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Corrigendum: Decentral smart grid control (2015New J. Phys.17
015002)
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1 NetworkDynamics,Max Planck Institute forDynamics and Self-Organization (MPIDS), 37077Göttingen, Germany
2 Institute forNonlinearDynamics, Faculty of Physics, University ofGöttingen, 37077Göttingen, Germany
3 Forschungszentrum Jülich, Institute for Energy andClimate Research (IEK-STE), 52428 Jülich, Germany
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The originalmanuscript (Schaefer et al 2015New J. Phys. 17 015002) contains three typographical errors that we
have corrected below. The scientific results were not affected by the typographical errors and all numerical
simulationswere carried out using the correct equations.

1.Demand response via decentral smart grid control

Equation (1) should read
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i.e., there is a ‘+’ sign in front of the sum.

4.Dynamics and stability

4.3.Delayed adaptation: risks from resonances
Equation (31) should read

τ
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λ
π
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This does not change the periodicity of the solution since λIm( ) is constant and not a function of τ.

4.4. Stabilization by averaging
Finally, equation (34) should read

λ λ αλ γ= + + − + − =λτ λ τ− − +( )p K
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The original equation used an erroneousminus sign.
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Abstract
Stable operation of complexflow and transportation networks requires balanced supply and demand.
For the operation of electric power grids—due to their increasing fraction of renewable energy sources
—a pressing challenge is tofit the fluctuations in decentralized supply to the distributed and tempo-
rally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer
demand data, centrally evaluate themgiven current supply and send price information back to custo-
mers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection
and large required investments, it remains unclear how such central smart grid options guarantee
overall stability. Here we propose aDecentral Smart GridControl, where the price is directly linked to
the local grid frequency at each customer. The grid frequency provides all necessary information
about the current power balance such that it is sufficient tomatch supply and demandwithout the
need for a centralized IT infrastructure.We analyze the performance and the dynamical stability of the
power gridwith such a control system.Our results suggest that the proposedDecentral Smart Grid
Control is feasible independent of effectivemeasurement delays, if frequencies are averaged over suffi-
ciently large time intervals.

1. Introduction

Amajor challenge in realizing a future sustainable power supply is the volatile character ofmany renewable
sources [1–3]. The power generation of wind turbines and photovoltaics fluctuates strongly on different time
scales: in addition to the obvious variations between the seasons and during a single day [4], strong fluctuations
occur onmuch shorter time scales, for instance due to the turbulent character of wind [5]. Tomatch generation
and demand in a fully renewable power grid for the current demand characteristics at every point of time, would
thus require large storage facilities. Current estimates for the storage capacity range up to 400TWh for the entire
European gridwith 100% renewables and no stand-by power plants [4]. In addition to potential environmental
effects, as, e.g., the large landscape consumption for pumped hydro storage facilities, this would requiremassive
capital investments.

To reduce these enormous numbers, it has been proposed to regulate the consumer demand tomatch the
fluctuating power generation [6]. This is amassive paradigm shift in the operation of power grids, asmainly the
generation is regulated in current power grids [7, 8]. In the new system, the price of electric energy shall be
adapted to the current generation to provide a stimulus for the consumers to adapt their demand.Most
proposals for such a smart grid are based on a sophisticated information and communication technology
infrastructure. All ‘smart’ powermeters communicate with a central computer in order to negotiate the price
and control their demand (see, e.g., [9]).However, such a centralized systemwould also raise questions of cyber
security and privacy protection [10, 11]. Evenmore, it has been shown that interdependent systems, such as this,
can become vulnerable to cascading failures [10, 12].
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An alternative, decentralized approach has beenfirst proposed already years ago, but received amajor
interest only recently. The key idea is that the grid frequency provides all information needed to control the grid.
The frequency increases in times of excess generation, while it decreases in times of underproduction [13, 14]. In
current power grids, the primary control of conventional power plants is already based on the frequency:
generation is increasedwhen the frequency decreases and vice versa [15]. In a future, fully renewable grid the
consumers could take over this role and regulate their demand autonomously on the basis of the grid frequency.
Tomake this economically favorable, it was proposed that the price of electric energy for each local consumer is a
direct function of the local grid frequency [16]. Is such a decentralized approach capable of ensuring stable
network dynamics?

Here we analyze systemswith prices locally computed as a direct function of local frequency, taking into
account averaging time intervals and effective time delays.We demonstrate that the approach holds risks at
certain time delays if the averaging interval is short. Intriguingly, for sufficiently large averaging interval,
network dynamics is stable, independent of the delays. Ourmodeling results thus suggest thatDecentral Smart
GridControl provides an efficientmeasure of ensuring grid stability.

The article is structured as follows. First, we introduce amathematicalmodel for the frequency dynamics of a
power grid, describe our concept of aDecentral Smart GridControl to realize the dynamic demand response
(DR) in section 2 and discuss several economic aspects in section 3. The dynamics and stability of a fully
interdependent techno-economical system are then analyzed in detail in section 4.We uncover potential
systemic risks and showhow they can bemastered by a proper implementation of the control.

2.DR viaDecentral SmartGridControl

DR is generally based on a flexible consumer price for electric powerwhich is adapted to the current power
generation. In periods of higher demand than generation, prices are high, giving an incentive to the consumers
to reduce their consumption. Current approaches for the implementation ofDR aremostly based on centralized
information and communication infrastructure [8, 9], i.e., all information about production and consumption
is collected decentralized, transmitted to one central IT-unit which then sends commands for further
consumption and production to the decentralized actors. Such a systemwould require largefinancial
investments and raises concerns about data protection and system vulnerability [10–12]. However, such an
expensive IT-infrastructuremay not be needed, as the grid frequency already encodes the necessary information
and is accessible everywhere in the grid.

To analyze the essential frequency dynamics of a large-scale power grid and its coupling to pricing
informationwe consider an oscillatormodel based on the physics of coupled synchronous generators and
synchronousmotors, which recently attracted a strong interest in physics [17–23]. Thismodel is very similar to
the ‘classicalmodel [15] and the structure preservingmodel [24] frompower engineering, which are routinely
used to simulate the dynamics of power grids on coarse scales.

The state of each rotatorymachine j is characterized by the rotor angleθ t( )j relative to the grid reference
rotating atΩ π= ×2 50 Hz orΩ π= ×2 60 Hz, respectively, and its angular frequency deviation from the
referenceω θ= td dj j . Everymachine has itsmoment of inertiaMj and is driven by amechanical power

P t( )j
mech , which is positive for a generator and negative for a consumer. In addition, everymachine is driven by

the electric power transmitted via the adjacent transmission lines which have a coupling strengthKij. The
dynamics of themachine j is then given by the equation ofmotion as
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For amore detailed discussion and short derivation of the equations ofmotion, see appendix A.
For the sake of simplicity, we assume that all damping constants κ κ=j andmoments of inertia =M Mj are

identical for awhile. The overall angular frequency deviation ω ω〈 〉 = ∑:
N j j
1

is then determined by the equation

ofmotion

ω κ ω Δ+ =M
t N

P
d

d

1
, (2)

where Δ = ∑P Pj j
mech is the total power balance in the grid. Equation (2) can be solved analytically with the

result
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ω ω Δ
κ

= + −κ κ− −( ) ( )t t
P

N
( ) e 1 e . (3)t M t M
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For → ∞t , the overall angular frequency deviation ω〈 〉 converges to the value Δ
κ
P

N
. This relaxation is typically fast;

most perturbations are cleared in less than a second [15]. Inweakly connected grids inter-area oscillations can
last for aminute [3, 26].Hence, the angular frequency deviation ω〈 〉 is directly proportional to the power balance
of the entire system. In general, the angular frequency is the same throughout the gridω ω= 〈 〉j and can easily be
measured, such that it can be used to control the gridwithout additional communication infrastructure.

Themissing step to realize aDecentral Smart GridControl is to come upwith a one-to-one relation between
the local grid angular frequency deviationω j and the current electricity price ωp ( )j j . A device thatmeasures the

local grid angular frequency and calculates the current price according to this pre-defined function ωp ( )j j is

cheap and can be implemented in a decentralizedway, see [28] for large-scale frequencymonitoring. Electric
devices with an on-off load characteristic (e.g. washing, refrigeration, thermal heat pumps, electric cars) could
automatically shift their consumption to times of high grid frequency, relieving the grid in low frequency times.
Ensured by a properly chosen price function ωp ( ), this grid service can be economically reasonable for the
consumer and also for the electricity provider, because the grid operatorwould have potentially less costs for
primary, secondary and tertiary control. A drastic price increase at low frequencies and cheap electricity at high
frequenciesmight also change the active consumer behavior. The needed technology is readily available, since
micro combined heat and power systems or photovoltaic systems, already have a comparable control system
included [8, 27].

In particular, we propose aDecentral Smart GridControl that realizes a dynamicDR in power grids and
analyze some of its core economic and dynamic consequences. Themechanical powerP t( )j

mech in the equation
ofmotion (1) is the difference of the generated and consumed power at the jth node of the network. Both
generation and consumption depend on the current energy price p, which is described by supply S(p) and
demand curvesD(p), such that wefind

= −( ) ( )P t S p t D p t( ) ( ) ( ) . (4)j j j j j
mech

A supply function S(p) gives the amounts of goods offered, if this good is traded for a certain price p. Here, this is
the amount of power supplied by a generator, if the obtained price is p. Similarly, the demandD(p) gives the
amount of power a consumerwould like to consume for a given price p. Generally, the supply curve is
monotonically increasingwith p, while the demand curve ismonotonically decreasing. The two curves are
exogenous to themodel, in fact they are determined by the strategy of the generators, theweather and the
preferences of the consumers.

We suggest aDecentral Smart GridControl that calculates the price on the basis of the local angular
frequency deviationω j [16]; butmeasuring and updating the angular frequency in a real grid takes a certain
time. Therefore, the price generally depends on a time-averaged angular frequency deviationω t( )j . Assuming
that the angular velocity ismeasured over an interval offixed period lengthT, we define

∫ω ω= ′ ′
−

t
T

t t( )
1

( )d . (5)j
t T

t

j

Weconsider two technical scenarios for the control. First, we consider a control system that adapts only in
discrete time steps of lengthT such that the local prices are given by

ω= ⌊ ⌋( )p p t T T: ( ) , (6)j j

where⌊ ⌋· denotes rounding towardsminus infinity. Second, it can take a certain delay time τuntil the control
system adapts such that the local prices are given by

ω τ= −( )p p t: ( ) . (7)j j

Weassume that the price only depends on the frequency and that supply and demand curves are given and keep
their formon the time scales (seconds) described in this article. Hence, the design of an appropriate price
function ωp ( ) is an important step for the implementation of aDR viaDecentral Smart GridControl.

3. Economic aspects

3.1. Benefits ofDR
DRmay have huge benefits in future energy systems see, e.g., [7, 8, 25, 29, 30]. Here, we briefly summarize the
most important economic aspects, following [7], which hold regardless of the technical implementation: (1)

3
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consumersmay reduce their electricity bill by shifting their demand to periods of low prices. (2) In addition, DR
may reduce the global costs of the power system as it allows for amore efficient use of the existing infrastructure
and avoids costs for additional infrastructure. (3)DRmay improve system stability by avoiding dangerous peaks
of the demand and thus reduce the probability of power outages. (4) Finally, DRmay improvemarket
performance and reduce the price volatility. In addition to these points, DR is particularly important for future
power grids because its implementation can potentially allow a higher penetrationwith renewable energies [31].

3.2. The grid as amarket
In the current proposal of aDecentral Smart Grid Control there is no central computer which controls the
demand of the consumers and no central exchange to determine the electricity price. The control is realized in a
decentralizedway using local frequencymeasurements, thus requiring no long-distance communication. Is this
sufficient to provide an efficientmarket, i.e., to reach an economic equilibrium?

To answer this questionwefirst note that the stable stationary operation of a power grid requires that all
machines rotate in synchrony, i.e., the frequencymust be the same everywhere

ω ω= ∈ …t j N( ) for all {1, , }. (8)j
!

Otherwise the powerflowbetween two nodes j and k

θ θ= −( )P t K t t( ) sin ( ) ( ) , (9)jk jk k j

would be oscillating and average out over time. The synchronous statemust be dynamically stable for small
disturbances to be damped out [15, 32] and the gridmay self-organize to a synchronous state with steady power
flows [18, 22, 33]. Substituting the conditionω ω= 〈 〉t( )j into the equations ofmotion (1) shows that the
synchronous state is determined by the equation

∑κ ω θ θ= − − − ∈ …
=

( ) ( ) ( )S p D p K j Nsin for all {1, , }. (10)j j j j j
k

N

jk k j

1

Summing up the equations for all j and using =K Kij ji yields

∑ ∑ ∑κ ω= +( ) ( )S p D p . (11)
j

j j
j

j j
j

j

This shows that a dynamical equilibriumof the grid also implies the economic equilibriumof themarket, i.e.,
the supply equals the demand including transmission losses.Hence, we have to analyze the dynamic stability of
the combined techno-economical system to evaluate its stability properties. This will be done in detail in
section 4.

For now,we assume that the grid is in equilibriumwith ω〈 〉 = 0 at a price Ωp . To analyze the stability of this
equilibrium,we linearize the supply and demand curves close to the equilibrium:
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Themodeling ormeasurement of supply and demand curves then reduces to themeasurement of the elasticity
of supply and demand. Generally, the supply increases with the price while the demand decreases such that

⩾s 0j and ⩽d 0j and thus in particular

− >s d j0 for all . (13)j j

Here, we used course-graining, i.e., not every consumer is represented by one demand function but several
consumers are aggregated to formone node in the network and hence supply and demand curves are assumed to
be smooth.

3.3. Price and frequencyfluctuations
The new aspect of our proposal of aDecentral Smart GridControl is the direct encoding of the electricity price in
the grid frequency. Thus, the grid frequencymust be allowed to vary in certain boundaries so that fluctuations of
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the price are directly related tofluctuations of the frequency. Currently, frequency variations are limited due to
technical reasons [34]. In the European grid±200 mHz are acceptable in normal operation and up to
±800 mHz can occur in extreme cases for short times before emergencymeasures such as load shedding are
initiated [35]. This sets the order ofmagnitude at which the frequencymay vary. Accordingly, we consider a
frequency range of ±(50 0.5) Hz.

Infigure 1we analyze the possible variations of the price and the frequency inmore detail. Panel (a) shows a
histogramof plausible values of the consumer price, if this price is strictly coupled to the variable spotmarket
price forGermany in 2012 [36]. To obtain plausible consumer prices, we add 9 ct kWh−1 for distribution and
service, 7 ct kWh−1 fees plus 19%VATon the total. The variations of the electricity price directly relate to
variations of the grid frequency as described above.We consider a linear price curve for all nodes

ω ϵ ω= − ×Ω( )p p , (14)j j

with =Ωp 24.1ct kWh−1, as shown in panel (b1). For a slopeϵ = 10 (ct kWh−1)/2πHz, the price curvemaps the

operational range ω Ω π+ ∈( ) 2 [49.5, 50.5]j Hz to a price interval ∈ −p [19.1, 29.1] ct kWh 1, which covers
98%of the observed fictitious consumer prices. A histogramof the resulting frequency variations is shown in
panel (c1). In 2%of all time slots prices outside of this interval were recordedwhich can even become negative.

To treat such events accordingly, a nonlinear functionmust be chosenwhichmaps afixedfinite frequency
interval to all possible prices, i.e., to the real line. Still, the slope of this function should be bounded around the
operational pointΩ = 50 Hz. These requirements are satisfied by an inverse sigmoidal function. As a particular
example, we here consider the function

⎛
⎝⎜

⎞
⎠⎟ω α ω

πβ
= −Ω

−( )p p
2

tanh , (15)j
j1

whichmaps all angular frequency deviations in the intervalω πβ πβ∈ − +( , )j to a price ∈ −∞ + ∞p ( , ). The
operational range can thus befixed beforehand, and emergencymeasures can be specified, if frequencies outside
this range aremeasured. Choosingα βϵ= yields the same slope of the price curve around the reference
frequency as the linear price function (14). Indeed, using β = 1Hz the statistics of the observed frequencies in
figure 1 hardly change in comparison to the linear price function, see panels (b2) and (c2). The corresponding
frequencies change significantly only for extreme price events, which nowmap to the operational range
ω Ω π+ ∈( ) 2 [49.5, 50.5]j Hz as desired. A similar statistic is found for other sigmoidal functions. The precise
formof such a nonlinear price function can be designed by the grid operators on the basis of actualmarket and
consumption data.

We note thatfigure 1 is based on theGerman spotmarket prices, which showhuge fluctuations compared to
other energymarkets [39]. Furthermore, onemajor effect of a comprehensiveDRwould be to suppress extreme

Figure 1. InDR viaDecentral Smart Grid Control, variations of the electricity prices imply variations of the grid frequency. (a)
Histogramof plausible fullyflexible consumer prices deduced from spot prices at the European energy exchange [36]. (b) Price-
frequency relation according to (b1) equation (14), with slopeϵ π= −10 (ct kWh ) (2 Hz)1 and (b2) equation (15), with
α π= −10 (ct kWh ) (2 )1 and β = 1 Hz, respectively. (c)Histogramof the corresponding frequency fluctuations.
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price fluctuations anyway [7, 14].Hence, we expect that the fluctuations shown in thefigure represent extremes,
and that theywould be significantly smaller in energy systemswithDR and (virtual) storage.

4.Dynamics and stability

Dynamical stability is a basic requirement for power grid operation [3, 15]. ForDR viaDecentral Smart Grid
Control, a stable dynamic equilibrium ensures that the energy system is also in an economic equilibrium as
shown above. However, stability propertiesmay becomemuchmore involved due to the interdependency of the
technical and the economical subsystem. Interdependenciesmay introduce new systemic risks to dynamical
network systems [12, 37].

The interaction of theDR systemwith the grid depends crucially on their time scales. In contrast to current
energymarkets, the price can be adapted in almost real time, limited only by the time needed for a frequency
measurement. Here, we analyze the dynamical stability of the full techno-economic system and identify new
systemic risks for different scenarios and discuss how tomaster these risks.

4.1. Instantaneous adaption
Wefirst investigate aDR that is fast compared to the grid dynamics. Assuming an instantaneous adaption of the
demand, i.e., τ= =T 0 in equations (6) and (7), the effective powerP t( )j

mech in equation (1) becomes a
function of the current angular frequency deviationω j. In particular, we consider a linear relation of price and
angular frequency deviation

ϵω= −Ωp p t: ( ). (16)j j

Linearizing the supply and demand curves around Ωp as in equation (12) yields

∑
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j
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1

By equation (13), an instantaneous economic response thus increases the effective damping constant to

κ κ ϵ κ= + − >( )s d . (18)j j j j j
eff

Therefore, it always lowers the return times after perturbations, see equation (3).

4.2. Slow adaptation in discrete time steps
A second,more realistic scenario is that theDecentral Smart GridControl ismuch slower than the grid
dynamics.Here, we consider a discrete time control system,where the price function is the same for all nodes
and given by (6). Both supply and demand are updated periodically with periodicity κ≫ ∑ ∑T Mj j j j.

Assuming that the grid is dynamically stable for the given parameters, the angular frequency deviationwill relax
to

∑ω Δ
κ

Δ=
∑

= −P
P S p D pwith ( ) ( ). (19)

j j j

j j

On this basis, a newmarket price ′p is calculated. Assuming an affine-linear price function as in equation (14)
and using the linearized supply and demand curves (12), we find

ϵ
κ

′ − = −
∑ − ∑

∑
−Ω Ω( )p p

s d
p p . (20)

j j j j

j j

This yields an oscillating dynamics of themarket price, which is stable if and only if

ϵ ϵ
κ

< =
∑

∑ − ∑s d
, (21)

j j

j j j j
cr

setting a strict upper limit for the slope of the price function. The potential instability for ϵ ϵ> cr is caused by an
overreaction of the suppliers and consumers tomarket incentives. Similar rebound effects can generally occur in
DR systems [8], such that this problem is not specific to the current proposal.

An example for the possible dynamics of the techno-economical system is shown infigure 2 for amodel grid
with three generators and three consumers with values inspired by the IEEE 9-bus test grid (see panel (e)).We
assume that the price elasticities
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= =
Ω Ω

E
S p

S p
E

D p

D p

d d
and

d d
(22)S

j

j
p

D
j

j
p

are the same for all nodes and given by = +E 0.3S and = −E 0.3D in agreementwith empirical results [38–40].
The price and subsequently the demand and supply are adapted after a time step ofT=60 s.We assume an
equilibriumprice =Ωp 24 ct kWh−1 and a damping constant κ = ×s M0.2j j with Ω= ×M 10 kgmj

4 2 . All
transmission lines have the same transmission capacityK=200MW. For these parameters, the system is stable if
and only if ϵ ϵ π< ≈ 3 (ct kWh) (2 Hz)cr . Otherwise the prices and the grid frequencywill diverge after a small
perturbation as shown infigure 2.

Wenote that this result canbe interpreted as an application of the famous cobweb theorem from
microeconomics [41] toDecentral SmartGridControl. The generalized equilibriumcondition (11) canbe seen as
the intersection of the loss curve κ ω∑ 〈 〉j and thenet supply curveΔ ω ω ω〈 〉 = ∑ 〈 〉 − 〈 〉P S p D p( ) ( ( )) ( ( ))j j j .

The loss takes the role of an effective demand functionwith fast relaxation,while the net supply is adaptedmuch
slower. The cobwebmodel then states that the economic systemwill relax to an equilibrium, if the slope of the loss
curve is larger than the slope of thenet supply curve, which yields the stability condition (21).

4.3.Delayed adaptation: risks from resonances
New risksmay emergewhen theDecentral Smart GridControl acts on similar time scales as the dynamics of the
grid such that the two systembecome truly interdependent.Wefirst consider the case of a delayed feedback, i.e.,
we consider the price function (7)with τ ⩾ 0 butwithout averaging (T=0), i.e., consumersmeasure their local
frequency and try to adapt as fast as possible but need their intrinsic time τ to react. To obtain analytic solutions
for the interdependent techno-economical system, we use a very simple system:we linearize the supply and
demand curves (12) and consider only two nodeswith equal technical and economical parameters, i.e.,

=M M1 2, κ κ=1 2, =s s1 2 and =d d1 2. Defining our new variables as the phase difference Δθ θ θ= −1 2 and the
angular frequency difference of the two nodes Δω ω ω= −1 2, the equations ofmotion read

Δθ Δω

Δω αΔω Δθ γΔω

=

= − − − τ

t

t
P K

d

d
d

d
2 2 · sin( ) , (23)

wherewe introduced the abbreviationsα κ= M , =K K M12 , γ ϵ= −s d M( )1 1 , = − −Ω ΩP S p D p2 ( ( ) ( )1 1

+Ω ΩS p D p M( ) ( ))2 2 and Δω Δω τ= −τ t( ). In the following, time ismeasured in seconds,α and γ in s−1 and
P andK in s−2. This notation is similar to the one used in [19]. Delayed differential equations need a history
function as initial condition, whichwe chose to be Δω Δω< = +t t( 0) · (1 0.1 tanh ( 2))0 for our dynamical

Figure 2.Dynamics of amodel gridwithDecentral Smart Grid Control in discrete time steps ofT=60 s. System stability depends
crucially on the slope of the price curve, being stable for (a, b) ϵ π ϵ= <−1 (ct kWh ) (2 Hz)1

cr and unstable for (c, d)
ϵ π ϵ= >−5 (ct kWh ) (2 Hz)1

cr .We plot the dynamics of (a, c) the local prices pj and (b, d) the local frequencies Ω ω π+( ) 2j

starting from an initial price =p 250 ct kWh−1 above the equilibriumprice =Ωp 24 ct KWh−1. The angular frequency deviationsω j

vary only very little fromnode to node as shown in the inset in panel. (b) These residual oscillations relax on longer time scales such
that the system in (a, b) converges to a fixed point withω ω= 〈 〉j and ω= 〈 〉p p ( )j . Themodel grid is depicted in panel, (e) where

generators colored in red and consumers in blue. The remaining systemparameters are given in themain text.
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simulations. Furthermore, we used standardmathematica routines [42] to solve the ordinary and delayed
differential equations.

The delayed adaption of supply and demand can both stabilize and destabilize the grid dynamics as shown in
figure 3. The physical reason of this effect can be easily understood. The frequency-adaptive ‘effective’ power

γΔω= − τP t P( ) 2eff in equation (23) can be seen as a resonant driving acting on an oscillating system. Such a
driving termwill either damp or amplify the oscillations depending onwhether the driving is in-phase or out-of-
phase. The phase shift of this driving term is directly given by the delay τ, such that the stability of the system
depends crucially on the value of τ. To illustrate this result, we compare the dynamics for two different values of τ
infigure 3. For τ = 0.75 s1 the driving is in-phase, the oscillations are amplified and the grid becomes unstable
with potentially fatal results, whereas τ = 1.5 s2 stabilizes the system.

To obtain a global view of the stability and the role of the systemparameters we analyze the dynamical
stability around the steady-state operation of the grid given by the fixed point

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟Δθ Δω =( ) P

K
*, * arcsin , 0 . (24)

Asolution exists only if the transmission capacity is larger than thepowerwhichhas tobe transmitted, >K P
[32]. The linear stability of adynamical system is determinedby the eigenvalues of the Jacobianmatrix. For a
delayed system[43–45],wehave tocalculate the Jacobianofboth thenon-delayed system,basedonequation (23),

⎛

⎝

⎜⎜⎜⎜

⎛
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⎞
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⎛
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⎠
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Δθ

Δω
Δθ

Δθ
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Δω
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∂
∂

∂
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∂
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∂
∂

= − −( )J
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K

d

d

d

d

d

d

d

d

0 1

2 cos * , (25)0

and the derivatives for the delayed term
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⎛

⎝
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⎛
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∂
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∂
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∂
∂

∂
∂
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τ τ
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J
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Figure 3.Decentral Smart GridControl can stabilize or destabilize the grid. Panels (a)–(d) show the frequency difference Δω π(2 ) and
effective power γΔω= − τP P2eff for an elementary two-node network as a function of time for two different delays, according to
(23). For the delay τ = 0.75 s1 the effective power becomes large simultaneously to the frequency difference, i.e., the generator
producesmore energy than needed, when the frequency is already too high, see (a) and (b).Hence, the system gets destabilized
completely. On the contrary, the effective power and frequency difference are shifted by half a period for τ = 1.5 s2 such that the
system is stabilized, see (c) and (d). Initial conditions were Δθ = 00 , Δω = 10 Hz and the parameters γ = −0.25 s 1,α = −0.1 s 1,

= −P 1 s 2, = −K 8 s 2 were applied.
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wherewe consider exponential solutions, see [45]. The stability eigenvalues λ are then determined by the
solution of the characteristic equation

λ λ αλ Δθ λγ+ − = + + + =λτ
τ

λτ− −( )( )J J Kdet e 2 cos * e 0. (27)0
2

Small perturbations induce an oscillatorymotionwith eigenfrequency λIm ( ) and period π λ2 Im ( ). The
amplitude grows or decreases exponentially as λe tRe ( ) such that λ >Re ( ) 0 is the condition for a dynamic
instability. This is possible only if the frequency adaption is strong enough compared to the damping of the
system,

λ γ α⩾ ⩾Re ( ) 0 is possible only if , (28)

as shown below.When the delay τ changes, we observe a periodic pattern of stable and unstable parameter values
as shown infigures 4 and 5. As explained above, destabilization occurs in the case of an in-phase drivingwhich
happenswhen τ is an integermultiple of the period of the eigenoscillations of the system.

To proof these statements wefirst note that λ <Re ( ) 0 for γ = 0 or τ = 0 as long asα > 0.We now consider
the parameter valueswhere λRe ( ) changes its sign such that the systembecomes unstable. Decomposing the
characteristic equation (27) into real and imaginary parts and setting λ =Re ( ) 0 yields the conditions

λ Δθ γ λ τ λ− + + =( )KIm ( ) 2 cos * Im ( ) sin( Im ( )) 0, (29)2

α λ γ λ τ λ+ =Im ( ) Im ( ) cos( Im ( )) 0. (30)

The second equation can be solved for τwith the result

τ α γ π
λ

= − + ∈n narccos( )
2

Im ( )
, . (31)

One directly sees the periodicity in the delay τ, where the period π λ2 Im ( ) is equal to the period of the
eigenoscillations of the system. Furthermore, the α γ−arccos( ) is real only if γ α⩾ , which yields a necessary
condition for the destabilization by delay. Note that this statement is equivalent to the one from section 4.2,
namely the damping of the systemhas to be larger than the price influence to always guarantee stability.

In addition to the local stability analysis, we also consider the grid dynamics after a large perturbation.We
integrate the equations ofmotion for a long time period until =t 600 smax with initial conditions randomly
drawn froma subset of the phase space π π= − × −Q [ , ] [ 30, 30] Hz, see also [46], and evaluatewhether the
system relaxes to a stable operation, i.e., whether it converges to the fixed point (24), or not. As a criterion for

stable operationwe assume an angular frequency deviation of Δω = ⩽( )t t 0.1 Hzmax . The results are

visualized infigure 5, panels (a)–(c), wherewe plot the stability in a color code (light green: stable, dark blue:
unstable) as a function of the initial location in phase space for different values of τ. The results confirm the
finding of the linear stability analysis. Depending on the value of τ the global stability is altered dramatically. For
τ = 0.8 s thefixed point is linearly unstable and the systemdoes not relax for almost all initial conditions. On the
contrary, a delay of τ = 5 s leads to an almost perfect stability; the grid converges for almost all initial states.
Notably, the regions of initial conditions leading to stable or unstable behavior are not clearly separated because
the actual boundary of these regions has a rather complex geometric structure already in the non-delayed case.

Figure 4.The stability exponent λRe ( )plotted as a function of the delay τ for an elementary two-node network. The dynamic becomes
unstable, i.e., λ ⩾Re ( ) 0, for certain values of the delay time τ periodically spaced on the real axis, if γ α⩾ . Parameters are γ = −0.1 s 1,
α = −0.1 s 1, = −P 1 s 2 and = −K 8 s 2 and the root with highest real part of equation (27)was obtained numerically usingNewtonʼs
method.
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The global stability of afixed point of a dynamical system can be quantified by the volume of its basin of
attraction. The ‘basin size’VBasin can be determined numerically using aMonte Carlomethod as the ratio of
initial conditions converging to a stable operation to the total number of initial conditions. Figure 5 panel (d)
shows how the basin volume depends on the delay time τ in comparison to the linear stability exponent λRe ( ).
As expected,VBasin tends to zero in the case of linear instability, λ ⩾Re ( ) 0.Maxima ofVBasin of different height
are observed in the stable parameter regions, including an almost perfect stabilization for τ ≈ 5 s. However,
thesemaxima do not coincide with theminima of λRe ( ).As both the linear stability and the basin volume
predict similar delays to be problematic for the system,we focus on the computationally easier to handle linear
stability in the following.

4.4. Stabilization by averaging
Measuring the local grid frequencywill generally take some time in a real-world system.We thus consider the
dynamics of the elementarymodel grid for the price function (7) including both delay τ ⩾ 0 and averaging over
a period ⩾T 0. The equation ofmotion for the angular frequency difference Δω Δθ= td d then reads

∫Δω αΔω Δθ γ Δω τ= − − − ′ − ′
−t

P K
T

t t
d

d
2 2 sin( ) ( )d . (32)

t T

t

The integration can be carried out in a straightforwardway by using (23) such thatwe obtain themodified
delayed dynamical system

Δω αΔω Δθ γ Δθ τ Δθ τ= − − − − − − −
t

P K
T

t t T
d

d
2 2 sin( ) [ ( ) ( )]. (33)

To evaluate the stability of the steady state (24), we have to calculate the eigenvalues λ for a systemwith both the
delay τ and the delay τ= +∼

T T . The Jacobian of the non-delayed system is given by (25) as above and for the

delay terms only Δω = −
Δθ

γ∂
∂ τ ( )t T

d

d
and Δω = +

Δθ
γ∂

∂ ( )t T

d

dT̃
are non-zero. The stability eigenvalues λ are then

given by the roots of the characteristic equation [43]

Figure 5.The global stability of a two-node networkwithDecentral Smart Grid Control is quantified by the volume of the basin of
attraction and compared to linear stability. Bothmeasures predict instability for similar delays τ. A visualization of the basin of
attraction for different values of the delay τ is shown in panels (a)–(c). Light green dots represent initial conditions that converge to the
fixed pointwhile dark blue dots assume a limit cycle or converge too slowly. Parameters are γ = −0.25 s 1,α = −0.1 s 1, = −P 1 s 2,

= −K 8 s 2 and 10 000 different initial conditionswere used. In panel (d) the basin volumeVBasin (discrete plot, light green) is plotted as
a function of τ in comparison to the stability exponent λRe ( ) (dark blue).We used the same parameters but only 1000 different initial
conditions.
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λ λ αλ γ= − + + − + − =λτ λ τ− − +( )p K
P

K T
( ) 2 1 e e 0. (34)T2

2

2
( )

Figure 6 shows the real part of the stability eigenvalue λRe ( ) as a function of the delay τ and the averaging
timeT. Instabilities are observed for certain values of τ, ifT is small as discussed above. But for a sufficiently high
T, the system stays stable regardless of the time τ. The actual values of the stability exponent λRe ( ) for large

γ≫T are comparable to the one of the systemwithout any price adaptation.
The results shown here are very interesting: while a delay in adaptation poses a stabilization risk to the grid,

averaging themeasured signal for a certain time removes the short timefluctuations that could resonantly drive
the system and thereby guarantee a stable operation state. Still, the nodes can adapt to changes of the generation
on all time scales slower thenT, which provides an effectiveDRmanagement system.

4.5. The role of the network topology
The larger the grid becomes, themore complex behavior it is able to show.Here,we consider anetworkwith four
nodes to test our results. Two consumers ( = − <P S D M( ) 0) are supplied by twogenerators
( = − >P S D M( ) 0). Each generator is coupled to a consumer tobalance the powerproduction/consumption.
In addition, the generators are coupled to eachother.As abovewe assume that all technical and economic
parameters are the same for all nodes of thenetwork. The equations ofmotion canbe read in appendixB.

Risks from resonant driving emerge in a gridwith delayed response andT=0 as discussed above. The grid
becomes unstable in certain regions of parameter space which are periodically spaced on the τ-axis. In a complex
network, there are generallymany different eigenmodeswith different frequencies. The parameter regions
where thesemodes can be excited generally overlap, such that the grid becomes unstable formost values of the
delay τ as shown in the dark blue curves of panels (c), (d) infigure 7. Only for a very fast response τ → 0 the
dynamic is stabilized.

We conclude that either a delayed adaptionmust be avoided, or alternatively, an averaging over a sufficiently
long periodTmust be introduced aswell. Figure 7 panel (b) shows the stability exponents λRe ( ) as a function of
τ andT for the four-node network. IncreasingT to valueswell above τ restores stability also for ‘dangerous’
values of τ as shown in the light green curves of panels (c), (d) in the figure.

5. Conclusion and outlook

In summary, we have proposedDecentral Smart GridControl, a direct and decentralized frequency-price
coupling to achieve a reliableDR in the collective network dynamics of power grids. The required information,
the grid frequency, is easily accessible from everywhere in the system. As a consequence, DR viaDecentral Smart

Figure 6. Frequency averaging stabilizesDecentral Smart Grid Control for delayed feedback. Averaging over an interval of sufficient
lengthT guarantees stability for all τ > 0. The figure displays a scheme of the system in panel (a) and the stability exponent λRe ( ) for
the system according to characteristic equation (34) as a function of delay τ as well as the averaging lengthT in panel (b). A transparent
layer is added at λ =Re ( ) 0.Cuts for two different butfixed averaging timesT in panel (c) and for two different but fixed delays τ in
panel (d) are added. Parameters are γ = −0.25 s 1,α = −0.1 s 1, = −P 1 s 2 and = −K 8 s 2 andNewtonʼsmethod is used to obtain λ.
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GridControl offers a huge potential with both technical and economic benefits, in particular in grids with a large
fraction of renewable sources.

First, the load information needs not be collected and evaluated centrally so that additional infrastructure for
collection and for sending back central price information, is not required. This removes privacy and data
security issues and should drastically lower the costs of hardware required for future power grids. The only
technical device requiredwould be a frequencymeter at each customer complementedwith a simple price
function either programmed or implemented in hardware. Second, our results suggest that for sufficiently short
feedback delays, as well as for longer delays with sufficient averaging, joint grid and economic stability is
guaranteed. Stated simply, such grid would be a stablemarket: a stable dynamic equilibrium implies economic
equilibrium. In contrast, whether joint economic and dynamic stability could be guaranteed in any other,more
centralizedDR setting, is, to the knowledge of the authors, yet unknown.

Decentral Smart GridControl does need somemodifications of the current system. For instance, the
currently implemented strict rules for frequency regulation need to be relaxed to allow for some (small)
variability, see section 3.3.Moreover,meters and price response algorithms need to be implemented at the
customers’ side, whichmight need convincing arguments. However, such decentralized controlmight still be
much simpler to implement politically as customers need not fear data privacy issues and grid operators would
not be required to installmassive, network-wide and highly reliable hardware and computing power.

Generally, determining dynamic stability is typically involved for any interdependent socio-technical or
techno-economic system, especially when the time scales of the system (here, the grid) and the control are
similar.We have uncovered several new systemic risks in potential control options for dynamicDR in smart
grids. The above results indicate that essential risksmay bemastered by an appropriate design of the control in
terms of decentralized and direct frequency-price coupling. This speaks forDecentral rather thanCentral Smart
GridControl of dynamicDRs.

We recommend to considerDecentral Smart GridControl as a viable and possibly inexpensive alternative to
centralmeasures ofDR. Since at least small and possibly unknown delays seempossible, prices should be
calculated directly on the basis of a sliding average of the local grid frequency.
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Figure 7. In networks only non-delayed systems, i.e., τ = 0,T=0 stabilize the systemwhile for a delay τ > 0, an averaging time >T 0
is required.Hence, averaging is evenmore important to ensure stability for larger systems. The figure displays a scheme of the system
in panel (a) and the stability exponent λRe ( ) for the system as a function of delay τ aswell as the averaging lengthT in panel (b). A
transparent layer is added at λ =Re ( ) 0.Cuts for two different butfixed averaging timesT in panel (c) and for two different butfixed
delays τ in panel (d) are added. Parameters are γ = −0.25 s 1,α = −0.1 s 1, = −P 1 s 2 and = −K 8 s 2 andNewtonʼsmethod is used to
obtain λ.
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AppendixA. Swing equation

In themain part, we analyze a coarse-grained oscillatormodel based on the physics of coupled synchronous
generators and synchronousmotors, recently derived and numerically evaluated by Filatrella et al [17] and
extended to complex networks by Rohden et al [18]. To achieve the large-scale network reduction, we aggregate
coherent synchronous generators. Coherency of two generatorsmeans that there is no difference in their
rotating angular frequency at any point in time. Together with the associated loads in that area, this coherent
group is replaced by a single rotatingmachinewith the index ∈ …j N{1, , }, which summarizes the physical
properties of that group. In the language of network science, one group corresponds to one node of the network.
Themoment of inertiaMj of that rotatingmachine and itsmechanical power inputPj

mech sumup linearly from
all generators and loads of the coherent group [15]. In some groups there ismore power generated than
consumed such that >P 0j

mech . If there ismore power consumed than produced, we have <P 0j
mech . The

transmission network delivers power fromnodeswith power excess to nodes with power need.
The state of a coherent group of rotatingmachines is determined by its angular frequency and the rotor or

power angleθ t( )j relative to the reference axis rotating at the nominal grid angular frequencyΩ π= ×2 50 Hz
orΩ π= ×2 60 Hz. Correspondingly,ω θ= td dj j gives the angular frequency deviation from the reference
Ω. The dynamic is governed by the swing equation [15, 17, 24]

θ
κ

θ
+ = −M

t t
P P

d

d

d

d
, (A.1)j

j
j

j
j j

2

2
mech el

wherePj
el is the electrical power that is transmitted to or fromother rotatingmachines and κ j measures the

damping, which ismainly provided by damperwindings. (Commonly, the symbolD is used for the damping
coefficient in the swing equation. In order to avoid confusionwith the demand function introduced in themain
text, we here use the symbol κ instead.) If themechanical power at a node j is constantly higher than the
corresponding electrical power Δ = − >P P P( 0)j j j

mech el , then the angular frequency deviationω j increases until
the localmismatch in power ΔPj dissipates due to damping.Note that all formulae use the angular frequencies
while the numbers are divided by π2 for the plots to obtain frequencies.

To analyze the dynamics of the grid beyond the overall angular frequency deviation ω ω〈 〉 = ∑:
N j j
1 , we

must take into account the details of the electrical coupling of the rotatingmachines along the edges of the
transmission grid. The apparent power at the grid node j is given by

∑=
=

S V I , (A.2)j j

k

N

jk

1

*

with the complex-valued voltageVj and the currents

= −( )I y V V , (A.3)jk jk j k

where yjk is the admittance of the transmission line between nodes j and k. In power engineering one generally
uses the nodal admittancematrixY, whose elements are defined as

⎧
⎨⎪
⎩⎪∑

=
− ≠

=
ℓ ℓ

Y
y j k

y j k
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.
(A.4)jk

jk

j

The apparent power at node j is thenwritten in the compact form

∑=
=

S V Y V . (A.5)j j

k

N

jk k

1

* *

Weneglect the ohmic resistance of the transmission lines as they are typicallymuch smaller than the shunt
admittances [47], hence the admittance =Y Bijk jk is purely imaginary. Furthermore, we assume that the

magnitude of the voltage is constant throughout the grid, =V V| |j 0 for all nodes ∈ …j N{1, , }. Then, the
apparent power simplifies to

⎡⎣ ⎤⎦∑ θ θ θ θ= − + −
=

( ) ( )S V B sin icos . (A.6)j

k

N

jk k j k j

1

0
2

The electric powerPj
el is given by the real part of this expression. Substituting this result into the swing

equation (A.1) thus yields the equations ofmotion
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=
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The factor =K V B:jk jk0
2 thus gives themaximally transmittable power between nodes k and j. Therefore, we call

it the coupling strength. It is zero, if two rotatingmachines are not coupled along a direct transmission line.
Due to the second order term, equation (A.1) describes an oscillatory systemof phase angles. As the phases

oscillate, also the local angular frequency deviationsω θ=t t t( ) d ( ) dj oscillate, a phenomenonwell-known in
power engineering [15, 21]. In the direct neighborhood of an equilibriumpoint in state space the oscillations are
nearly harmonic and can be decomposed into a set of eigenmodes, corresponding eigenfrequencies and
corresponding eigenvectors. The eigenfrequencies depend crucially on the connectivity of the power grid. In a
densely connected grid, oscillations are typically fast (>1Hz), while the so-called inter-area oscillations in
weakly coupled grid are significantly slower. For instance, inter-area oscillations between Turkey and the rest of
the European power grid with a period of up to 7 s have recently been observed [26].

We note that thismodel is derived from the physics of rotatingmachines [15], or alternatively by assuming
frequency-dependent loads [24]. This description includes hydro power aswell as power plants based on nuclear
and fossil fuel, which dominate todayʼs grid. It is expected that a rising penetration of renewable energy sources
will decrease the effective inertia in the future, whichmay however be compensated by advanced power
electronic devices [48]. The future development of these aspects is still under debate and beyond the scope of the
present article.

Appendix B. Four node system

In section 4.5we used a four node system. The equations ofmotion for this system are

θ Δω
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1 1 1 2 1 3 1 1 1 ˜

2 2 2 1 2 2 2 ˜

3 3 3 1 3 4 3 3 3 ˜
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withθ θ τ= −τ t( )j j andθ θ τ= − −t T( )jT j˜ for all j.
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