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Abstract
We study entanglement of themotional degrees of freedomof two tethered and optically trapped
microdisks inside a single cavity. By properly choosing the position of the trapped objects in the opti-
cal cavity and driving propermodes of the cavity, it is possible to equip the systemwith linear and
quadratic optomechanical couplings.We show that a parametric coupling between the fundamental
vibrationalmodes of two tetheredmicrodisks can be generated via a time-modulated input laser. For a
proper choice of themodulation frequency, thismechanism can drive themotion of themicrodisks
into an inseparable state in the long time limit via a two-mode squeezing process.Wenumerically
confirm the performance of our scheme for current technology and briefly discuss an experimental
setup that can be used for detecting this entanglement by employing the quadratic coupling.We also
comment on the perspectives for generating such entanglement between the oscillations of optically
levitated nanospheres.

1. Introduction

Entanglement, despite its wide variety of proposed potential applications, has been a challenging feature in the
theory of quantummechanics from its advent [1]. Besides its fundamental significance, its prominent role in
future information technologymakes it a concept with a large number of followers. Another intensively debated
aspect of quantumphysics is its border with classical physics, and how a quantum state of a specific systempasses
to a classical state due to decoherence introduced to the system as a result of its interactionwith the remainder of
theworld, the environment [2]. In attempts to understand these connections, speculations onwhether quantum
mechanics would eventually cease to be valid atmacroscopic scales have been put forward [3]. Investigating the
generation of distinct quantummechanical, i.e. non-classical, states for ever larger or eventuallymacroscopic
objects is thus important for improving our understanding of the quantum-to-classical transition. This could be
done by creating quantum states such as superposition states [4, 5], squeezed states [6, 7], or Fock states [8–10]
inmacroscopic objects. Hence, bringing the two concepts, entanglement and quantumbehavior ofmacroscopic
objects, together andmakingmicro–macro entangled states [11] or entangling twomacroscopic systems [12–
14] in order to study their evolution and transition to a separable classical state can shedmore light on debated
aspects of quantummechanics. Optomechanical systems are one of the candidates for realizing such
investigations [15].

Entangling twomechanical resonators in optomechanical systems calls for highmechanical-quality factors.
These can be achieved by reducing interactions between themechanical resonators and their thermal
environment, a task that broughtmany efforts into laboratories. Here, strong coupling of light withmatter that
exceeds dissipative processes can lead to optomechanical entanglement [16, 17]. One approach to achieve high-
qualitymechanical oscillations that has been proposed [18–20] and implemented [21, 22] during recent years is
to optically trap dielectric objects as amechanical component for an optomechanical system.However such
levitated nano-objects suffer decoherence due to the recoils of photons from the trapping fields. In particular,
spheres can scatter recoil photons into the entire solid angle. Away to suppress this decoherencemechanism can
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be to arrange for a situationwhere themajority of recoil photons need to be scattered into a discrete set ofmodes,
e.g. the resonantmodes of a high-finesse optical cavity. Thus, alternative setups have been proposed and
implemented that have both high-quality factors and high cooperativity [23, 24]. Dielectric tetheredmicrodisks,
for example, have proven to be capable of functioning as sensors for detecting high-frequency gravitational
waves [25]. Furthermore, they in essence have the same abilities as optically levitated dielectric objects with
respect to cavity cooling [26, 27], generating optomechanical entanglement [28], and preparing them in
quantum superposition states [4].

Motivated by both technical applications and the fundamental importance of generating purelymechanical
entangled states, we exploit the advantages of such systems to study entanglement properties of two optically
trapped dielectric objects inside a single cavity. Taking into account the relevant harmful sources of
decoherence, such as photon recoil heating and the impact of airmolecules, wewill see thatmechanical
resonators enhanced by optical trapping, such as tetheredmicrodisks [24], are appropriate candidates for
creating such entangled states.Wefind that, although the steady state of a continuously driven system composed
of two tetheredmembranes and several cavitymodes does, for realistic parameters, not show anymechanical–
mechanical entanglement, it can become inseparable by introducing a parametric interaction into the
mechanical system [29] via a time-modulated input laser. An analytical treatment of the systemwith an adiabatic
elimination technique suggests the use ofmodulated input lasers to excite a two-phonon squeezing process that
brings in a fullymechanical entangledGaussian state.We alsofind that it is rather challenging to create purely
mechanical entanglement between two fully levitated nanoparticles, as their size crucially determines their
coupling to optical cavitymodes and the amount of scattered cavity photons. In fact, this trade off propels one to
smaller particles leading to smaller coupling rates.

The remainder of the paper is organized as follows. In section 2, the generalmodel andHamiltonian of the
system is introduced.Wewill then study the dynamics of the system in section 3. Steady states of the system are
considered in section 4. Section 5 is then devoted to discussions of the parametric coupling of themechanical
resonators and entangling theirmotional degrees of freedom.Wewill also briefly discuss an entanglement
measuringmethod. Some considerations about entanglement of two levitated nanospheres are presented in
section 6. Finally, a summary of the paper and concluding remarks are given in section 7.

2. Themodel

Weconsider a Fabry–Perot cavity where the dielectric tetheredmembranes aremounted; see figure 1 for an
illustration. Eachmicrodisk is suspended from its support by a narrow band that loosely confines itsmotion.
These dielectric objects are then subjected to an opticalfield and experience an electric force via a dipole
interactionwith the light, resulting in an enhanced (both in frequency and quality factor)mechanical resonator.
Here, we focus on a one-dimensional (1D)model where three longitudinal cavitymodes are fed by three lasers at
frequenciesω iL, with =i 0, 1, 2. In ourmodel, one of the cavitymodes is strongly driven andwill act as a trap
for themicrodisks, while the two remainingmodes provide the optomechanical coupling. The objects are
trapped at the antinodes of the i=0 cavitymode, the onewhich hereafter will be called the trappingmode.
However, the two other opticalmodeswill also contribute to the trapping andwill slightlymodify the trap
frequency and shift the equilibriumposition of the tetheredmembranes. TheHamiltonian of the system, in a
frame rotatingwith the input laser frequencies, is given by [23]

Figure 1. Scheme of the possible experimental geometry: two tetheredmicrodisks are placed inside a Fabry–Perot cavity and optically
trapped at the antinodes of a strongly driven cavitymode (red thick lines). Two other cavitymodeswith proper phase differences are
employed to optomechanically interact with the levitated dielectric objects and produce the interaction between them (blue and green
lines). One of themodes ismodulated to bring in a parametric coupling.
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π λ=k 2i i is thewave number of each cavitymode and Ei is ameasure of the ith cavityfield amplitude. In
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We note that themodel presented in this section is general and is applicable tomost systemswith optically
trapped dielectric objects; nanospheres [18],microdisks [23], and nanodumbbells [20].However, wewill
concentrate on the case of tetheredmicrodisks andwill shortly discuss a versionwith nanospheres in section 6.

In order to get stably trapped objects, we assume that the trapping cavitymode is intensively driven such that
themotion of themicrodisks is well localized at its antinodes, i.e.,ϕ = 0j0 in equation (1). To keep this valid even

in the presence of the control cavitymodes (i=1, 2), one needs to assure that the intracavity intensity of the trap
field ismuch higher than for the othermodes ≫E E E,0 1 2. Hence, the trapped objects are in the Lamb–Dicke
regimewith 〈 〉 ≪k x̂ 1i j . These conditions allow us to expand the cosine term in theHamiltonian and keep the

terms proportional to k x( ˆ )i j
2.Wewill also see that it is sensible to neglect the quantum fluctuations of the i=0

mode and assume its only task is to provide the trap.Hence, theHamiltonian in terms of dimensionless
mechanical quadratures x̂ j and p̂j (with =x p[ ˆ , ˆ ] ij j ) reads
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where, Ω= x m2j j jzp, is the zero-pointmotion of the jth dielectric object. It is important to bear inmind

that ≪ij ij
q l , except for a particle placed at the antinode of a cavitymode.Note also that the laser detuning in

this new formof theHamiltonian is δ ω ω ϕ= − − ∑ = g˜ cosi i i j ij ijL, 1
2 2 , wherewe have dropped the tilde in

equation (2).We now turn to study dynamics of the above system.

3.Dynamics

The full dynamics of the system can conveniently be studied by quantumLangevin equations, which include
damping processes acting on the system, the associated noises and other sources of decoherence. The quantum
Langevin equations corresponding to theHamiltonian equation (2) are

Ω=x p aˆ̇ ˆ , (3 )j j j
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where κi is the cavity decay rate for the ithmode, which is associatedwith the input vaccumnoise operator âi
in.

The decay and decoherence in the cavitymodes is predominantly due to leakage through the inputmirror and
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scattering of photons from the edge of themicrodisks. In addition to the tether attached to themicrodisks, their
mechanicalmotion is affected by the random impacts of the chamber airmolecules, which lead to the damping
of their oscillations at a rate γj. This rate is in direct proportion to the chamber pressure and inversely

proportional to themean thermal velocity of the airmolecules v̄ [23] ( =v k T m¯ 3 B air whereT is the
temperature of the chamber,kB is Boltzmannʼs constant, andmair is themass of the airmolecules). However, the
coherence of themechanicalmotion ismostly affected byfluctuations in the optical trap [30] stemming from
scattering of the cavity photons by the dielectric object. In fact, this is themajor phenomenon affecting the
quantumnature of themechanical oscillators and substantially reduces their cooperativity. For levitated
nanospheres, this decoherence is very destructive, as the photons are scattered to any direction, accessing an
infinite number of free-spacemodes out of the effectively 1D cavity. However, in the case of a tetheredmicrodisk,
the effect of scattered photons ismuch smaller, as photons are predominantly scattered in the direction of the
cavity access, where they can only be scattered into a small discrete set of cavitymodes. Yet, the scattering of
cavity photons out of the cavity also brings in an extra cavity decay sourcemodifying the cavityfinesse.We
denote thismodified opticalfinesse byeff .

Since at room temperature the number of thermal optical photons is very small, the only non-zero
correlation function for the cavitymodes is δ〈 ′ 〉 = − ′a t a t t tˆ ( ) ˆ ( ) ( )i i

in in,† . TheMarkovian approximation for
thefluctuations inmechanical oscillation of the dielectric objects is valid for their relatively low frequencies and
one adopts the following correlation function

ξ ξ γ Γ δ′ = + + − ′( )( )t t n t tˆ ( ) ˆ ( ) 2 ¯ 1 ( ), (4)j j j j j
sym

th,
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Ω −
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B
is themean phonon number of the jthmechanical resonator connected to a

thermal bath at the equilibrium temperatureT.Γj describes the diffusion of themechanicalmomentum
stemming fromphoton recoil decoherence. Neglecting scattering of the controlmode photonswe have

Γ = λ Ω
ϵ −j L

V

V4 ( 1)j

j0 c,0

d, eff
.

3.1. Linearization
The quantumLangevin equations of (3) are nonlinear, but they can be linearized in the parameter regionwe are
interested in. Actually, in order to achieve the strong optomechanical coupling required for attaining stationary
entangled states, one needs to intensively drive the cavitymodes. This allows us to suppose that the field inside
the cavity is composed of a large coherent part and some quantum fluctuations around this classical state. Thus,
it is valid to transform each operator of the system as ↦ +o o oˆ ˆ and then focus on the fluctuations around
coherent part of the variable. This transformation holds formechanical oscillators aswell, expressing a new
equilibriumposition for them. As the quantumfluctuations are very small compared to the classical parts, it is
then reasonable to neglect any quadratic and higher-order terms and only keep the first-order terms in ô.
Consequently, therewill be no quadratic optomechanical interaction that is a valid approximation as long as

≪k x 1i j .We note that there is, of course, a pure quadratic optomechanical interaction that couples the
dynamics of the trapping cavity field and the dielectric objects. However, because of the deep optical trapping, its
effect on the dynamics of themicrodisks ismuch smaller than the linear coupling of the othermodes, andwe
have omitted such interactions in treating the system. Strictly speaking, this approximation is validwhen the
amplitudes of the cavitymodes obey ≪E k x Ei j i0 zp, . This criterion also allows for leaving out the quantum
dynamics of the trappingmode.

The coherent parts of the system variables obey the following dynamics
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where Ω Ω= + ∑ ∣ ∣= a˜ 2j j i i ij1
2 2 q indicates a slightmodification of the trap stiffness by the control cavitymodes.

After linearizing the quantumLangevin equations, the effectiveHamiltonian that would produce these
equations is quadratic in the systemoperators, and therefore, if we start the system in aGaussian state, it will
retain its Gaussian nature.Moreover, all noise operators have zero-meanGaussian correlations. Hence, the
system is fully characterized by itsfirstmoments calculated from equations (3) and the secondmoments that
could be obtained from equations (3).We nowdefineHermitian opticalfield quadratures X̂i andŶi via

= +a X iYˆ ( ˆ ˆ ) 2i i i .With the latter, the dynamics can be expressed in the compact form

= +u u nAˆ̇ ˆ ˆ , (7)

where the operator and noise vectors are defined as
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In general, the driftmatrixA is a function of time via Ω̃ j, the detuning parameters Δi, and the coupling factorsGij

because of time dependence of the field amplitudesEi.

4. Steady state of the system

First, let us study the steady state of the system and investigate possible stationary entanglement between
motional degrees of freedomof the two distinct, optically trapped dielectric objects. The state of thewhole
system is a zero-meanGaussian state, becausewe have linearized the dynamics around the firstmoments.
Therefore, to characterize the state of the system, one needs only to compute the covariancematrix of the system.
ForCW, Eis are constant, the systemwill arrive at its steady state provided that it is stable. The stability of the
system can be checked via a Routh–Hurwitz criterion [31]. Then, the covariancematrixV with elements

= 〈 + 〉V u u u uˆ ˆ ˆ ˆ 2ij i j j i of the steady state can be computed from the following Lyapunov equation [32]

T+ + =AV VA D 0, (8)

whichwill, of course, give a time-independent covariancematrix. In equation (8),D is the diffusionmatrix (the
matrix of noise correlations) given by a diagonalmatrix

γ Γ γ Γ κ κ κ κ= + +
Ω Ω D diag[0, ( ), 0, ( ), , , , ]

k T k T2
1 1

2
2 2 1 1 2 2

B

1

B

2
.

In order to achieve quantum states in the systemof twomechanical oscillators, we need to cool down both
the centre ofmass and the breathingmode of the system. According to the interaction term in equation (2) this
can be achieved by adjusting the phase factorsϕij. In fact, the optimal phase values for getting both collective

modes cooled down and realizingmaximumoptomechanical coupling areϕ ϕ ϕ ϕ= ± = = ∓ = π
11 12 21 22 4

.

Here, we consider these phase values for wavelengths around λ μ≈ 1064 mi , which in principle can be obtained
by properly positioning the objects inside the cavity. In practice, it is possible to achieve these phase values by
adjusting the position of the dielectric objects and driving proper longitudinal cavitymodes. Actually, for the ith
cavitymode, the equation relating phases of two trapped objects isϕ ϕ λ− = nki i i2 1 0, where ∈n . Hence, the
two control parameters are thewavelength (λi) and the relative position (nth antinode of the trappingmode).
Note also that, to avoid zero total optomechanical coupling for the object withϕ ϕ= − = ±π

j j1 2 4
, one needs to

choose different input powers and/or different cavity detuning, or slightlymodify these phase values.Here, we
numerically look for phase values, relative intracavity field amplitudes, and detunings that optimize themeasure
of the entanglement. Themeasure of bipartite entanglementwewill use is the logarithmic negativity [33, 34]

η= −{ }( )E max 0, log 2 , (9)N min

where ηmin is theminimum symplectic eigenvalue of the partially transposed covariancematrix. Note that a

bipartite state is inseparable when η <min
1

2
.

Wefirst examine the steady state of the system for experimentally feasible parameters. Infigure 2, variations
of ηmin versus the intracavity amplitudes of the optical controlmodes and their detuning is plotted for a cavity
containing two identical tetheredmembranes. Sincewe are interested in themechanical–mechanical
entanglement, ηmin corresponds to the reduced 4 × 4 covariancematrix that only containsmechanical
covariances. It is obvious from the plots that the steady state of the system gets very close to the inseparability
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verge η = 0.5min . Aswewill see in the next section, it is possible to cross the border by establishing a parametric
mechanical–mechanical coupling.

We note that in contrast to themembrane in themiddle setup [13], the opomechanical coupling can, for
optically trapped dielectric objects, not be enhanced on a similar scale by increasing the intracavity light
intensities. Inseparablemechanical states could in both setups be reached by increasing the effective
optomechanical couplingGij, which in practice is done by enhancing the light intensity inside the cavity.
However, to avoidwipeout of the stable optical trap, one also needs to increase intensity of the trappingmode in
expense of increasing the decoherence rate stemming from the photon recoil process. This behavior precludes
the generation of entanglement between optically trapped objects with constant inputfieldsmerely by increasing
their intensity.

Figure 2 also shows the steady-statemean phonon number of themicrodisks = 〈 〉 + 〈 〉 −n x p¯ ( ˆ ˆ 1) 2j j j
2 2 —

which is the same for both of the objects, as we have considered them to be identical. Note that themode
amplitudes at which the ηmin and n̄ j areminimal are not in conflict with our condition for stable trapping

( ≪E Ei 0). One also notices that the optimal values for laser detuning are Δ Ω Ω= ≈i 1 2. In our numerics, we

have considered silica dielectric objects with ϵ = 2.1and ρ = −2201 Kgm 3. The length of the Fabry–Pérot cavity
is =L 1 mm and thewavelength of all the input lasers is set around1064 nm.We assume that the pressure of the
chamber containing the setup is = −10 mbar6 , a value that has already been reached in recent experiments
[24]. The effective temperature of the system is taken to be =T 100 mK, which can be attained by a feedback
mechanism for precooling the system from room temperature (it can be a process similar to the technique used
in [35] for cooling nanospheres).We note that even though themodel considered here is fully based on cavity
trapping and optomechanics, it is in principle compatible with feedback trapping or optical tweezers setups. All
other relevant parameters are listed in table 1. To consider the effect of the tether attached to themicrodisks, we
take amoderate quality factor. The quality factor onewould get for a levitatedmicrodisk is solely determined by
the airmolecule impacts, which for pressures as low as 10−6mbar is∼ ×4 109. In our considerations,Qm is taken
to be three orders ofmagnitude smaller (see table 1). This value is considered to bewithin reach ofmoderate
experimental improvements [24].

Figure 2.Variations of ηmin (upper panels) andmean phonon occupation number n̄1 and n̄2 (lower panels) for twomicrodisks of
μ20 m diameter and150 nm thickness with respect to intracavity amplitudes when Δ Δ Ω= = +1 2 (left panels) and input laser

detuningwhen = =E E E0.11 2 0 (right panels). In the plots we have set =E E2 1 and Δ Δ=2 1. To get the oscillation frequency listed in
table 1 one feeds the trappingmode of the cavity by a15 mW laser.
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5. Parametric coupling via time-modulated inputfields

The failure in creating steady-state entanglement between themechanicalmotion of optically trapped objects for
realistic parameters leads us to an alternative way for attaining it. Entanglement between two objects can
originate from amutual interaction. Intuitively, it is clear that any interaction between themechanicalmotion of
the levitated objects ismediated by the optical cavityfields. However, to get amore detailed picture about this
fullymechanical interaction, we eliminate the role of cavityfield dynamics and look only at themechanical
resonators. That is, we assume that the systemoperates in theweak coupling regime κ<Gij i, and adiabatically

eliminate the cavitymodes to arrive at Ω=x pˆ̇ ˆj j j and

∑Ω γ= − − + +
=

p x p J xˆ̇ ˜ ˆ ˆ 2 ˆ ˆ , (10)j j j j j
l

jl l j

1

2

for themechanical dynamics. Here,

∑
κ Δ

κ Δ
=

+

+=

{ } { }
( )

J
G G G GIm Re

(11)jl

i

i ij il i ij il

i i1

2 * *

2 2 2

is themechanical–mechanical coupling factor and̂j is a noise operator composed of cavity noises X̂i
in
andŶi

in

and the intrinsicmechanical noise ξ̂j . Focusing on the interaction term reveals that the effective interaction

Hamiltonian is∑ J x xˆ ˆj l jl j l, . It is useful towrite it in terms of phonon annihilation and creation operators b̂ j and

b̂ j
†
. Then the effectiveHamiltonian of the system in a frame rotating at themechanical frequencies (or

equivalently in the interaction picture with respect to Ω∑ =  b b˜ ˆ ˆ
j j j j1
2 †

) is

⎡
⎣⎢

⎤
⎦⎥∑= + +Ω Ω Ω Ω+ − ( ) ( )H J b b b b h cˆ ˆ ˆ e ˆ ˆ e . . (12)

j l

jl j l
t

j l
t

eff

,

† † i ˜ ˜ † i ˜ ˜j l j l

Wenotice that the effectiveHamiltonian is composed of the following parts: (i) frequencymodification of each

mechanical oscillator (b bˆ ˆ
j j
†

), (ii) single-mode squeezing ( +Ω−b h cˆ e . .j
t2 2i ˜

j ), (iii) phonon hopping

( +Ω Ω− −b b h cˆ ˆ e . .t
1 2

† i( ˜ ˜ )1 2 ), and (iv) two-mode squeezing ( +Ω Ω− +b b h cˆ ˆ e . .t
1 2

i( ˜ ˜ )1 2 ). For our interest, the two-mode
squeezing phenomenon is the process that can produce an entangled state of the twomechanical resonators.
However, for aCW input laser, the single- and two-mode squeezing processes rapidly oscillate compared to the
two remaining phenomena and have a negligible effect on systemdynamics, i.e., the rotatingwave
approximation allows to ignore such terms.

In order to bring the separable steady state into an entangled state, one needs to excite this two-mode
squeezing process. This can be done by parametrically driving the interaction of two harmonic oscillators [29].
In optomechanical systems, such an enhancement in the optomechanical entanglement by exciting a two-mode
—opto-mechanical—squeezing process viamodulating the input light was investigated in [36–38]. Generally,
themechanical–mechanical coupling in equation (11) can become time dependent as a result of time-
dependent optomechanical couplings. This, in turn, is achieved by driving the cavity fieldwith a pulsed or
modulated input laser. Thus, to parametrically drive the oscillators, we consider a driving laser such that the
intracavity field amplitude is ω= +E t E E t( ) cos ( )i i i

(0) (1)
D , andwe demand for >E Ei i

(0) (1) to ensure that the
stability conditions are not affected by the time-dependent part. From equations (3) and the definition ofGijwe
see that for smallmodulation amplitudes ω≈ +G t G G t( ) cos ( )ij ij ij

(0) (1)
D with >G Gij ij

(0) (1) and conclude that

ω ω≈ + +( ) ( )J t J J t J t( ) cos cos 2 . (13)jl jl jl jl
(0) (1)

D
(2)

D

Putting this in equation (12) reveals that bymodulating the input lasers atω Ω Ω= +˜ ˜
D 1 2 and

ω Ω Ω= +( ˜ ˜ ) 2D 1 2 the two-mode squeezing process will be enabled and amore efficient generation of

Table 1.Parameters of the optomechanical
systems.

Quantity Microdisk Nanosphere

Ω π2 11 MHz 5 MHz

Qm 1× 106 3 × 108

eff 7× 105 4 × 105

m +10 pg2 −10 pg2
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entanglement can be expected. Yet, since >J Jjl jl
(1) (2) , onemay expectmore efficient production of entanglement

bymodulating at sum frequency of themechanical oscillators.

5.1. Numerical results
Wenow employ thismodulated input laser in the linearized Langevin equations (3) to numerically investigate
the entanglement properties of the system.Here, nomore approximations are beingmade beyond the Lamb–
Dicke approximation and linearization of the operators around their coherent parts.

The entangling protocol we explore is the following: The system starts by trapping the dielectricmicrodisks
in two appropriate antinodes—the ones that give the optimal phases—of the trappingmode, which is assisted by
auxiliary trappingmethods to provide a precooledmechanicalmotion and a stable three-dimensional (3D)
optical trap.We now activate theCWcontrolmodesEi

(0) , for further cooling down themotion of the objects
close to their ground state and to get close enough to the inseparability threshold (see figure 2). Then, the
modulated laser beams are injected into the cavity ωE tcos ( )i

(1)
D tomake an entangled state. Infigure 3, the

results of such a procedure are summarized, where theminimum symplectic eigenvalue of the bipartite, full-
mechanical subsystemof the dielectricmicrodisks is plotted for two important driving frequencies: the sumof

themechanical frequency (ω Ω Ω= +D 1 2) and their average (ω = Ω Ω+
D 2

1 2). The plot shows time evolutions of

ηmin, wherewe have chosen the steady states resulting fromCWdriving amplitudesEi
(0) as the initial conditions

for the evolution undermodulated driving. In the inset, the logarithmic negativity of themechanical state is
shown for the case whereω Ω Ω= +D 1 2 and for timeswhere the systemhaswell approached its asymptotic
quasi-stationary regime.One observes thatηmin can be reduced below values of η = 0.5min , signaling
entanglement, bymodulating the amplitude of the input laser. The parameters used in the plot are the same as
the parameters used infigure 2 and listed in table 1. The detunings are chosen according to the optimal steady
state values Δ Δ Ω≈ ≈1 2 1, the CW intracavity amplitudes are = =E E E0.11

(0)
2
(0)

0, while we onlymodulate one

of the input lasers =E E0.092
(1)

0.
We have here chosen the parameters so that the system is kept far from any instabilities as predicted by the

Routh–Hurwitz criterion applied in section 4. For this reason, the parameters thatmaximize the entanglement
are very close to the parameters for optimal cooling, and themean phononnumbers of themicrodisks show a
behavior very similar towhatwe found for constant drive amplitudes infigure 2.

5.2.Measuring the entanglement
Finally, let us briefly discuss an experimentalmeasurementmethod for verifying the generated entanglement.
Themethodwewill discuss here is somewhat similar to that of [13, 16]. Themeasurement can be performed via
two additional optical cavitymodes.We choose thewavelength of these cavitymodes so that one of them
sustains both dielectric objects at its nodes (+mode) and the othermode has one object at its node, while the
second lies in one of its antinodes (−mode). This will lead to a quadratic optomechanical coupling between the
probemodes and the optically trapped objects. Such a relatively weak interaction enables us to read off the state
of themechanical oscillations withoutmaking a considerable influence on the system. In fact, its only side effect
is amodification of the stiffness of the trap that can be easily taken into account.

Figure 3.Evolution ofminimum symplectic eigenvalue of the partially transposedmechanical–mechanical covariancematrix of two
tetheredmicrodisks optically trapped in a cavity: withoutmodulation (light gray),modulated at average of themechanical frequencies
ω Ω Ω= +( )D

1

2 1 2 (dark gray), andmodulated at the sumofmechanical frequenciesω Ω Ω= +D 1 2 (black). The time is normalized

to τ = π
Ω Ω+

4

1 2
. The red dashed line indicates separability criterion. The inset shows logarithmic negativity of themechanical

entanglement at their quasi-steady state when the cavity field ismodulated at the sum frequency.
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The equation describing the dynamics of the probe cavitymodes in a frame rotating at the their resonance
frequencies reads

κ κ= − − ± +Δ
± ± ± ±

±( )a a x x x x aˆ̇ ˆ i 2 ˜ ˆ ˆ e 2 ˆ , (14)tq
1 1 2 2

i in

where =± ± ±a˜ 2
q q . In the above equation, we have assumed the same decay rates for both cavitymodes and

that both trapped objects have the same shape, so that  = ≈ ∣ ∣i i i
q

1
q

2
q . By expressing themechanical positions

in terms of = +x b bˆ ( ˆ ˆ ) 2j j j
†

, and furthermoving to the frame rotating atΩ Ω Ω= ≈1 2, we arrive at

⎡
⎣⎢

⎤
⎦⎥κ κ= − − ± + ± +Ω Δ Ω Δ

± ± ±
− − +

±
± ±( )( ) ( ) ( )a a x b x b x b x b aˆ̇ ˆ i ˜ ˆ ˆ e ˆ ˆ e 2 ˆ . (15)t tq

1 1 2 2
i

1 1
†

2 2
† i in

Now,we set Δ Ω= ±± and drop rapidly oscillating terms to get

κ κ= − − + ++ + + +( )a a x b x b a aˆ̇ ˆ i ˜ ˆ ˆ 2 ˆ , (16 )
q

1 1 2 2
in

κ κ= − − − +− − − −( )a a x b x b a bˆ̇ ˆ i ˜ ˆ ˆ 2 ˆ . (16 )
q

1 1
†

2 2
† in

Typically, the quadratic coupling is weak enough to have κ ≫ ±
˜ q

formoderate input pumps. Therefore, the
outgoing probe cavitymodes adiabatically follow the dynamics of the collectivemechanical quadratures,


κ

= − + ++ + +( )a x b x b a aˆ i
2 ˜ ˆ ˆ ˆ , (17 )out q

1 1 2 2
in


κ

= − − +− − −( )a x b x b a bˆ i
2 ˜ ˆ ˆ ˆ , (17 )out q

1 1
†

2 2
† in

wherewe have used the standard input–output relation κ= −a a aˆ 2 ˆ ˆout in [39]. By carrying out homodyne
measurements on these outputmodes, one determines all elements of themechanical–mechanical covariance
matrix and quantifies the entanglement of the system.

6. Levitated nanospheres

In this section, we consider the setup of a cavity with two levitated nanospheres and discuss its suitability for
generating entanglement between theirmechanical oscillations. Themodel used in previous sections is general
enough to hold for nanospheres as well. Any trappingmethod such as cavity trapping [21], optical tweezers [40],
and feedback traps [35, 41] can be used in this case. In practice, the three cavitymodes—withGaussian profiles
—considered in our 1Dmodel are not enough for trapping the objects. Actually, in a 3D cavity-trapping setup,
one needs to excite extra cavitymodeswith non-Gaussian profiles [42] and/or external optical tweezers [41] to
stabilize the trap and achieve cooling in all three dimensions.

TheHamiltonian of the system is the same as equation (1) and the only required adjustment is to set

coupling factors to ω= ϵ
ϵ

−
+

g ( )ij

V

V i
3

2

1

2

j

i

d,

c,
[18]. In the case of levitated nanospheres, one source of damping are

collisions with residual gasmolecules in the chamber, which in principle can be suppressed by lowering the
chamber pressure. However, there are some practical difficulties preventing the attainment of arbitrarily low
chamber pressures [40]. Yet, recent works have shown that it is possible to get stably trapped nanospheres even
at chamber pressures as low as −10 mbar6 by combining electrical and optical traps or by employing feedback
mechanisms [35]. Despite these efforts, the coherence of themechanicalmotion is heremostly affected by
fluctuations in the optical trap [30] stemming from scattering the trapping photons by the dielectric
nanospheres [4, 18, 43]. Neglecting scattering of the control-mode photons, the explicit relation ofΓj in
equation (4) for nanospheres is

⎜ ⎟⎛
⎝

⎞
⎠Γ π ϵ

ϵ λ
Ω= −

+
V2

5

1

2
. (18)j

j
j

2 d,

0
3

For nanospheres located inside a Fabry–Pérot cavity, the photon recoil heating is so destructive that no
entanglement can be seen for the parameters of the usual experimental setups, even by employing a parametric
coupling.However, the disruptive effect of the photon recoil in a nanosphere setup could bemoderated by
adopting a cavitywith extremely close concavemirrors, since due to the almost spherical symmetry of the cavity,
most of the incident photonswill be prevented from scattering into free-spacemodes, resulting in amuch
smaller decoherence rate. Therefore, we assume that it is possible to reduce the decoherence rate of the
nanospheres to 10%of their actual values, e.g. by covering at least 90%of the solid angle around the trapped
nanospheres with the cavitymirrors. Figure 4 shows the possiblemechanical entanglement between two200 nm
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diameter silica nanospheres, provided the value ofΓj is scaled to one-tenth of that in equation (18). The other
parameters are the same as the tetheredmembrane setup, as listed in table 1.

The basic problemof levitated nanospheres that hinders the creation of entangled states can be understood
from the relations of gij andΓj, which are both in direct proportion to the volume of the objectsV jd, . To reduce
the photon recoil decoherence rate, one could reduce the size of the nanosphere, which, however, leads to a
smaller single-photon optomechanical coupling. The small single-photon coupling, however, cannot be
compensated by intensely driving the cavity controlmodes, as this will wash out the stable trapping that occurs
when the Lamb–Dicke approximation is valid. Furthermore, even outside the Lamb–Dicke regime, for all
reasonable parameter regimes, increasing the drivingfield intensities sufficiently to create entanglementwould
inevitably imply ejecting the nanospheres from the trap. In our considerations, we haveΩ Ω≈1 2; therefore, a
modulated input that enhances two-mode squeezing also drives degenerate parametric oscillations of the
individualmechanical resonators aswell (see equation (12)). Therefore, the oscillations of the nanospheres will
be significantly amplified by applying amodulated laserwith relevant frequency. By employing a high-
amplitudemodulated drive, the amplitude of themechanical oscillators will eventually become too high to be
kept in the trap. In our numerics, which consider an infinite trap depth, this behaviour appears as an exponential
growth of themechanical quadratures with time.

7. Summary and conclusion

In summary, we have studied an entangling protocol for two optically trapped dielectricmicrodisks inside a
single cavity.We have presented a cavity trapping and controlling scheme that is also compatible with optical
tweezers and feedback trappingmechanisms. In our scheme, optical controlmodes provide linear
optomechanical couplings that effectively lead to amechanical–mechanical coupling.While decoherence
induced by photon recoil heating typically precludes the generation of steady-state entanglement for input fields
of constant intensity, we have here shown that it is possible to push the system into an inseparable state by
modulating the input lasers at proper frequencies to activate parametric coupling between themechanical
oscillators. The results show a reasonable quasi-stationarymechanical–mechanical entanglement for
experimentally feasible parameters.We have also briefly discussed a possiblemethod formeasuring such an
entangled state and commented on a possible setup for generating an entangled state of two levitated
nanospheres.
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