following QLE

a=— [Ii + i(AO + w_)]ﬁ — i[Ele*in + Ezei‘*’+t] 4 \/ﬂﬁin

I (r | ot ~ A\
_ l[gl(bl + b, ) + gz(bz + b, )]a
@:_(%+mﬂ@_%ﬁw+ﬁﬁ“j:LL (B.1)

where, here, differently from the description used in section 2, we are representing the cavity field in a reference
frame rotating at the frequency wy — (w, — w1)/2, and we have introduced the frequencies

wy £ w

—

The other parameters and operators are defined in the main text.

If we perform a time dependent displacement, for both cavity and mechanical degrees of freedom, of the
form

Wy =

a)=aéa(t) + al(t),
bi(t) = 6b;(t) + B;(1), (B.2)
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the QLE reduce to the form

6= — {n +i( Ao + w ) + 2ig Re[ A0 ] + 2ig, Re[ﬂz(t)]}éﬁ
—iA(t) + 2k a™

- ia(t)[&((sél + 6z3f) + gz((sl?z + 613;)]
_ i[gl(é‘él + 51917) + gz(ééz + 55§)]5a, (B.3)

—ig[awea’ + a@ysa] — igsa'sa, (B.4)
where the new driving terms, A(f) and Bj(t) read
. ; Oac(t .
A(t)=— 1[E1e*1“’<t + E2e“>’] — % — [Ii + 1(A0 + w,)]a(t)

—2i(g Re[ 510 ] + & Re[ 28] )a ),

a6, (¢ ;

% - (% + iw]-),Bj(t) —ig, la(O)P. (B.5)
When g; and g are sufficiently small and we chose a(f) and 5,(#) such that A(t) = 0 and B{(t) = 0, then the
nonlinear terms, i.e. the last terms in the two equations (B.3) and (B.4), can be neglected. The equations A(¥) =0
and Bj(t) = 0 define a set of nonlinear differential equations with periodic driving for the parameters a(t) and
Bj(t). The solution can be evaluated perturbatively in the small parameters g; and g,[46]. Here we assume

&1 =& = gand we observe that the solutions for a(t) and 3(t), with initial condition (0) = 3,(0) = 0, contain,
respectively, only even and odd powers of g,

Bj(t):—

a(t) = i gPa® (1),
p=0

p even
00

B;(t) = p; e3P ). (B.6)
p odd
The equations for each component of these expansions can be written in the form
aP () =~z (1) + EP @),
BP) = — w; BP0 + EP ), (B.7)

where

zZ=kK + i(Ao + w,),
W = % + iw;, (B.8)
and the driving terms are defined recursively as
p—1
ED@) =—2i) a@()
q=0
x (Re[ 010 + Re[ 8¢ V1)]),

-1
=0 (1) = — ipza(q)(t) aP=a=D(p)*, (B.9)
q=0

with the initial condition
Q) = Bieient 4 Byelent,
SOES (B.10)
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In particular they can always be rewritten as sums of exponential functions of the form
= 1)
=00 = DAl e,
n

E%’)(t) — ngm) et (B.11)
n

with ng) X(ﬂp’ m¢ Ef’") and ¢ (é”") time-independent complex coefficients, whose specific form can be computed
iteratively. Moreover, the expression for o (t) and 3 §P )(t) are found integrating equation (B.7) and are given by
X(p)n) ()
©) (1) — a—( (emr —zt)
a'P)(t) zn:z C(p’") e e ?),

X4
BYW =Y
J W + Cg,n)
We note that all the coefficients ¢/ " and § " have non-positive real parts, Re[¢ g’ "], Re[¢ g””)] < 0, thus the
large-time solutions a® (t — o0) = aglt’)(t) and ﬁgf’)(t — 00) = Bg{’s)t(t) are found from equation (B.12) by

(egg'mt — e’“’i‘). (B.12)

keeping only the terms for which ¢ g’ "™ and ¢ g””) are purely imaginary, that can be shown tobe equalto i n w,

with 72 odd and even integer respectively. In particular '’ (t) and B](IZZ (t) are periodic functions (with period
2m/w, ) which contains frequency components that are, respectively, odd and even multiples of w

p+1 < (pom)
(P)(t) — Xa et
n=—p—1Z +1in wy
n odd
A A
M= 5 — e, (B.13)

n=—p—1Wj +1in wy
n even

where zand w; are defined in equation (B.8), and )”(((f "M (t)and ¥ ép ") (t) are the coefficients that correspond to
those particular parameters ¢ ff’") and ¢ g’ '™ that are imaginary.

B.1. Resonant and non-resonant terms

The QLE, in the interaction picture with respect to the Hamiltonian Hy = 7 (waa + w b b1 + w, b bz ),
reduce to

8a =~ (K +ilo)da + V2ra"
T 2i(g1 Re[ 10 ] + &, Re[ﬁz(t)])&i
—ia(e g (et + ab) o)
+ gz(ééze*iwzf + 65Jew)],

5b; = — %51;]. + b - ige[ e la(r)a” + hee.. (B.14)

Before proceeding, we note that we can 1nclude the dc component of () into the cavity detuning, hence we

introduce A = Aq + 2 Z 128 Re[> ng ] according to the notation introduced in equation (8),

L (0)
Zg"

Xﬁ
Moreover we can isolate the resonant terms of the QLE, namely the terms with time-independent coefficients,
by considering the lowest order frequency components of a(¢), i.e.

= B (B.15)

X(P)il)
=Yg (B.16)
, ZEiwy
corresponding to the frequencies w, , and defining
Bi(t) = B;(t) —
a(t) = a(t) — e“ay, (B.17)
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a_(t) = a(t) — e Wt _, (B.18)
Thereby we find

64 =~ (k + 1A)6d — ia_goh, — ia.goh,
+ sz{&in + P‘a(t))
6bi =~ %551 —iga_sa’ + b + Fy (1),

by = — %&92 — g0 %60 + (b, + Fy, (D), (B.19)

where F, (t), Fy, (t) and F, (¢) account for the terms with time-dependent coefficients and are given by
E(0) =+ 2i(g Re[ 31| + & Re[ a1 ] ) 82
— ia(t)ei”*‘(glc‘ilgle*i““ + gzél;jei“ﬂ>
—ia_(t)ew tglél;jei”" — ia(t)ew tgzélgze*i“’”,
Fp (1) = — iglei””[ei““‘*ta_(t)éﬁf + e iwtgt (t)(%l],
Fy,(t) = — igzew[eiw—fa(t) sat + e*iW—fm(t)*éa]. (B.20)

In particular we can introduce the linearized coupling strength G{"*Y = ga_and G{"*Y = gar,, with ay defined
in equation (B.16). The expressions introduced in equation (7) correspond to the expansion of these parameters
atzeroth order in g (see also equation (B.22)).

We are interested in the regime in which the terms in equations (B.20) with time-dependent coefficients are
negligible. They can be neglected when 8 |t (1)1, & IBj,st ®)], k < min{w;, wy, |w; — w,|}.Inparticular
this condition is true when it is valid for the lowest order term in the expansion in power of g. In details, the non
resonant terms can be neglected when

g‘ai|,/<;<< min{wl,w2,|w17w2‘}. (B.21)

When this condition is fulfilled the parameters a(¢) and 3j(t) can be safely expanded at the lowest orderin g.
Specifically they can be approximated as

—iE . —iE

o , oy —,
z + lwy

oz —iwy
ag(t) =~ aQ(t) = a_e ™ + o el
—ig.
ﬁ‘}c o~ —][a,af + oz+ofi],
Wi
7 ~ 1 d
Bist (1) 22 g B30 — B¢

% k
. Q_O . aLo” .
=— 1gjl T e-liwyr_ elwrt], (B.22)

wj — 2iwy w; + 2iw,

Moreover the parameters &.(¢) defined in equation (B.18) are zero. Using these expressions the QLE in
equation (B.19) can be rewritten as

§a=— (k + iA)64 — iGi8b, — iG,8b,
+ V2ka™ + E (1),
§by = — %551 —iGi8aT + b, + Fy (1),

8by = — %552 —iG}éa + (Fzb, + Fy (1), (B.23)
with G; and G, defined in equation (7) and
F(o =+ 2i(g? Re[ B0 | + g7 Re[ BSh0) | )

— jeiw- tag(t))(t)(glééle—iwlt + gzél;;eiw”),
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Fp, (1) =~ — iglei(wl + w,) tag?)* (t)éa,
Fy, (£) ~ — igzei(wz + w,) a9 (t) 8a". (B.24)

When the time-dependent coefficients are neglected these equations reduce to equations (4)—(6).
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