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Abstract
In this paper, we try to understand the pseudogap phenomenon observed in the
cuprate superconductor through a model study. Specifically, we explore the so-
called low-temperature pseudogap state by turning off the superconducting (SC)
off diagonal long range order in an ansatz state for the t–J model (Weng 2011
New J. Phys. 13 103039). Besides strong non-Gaussian SC fluctuations, the
resulting state also exhibits a systematic pseudogap behavior in both spin and
charge degrees of freedom, manifested in the uniform spin susceptibility, spe-
cific heat, non-Drude resistivity, Nernst effect, as well as the quantum oscillation
associated with small Fermi pockets emerging in strong magnetic fields, etc.
These anomalous ‘normal state’ properties are found in qualitative consistency
with experimental measurements in the cuprates. Such a model study establishes
an intrinsic connection between the peculiar pseudogap properties and the non-
BCS nature of the SC ground state. A critical comparison with other approaches
to the doped Mott insulator is also made.
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1. Introduction

It has been well established [1–4] experimentally that the high-Tc superconductivity in the
cuprates shares the same off-diagonal long-range order (ODLRO), in a form of electron Cooper
pairing, with a conventional d-wave BCS superconductor. In the BCS theory, turning off such
an ODLRO, say, by increasing temperature or applying a strong magnetic field, will lead to a
Landauʼs Fermi liquid description of the normal state [5]. The issue under debate is what the
‘normal state’ is for a cuprate superconductor.

Experimentally it has been observed that the so-called pseudogap regime is always
present at temperatures higher than the superconducting (SC) transition temperature Tc, at
least in the underdoped regime [2, 6–8]. The pseudogap phenomenon has been regarded as
one of the most unique physical properties of cuprate superconductors. Whether the
pseudogap phase sets the stage for superconductivity to emerge as its low-temperature
instability [8–18] or it simply competes with superconductivity as an independent phase
[19–22], has been a crucial issue.

It has been a very challenging quest to understand the nature of pseudogap physics
purely phenomenologically. Alternatively, it is desirable to lay down a general theoretical
framework or organizing principles first and then critically examine the experimental facts.
Once the self-consistency of a microscopic theory is established, its comparison with the rich
experimental observations, even at a qualitative level, can either lend strong support for it or
simply falsify it.

It has been widely accepted that the cuprate superconductors are doped Mott insulators of
strong correlations [9]. At half-filling, the low-energy spin degrees of freedom are properly
described by an antiferromagnetic (AF) Heisenberg model, while the charge degree of freedom
is gapped due to the strong on-site Coulomb repulsion. The low-lying charge degree of freedom
is introduced by doping holes into the system [8–10]. The SC state appears at low doping,
where the AF long-range order (AFLRO) gets destroyed by the motion of doped holes.
Experimentally, the Mott gap seems to remain finite and large [23, 24], which guarantees that
the charge carriers are the doped holes, while the majority spins in the background are still
neutral. Namely, at least in the underdoped cuprates, the superconductivity occurs in a doped
Mott insulator regime [8–10].

Some main issues concerning the ground state physics are as follows. Firstly, how the
AFLRO at half-filling gets destroyed by doping; secondly, how the superconductivity arises at
finite doping; thirdly, how the superconductivity begins to diminish at overdoping. Once
these are understood, then the next question is, after the SC coherence is destroyed by
raising temperature or applying strong magnetic fields, what will be the normal state? In
particular, if the pseudogap phase is a natural normal state above the SC dome in a doped Mott
insulator?

Hence, the pseudogap physics can be used as a direct probe into a hypothesized SC ground
state. The Gutzwiller-projected BCS ground state or the so-called ‘plain vanilla’ resonating-
valence-bond (RVB) state has been previously proposed [9, 13] to describe the super-
conductivity in the simplest doped Mott insulator, i.e., the two-dimensional (2D) square lattice
t–J model. The pseudogap properties based on this ground state ansatz has been intensively
studied in the literature [8, 15].

Recently, a new SC ground state ansatz has been proposed [25] for the same t–J model. It
is distinct from the aforementioned ‘plain vanilla’ RVB ground state by a two-component RVB
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order instead of the one-component one. In contrast to the ‘plain vanilla’ RVB state, the new
ground state can recover an accurate description of the AFLRO state of the Heisenberg model at
the half-filling (zero doping) limit, while predicts a different (non-BCS) superconductivity at
finite doping [25].

Most importantly, the new ansatz state can explicitly keep track of a singular sign structure
(altered Fermi statistical signs) of the t–J model. Specifically, the conventional fermion signs of
non-interacting electron gas are completely removed by strong on-site repulsion in the t–J
model at half-filling, which is described by the Heisenberg model with the ground state
precisely satisfying the so-called Marshall sign rule [26] that is a non-statistical trivial sign
structure. The non-trivial sign structure (known as the phase string effect [27, 28]) only emerges
upon doping, but is much sparser without bearing any similarity with the conventional fermion
signs of the underlying electrons.

Based on such a new SC ground state [25], we shall present a theoretical description of the
low-temperature pseudogap phase in this paper.

Some general properties unique to the present psuedogap phase are found as follows. The
state is characterized by a generalized electron fractionalization. Here the correlated electrons
are described as if there are three subsystems: holons for doped holes of charge +e; neutral
spinons of =S 1 2; and the backflow spinons accompanying the hopping process of the holons.
What is particularly simplifying in such a low-temperature pseudogap phase is that the bosonic
holons are always Bose-condensed, while the neutral spinons and backflow spinons remain in
two-component RVB pairing. In other words, the three subsystems are respectively all in the
ODLRO states of their own.

It is well known that ODLRO in a condensed matter system breaks a global symmetry,
resulting in a generalized ‘rigidity’ and great simplications for a many-body system. For these
subsystems, the involved symmetries are actually the associated emerging U(1) gauge degrees
of freedom upon fractionalization [25]. The ‘Meissner’ effects due to these ODLROs then
suppress the gauge fluctuations, which otherwise would strongly fluctuate and confine these
fractionalized particles back to the electrons [8]. Thus, the hidden ODLROs of the subsystems
protect the fractionalization of the electrons self-consistently.

These hidden ODLROs do not necessarily break the true global symmetries of the system
in general. As it turns out, the aforementioned non-trivial sign structure or phase string effect
dictates the above peculiar fractionalization of the electrons and mediates the so-called mutual
Chern–Simons gauge interaction between the holons and neutral spinons. In contrast to the U(1)
gauge fluctuations associated with the fractionalization, such topological gauge fields cannot be
‘Higgsed’ by the hidden ODRLOs and play a crucial role in distroying the SC phase coherence
in the pseudogap phase.

The pseudogap behaviors are actually the explicit consequences of these hidden ODLROs.
For example, the RVB ordering of the spinons is responsible for the pseudogap properties in the
uniform magnetic susceptibility and specific heat capacity over a characteristic temperature T0
set by a renormalized superexchange coupling (which decreases with doping), known as the
upper pseudogap phase (UPP) [29]. It is in agreement with the early experiments [30–36].

The holon condensation further defines a lower pseudogap phase (LPP) at lower
temperatures. Once it happens at a finite doping, the true AFLRO ceases to develop because a
doping-dependent, small gap is induced by the mutual Chern–Simons gauge fields in the spin
excitation spectrum. So the LPP is a ‘spin liquid’ (or short-ranged RVB state). It sets a stage for
superconductivity to emerge, but the phase coherence is still disordered by thermally excited
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spin excitations, again via the mutual Chern–Simons gauge fields. Such an LPP is thus featured
by strong non-Gaussian SC fluctuations. The longitudinal resistivity is of non-Drude behavior,
which is supplemented with a strong Nernst effect. All of these are clear at variance with the
usual Gaussian fluctuations in a narrow critical regime of a BCS superconductor [5].

These anomalous pseudogap properties in the LPP are qualitatively consistent with the
experimental observations in the cuprates [30–33, 35, 37–44]. Finally, the true SC instability
happens when temperature is sufficiently lower than the spin gap, where the fractionalized spin
excitations become ‘confined’ via the mutual Chern–Simons gauge fields, and their novel phase
disordering effect on the SC coherence gets screened out below Tc [45].

It is noted that the LPP as a spin liquid/vortex liquid state has been previously studied by
effective theory approaches [46–48]. The present study further provides a microscopic
framework based on the wave function description, which handles the short-range correlations
more carefully. The main distinction is an emergent two-component RVB structure in the spin
background [25]. Namely, the spin degrees of freedom are now composed of two: a spin liquid
always pinned at half-filling together with the so-called backflow spinons describing the
hopping effect on the spin background.

Such a two-component RVB structure further predicts another non-SC state, which may be
obtained with the turning off the ODLRO of the backflow spinons by strong magnetic fields,
say, in the magnetic vortex core region. This core state is to be called the LPP-II, in which the
backflow spinons become charged with coherent Fermi pockets, whose Luttinger volume is
commensurate with the doped holes. It is responsible for a novel quantum oscillation and the
Pauli behavior of the spin susceptibility, and provides a consistent explanation for the
experiments [49–51].

The rest of the paper is organized as follows. In section 2, by starting with a new SC
ground state ansatz for the doped t–J model, we introduce the LPP. An effective Hamiltonian
and the corresponding phase diagram from mean field self-consistent calculation will be
presented. In section 3 a self-consistent phenomenology for the LPP will be presented, based on
the microscopic effective theory and a comparison with the experiments in the cuprates will be
made. In section 4, a critical comparison of the present approach with the slave-boson approach
to the t–J model will be made. Finally, section 5 will be devoted to a discussion. An effective
topological field theory description of the LPP known as the compact mutual Chern–Simons
gauge theory will be also outlined in appendix A.

2. Low-temperature pseudogap phase as precursor of superconductivity

As emphasized in section 1, in this work we will explore the LPP as a ‘normal state’ with the
SC ODLRO being turned off. In other words, it is non-SC but is most closely related to the SC
ground state. To characterize such an LPP microscopically, in the following, we start with a
new SC ground state ansatz, which has been recently proposed [25] for the t–J model.

2.1. Motivation: SC ground state ansatz

In a doped Mott insulator, the doubly occupied sites are in a high-energy sector due to a large
on-site repulsion U, which exists only in virtual processes to mediate the so-called AF
superexchange coupling =J t U4 2 between the nearest neighboring (NN) spins (t is the bare
NN hopping integral). At half-filling, with each lattice site occupied by one electron, the
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relevant degrees of freedom are localized neutral spins. At finite doping, the neutral spins
remain at singly occupied sites, and doped charge carriers are at those sites where the electron
numbers deviate from the single occupancy. The simplest model to describe the cuprate system
as a doped Mott insulator is the so-called t–J model [9, 11, 52]

∑ ∑= − + + −
σ

σ σ− ( )H t c c J S S n nˆ ˆ h.c. ˆ · ˆ ˆ ˆ , (1)t J

ij
i j

ij

i j i j
† 1

4

where i, j represent the sites in a 2D square lattice, ‘h.c.’ represents the Hermitian conjugate of
the forward term, and σĉi is the annihilation operator of an electron at site i with spin index σ. Ŝi

and n̂i are the spin and number operators, respectively, at site i. In equation (1), a no-double-
occupancy constraint must be always satisfied: ⩽n̂ 1i for each site i for the hole-doped case.
Defined in this restricted Hilbert space, σĉi as a bare hole creation operator is not equivalent to
the original electron annihilation operator anymore [8, 10].

An SC ground state has been recently constructed [25] based on the hole-doped 2D t–J
model, which is of the following peculiar form of electron fractionalization

Φ Φ Φ Φ≡ ⊗ ⊗( )C ˆ , (2)h a bG 
with C as the normalization factor.

Here, one does not see the electron creation or annihilation operators directly. Instead, the
ground state is composed of three subsystems. The+e charge sector of doped holes is described
by

∑Φ φ≡ ( )l l h h, ,... ... 0 , (3)h

l
h l l h

{ }

1 2
† †

h

1 2

where the bosonic wave function φ ≃ constanth , which defines a Bose-condensed ‘holon’ state
with hl

† acting on a vacuum 〉|0 h. The motion of doped holes will also generate spin backflows,
which are described by ‘itinerant’ fermionic a-spinons as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑Φ ≡ ↓ ↑g a aexp ˜ 0 , (4)a

ij
ij i j a

† †

where σai
† acts on a vacuum 〉|0 a and the a-spinons are paired with an RVB amplitude g̃ij.

The main spin background is described by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑Φ = ↑ ↓W b bexp 0 (5)b

ij

ij i j b
† †

in which the neutral ‘spinons’ are RVB-paired with an amplitude Wij in equation (5), where σbi
†

as a bosonic b-spinon creation operator acts on a vacuum 〉|0 b.
In the SC ground state (2), the no-double-occupancy constraint ⩽n̂ 1i is enforced by the

projection operator

≡ P Pˆ ˆ ˆ , (6)sB
where P̂s enforces the single-occupancy constraint ∑ =σ σn 1i

b ( ≡σ σ σn b bi
b

i i
† ). Namely, the state

Φ≡ PRVB ˆ , (7)s b
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is a neutral spin background which is always pinned at half-filling. The localized spin
background 〉|RVB is a Liang–Docout–Anderson (LDA) [54] type of bosonic RVB state. At
half-filling, Ψ 〉 = 〉C| |RVBG , and the LDA state can describe the AF ground state very
accurately in this limit [25, 54].

P̂B in equation (6) further enforces the constraint that the h-holon and a-spinon always
satisfy

=σ σn n n (8)i
a

i
h

i
b

¯

such that each a-spinon always coincides with a holon as ∑ =σ σn ni
a

i
h

¯ (here ≡σ σ σn a ai
a

i i¯ ¯
†

¯ and
≡n h hi

h
i i
† with σ σ≡ −¯ ). Namely, at the hole site, the a-spinon will compensate the neutral b-

spinon in 〉|RVB which is an empty site physically. The a-spinons will accompany the hopping
of the holons, and play a crucial role in keeping track of the effect of the itinerant motion of the
doped holes on the spin degrees of freedom.

In the fractionalized form equation (2), there is no trace of the original electrons. In fact,
the original electron ĉ-operator, acting on the ground state (2), can be expressed as follows:
[25]:

σ= −σ σc h a eˆ ˆ ( ) ˆ , (9)i i i
i iΩ†

¯
† ˆ

i 
where σ−( )i is a staggered sign factor introduced for convenience and the phase shift operator
Ω̂i will sensitively depend on spin correlations in Φ 〉| b , as defined by [25]

Φ Φ= −( )Ω̂ , (10)i i
s

i
1

2
0

where

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑Φ θ σ=

σ
σ

≠

l n( ) , (11)i
s

l i

i l
b

and

∑Φ θ=
≠

l( ), (12)i
l i

i
0

in which θ =l( ) Imlni −z z( )i l (zi is the complex coordinate of site i).
Here the ĉ-operator defined in equation (9) is only a hole-creation operator. The

corresponding SU(2) spin operators associated with doped holes are given by

∑σ≡
σ

σ σS a aˆ , (13)i
az

i i
1

2
†

and

≡ − − ≡ − −+
↑ ↓

−
↓ ↑S a a S a aˆ ( 1) ˆ ( 1) . (14)i

a i
i i i

a i
i i

† †

On the other hand, acting on the neutral spin state in equation (2), the SU(2) spin operators for
b-spinons are given as follows:

∑σ≡
σ

σ σS b bˆ , (15)i
bz

i i
1

2
†
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and

≡ − ≡ −Φ Φ+
↑ ↓

−
↓ ↑

−S b b S b b eˆ ( 1) e , ˆ ( 1) , (16)i
b i

i i i
b i

i i
† i † ii

h
i
h

from the original Schwinger-boson representation of spin operators with, say,
≡ −+

↑ ↓S b bˆ ( 1)i
b i

i i
† . Here

∑Φ θ=
≠

l n( ) , (17)i
h

l i

i l
h

which entangles the b-spinons with the h-holons non-locally. Finally, the total local spin
operators are given by

= +( )S S Sˆ ˆ ˆ ˆ ˆ . (18)i i
b

i
a 

Hence, in such a fractionalized doped-Mott-insulator superconductor, the fundamental spin
and charge degrees of freedom are described by three subsystems, all possessing ODLROs of
their own. The charge carriers as bosons experience a Bose condensation in Φ 〉| h . The spins are
effectively characterized by a two-fluid state, which shares similarities with other proposals in
different contexts [56–59]. Here one type is of local moment character for a Mott insulator: they
form a bosonic RVB pairing in Φ 〉| b , which can recover the correct description of the
antiferromagnetism in the half-filling limit [25, 54], while become a short-range AF (spin
liquid) state in the SC phase; the other type is of itinerant character associated with doping: they
are fermions forming a BCS-like pairing. Such an SC state will thus show distinctive ‘rigidity’
associated with different ODLROs hidden in its charge and spin components.

2.2. d-wave superconductivity

2.2.1. SC order parameter. Now let us examine the SC ODLRO in equation (9). The electron
singlet pair operator

∑Δ σ

Δ

≡

=
σ

σ σc c

F

ˆ ˆ ˆ

ˆ , (19)

ij i j

ij ij

SC
¯

0

in which the second line acts on the fractionalized state (2).
Here the phase part of Δ̂ij

SC
is defined by

⎡⎣ ⎤⎦≡ Φ Φ+F e . (20)ij
j ii(1 2) ( ) ( )i

s
j
s

The amplitude part of the Cooper pairing is given by

Δ Δ≡ −ϕ Φ− −( )h h e eˆ ˆ ˆ ( 1) ˆ , (21)ij i j ij
a j0 † † i iij j

0 0 
where the pairing operator of the a-spinon is defined by

∑Δ σ≡
σ

σ σa aˆ . (22)ij
a

i j
†

¯
†
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ϕ0
ij is a non-dynamic π flux per plaquette in a square lattice which is defined as

⎡⎣ ⎤⎦∑ϕ θ θ≡ −
≠

l l( ) ( ) . (23)ij
l i j

i j
0 1

2
,

In the following, for simplicity, we shall focus on the case of the NN sites, i.e., =i NN j( ), in
examining the SC order parameter. In the ground state of equation (2), the holon condensation
and a-spinon pairing Δ〈 〉 ≠ϕ−eˆ 0ij

a i ij
0

will lead to an s-wave Δ〈 〉 =ˆ constantij
0

. The phase factor

− Φ−e( 1) j i j
0
is a constant independent of site index j, which may be easily shown by noting that

⎡⎣ ⎤⎦− × − = =Φ Φ ϕ− −e e( 1) ( 1)
*

e 1j ii i i2j i ij
0 0 0

for =i NN j( ) with a proper gauge choice of ϕij
0 in

evaluating Δ〈 〉ϕ−eˆ
ij
a i ij

0
(see below).

The SC phase coherence will be determined by

≠F 0. (24)ij

Note that here Φ j( )i
s is different from Φs

i defined in equation (11) by that l = j should be
removed in the summation over site l:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑Φ θ σ≡

σ
σ

≠

j l n( ) ( ) . (25)i
s

l i j

i l
b

,

According to equation (24), each unpaired spinon will contribute to a π2 vortex to the phase of
the SC order parameter and their confinement will result in the SC phase coherence.

With the s-wave amplitude Δ〈 〉ϕ−eˆ
ij
a i ij

0
and phase coherence 〈 〉 ≠F 0ij , the d-wave pairing

symmetry of the order parameter can be further identified by comparing the phase difference
between the two NN bonds, i.e., +i i x, ˆ and +i i y, ˆ, as follows. First, one finds

= ∑ ∑ ∑θ σ θ σ
+ +

+ − +Δ σ σ σ σ+ + + +( )F F e e , (26)ii x ii y
A i y n i x n

ˆ ˆ
* i i ( ˆ) ( ˆ)s

i x i y
b

i y i x
b

ˆ ˆ ˆ ˆ

where, on the right-hand side of the first line, the subscript Δ denotes a summation over the
closed path of the links +i i x( , ˆ), + +i x i y( ˆ, ˆ) and +i y i( ˆ, ) for the gauge field As.

Because of the presence of short-range AF order in 〉|RVB , such that
σ σ∑ ≃ ∑σ σ σ σ+ +n ni y

b
i x
b

ˆ ˆ , one has
⎡⎣ ⎤⎦≃ = −∑ ∑ ∑θ σ θ σ θ θ σ+ − + + − +σ σ σ σ σ σ+ + + + + + +e e 1 (27)i y n i x n i y i x ni ( ˆ) ( ˆ) i ( ˆ) ( ˆ)i x i y

b
i y i x

b
i x i y i y

b
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

in the second line of equation (26) (by noting θ θ+ − + = ±+ +i y i x π( ˆ) ( ˆ)i x i yˆ ˆ ).
Consequently

≃ − <
∑

+ + ΔF F e 0 (28)ii x ii y

A
ˆ ˆ

*
i s

(generally the flux produced by ≃A 0s within the small loop Δ in the bracket on the right-hand
side of equation (27) is vanishingly small and the average of such a phase factor will not change
the overall sign) and one thus expects a negative sign difference between 〈 〉+Fii x̂ and 〈 〉+Fii ŷ .
Therefore, the electron pairing order parameter is generally d-wave like, which originates from
the phase string effect and short-range AF correlations as was pointed out previously in [55].

2.2.2. Emergent quasiparticle. Just as annihilating a Cooper pair will produce a non-local
phase factor Fij in equation (19), the electron decomposition form (9) also implies that injecting
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a bare hole into the system will induce a global (non-local) phase shift [25]. It means that a bare
hole state created by ĉ would be different from a low-lying hole excited state by a phase shift
e Ωi ˆ

i, i.e.

Ψ Ψ=

→ × −

σ σ
−( )c c eˆ e ˆ

e low lying excitation . (29)

i
Ω

i
Ω

Ω

G
i ˆ i ˆ

G

i ˆ

i i

i

In the SC phase with 〈 〉 ≠e 0Ωi ˆ
i , based on the electron fractionalization (9), an injected bare

hole has an intrinsic fractionalization by

Ψ Φ Φ Φ

Φ Φ Φ

→ ⊗ ⊗

∝ ⊗ ⊗

σ σ

σ

( )
( )

c h a

h a

ˆ ˆ e

e . (30)

i i h i a
Ω

b

i
Ω

h i a b

G
†

¯
† i ˆ

† i ˆ
¯
†

i

i



Namely, in the presence of holon condensation and phase coherence, a bare hole injected into
the SC ground state may decay into an a-spinon excitation. In the single-particle spectral
function, such a low-lying sharp mode will appear in the antinodal region of ± π( , 0) and

± π(0, ) with a spectral weight proportional to the density of holon condensate 〈 〉h| |i
† 2 and

vanishing above Tc when 〈 〉 =e 0Ωi ˆ
i [25].

On the other hand, such a fractionalized quasiparticle mode may not be stable in other
momentum region. As a matter of fact, a quasiparticle excitation as created by the c-operator
can become a stable mode as a bound state of the h†, a† and the phase shift factor e Ωi ˆ near the
nodal region, with a BCS-like nodal energy spectral given by

ϵ Δ= − + ( )E μ( ) . (31)k k k
2 2

Here ϵk is a band spectrum of the original electron with a renormalized hopping integral
δ∝ +t t (1 ) 2eff [25], μ is the chemical potential of electrons and a d-wave gap function

∑Δ Δ≡ + +( )J q q2 cos cos . (32)x y
SC

k

q
k q

Such a quasiparicle mode is presumably coherent in the nodal region at Ek which is lower than
the gap of an a-spinon excitation [25]. Therefore the present ground state predicts a dichotomy
of quasiparticle excitations between the nodal and antinodal regions.

2.3. Definition of the LPP

Based on the SC ground state (2), its normal state can be defined by switching off the SC
coherence in the wave function. Instead of a conventional Fermi liquid state, new states of
matter will emerge in the underdoped regime and exhibit pseudogap behaviors as to be explored
in the following.

According to equation (19), the SC order parameter

⎡⎣ ⎤⎦Δ Δ= Φ Φ+ˆ ˆ e , (33)ij ij
j iSC 0 i(1 2) ( ) ( )i

s
j
s
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requires the simultaneous formation of both pairing amplitude and phase coherence. Hence, the
LPP can be defined as a normal state with either

⎡⎣ ⎤⎦〈 〉 =Φ Φ+e 0j ii(1 2) ( ) ( )i
s

j
s

or Δ〈 〉 =ˆ 0ij
0

. In the
following we discuss the two cases separately.

2.3.1. LPP I. The LPP with the pairing amplitude Δ〈 〉 ≠ˆ 0ij
0

but

⎡⎣ ⎤⎦ =Φ Φ+e 0 (34)j ii(1 2) ( ) ( )i
s

j
s

will be defined as the LPP-I.
An LPP-I state can be naturally obtained as

Φ Φ Φ Φ= ⊗ ⊗− >( )ˆ . (35)h a b TLPP I 0


Namely, it is a >T 0 version of the SC ground state (2). In other words, the LPP-I state (35) is
non-SC at >T 0, but reduces to the SC ground state at T = 0. Here Φ 〉| h still describes the holon
condensation, Φ 〉| a describes the a-spinons in BCS-like pairing and Φ 〉| b describes the b-spinons
in bosonic RVB pairing, as to be determined as the mean-field solution below, just like the
ground states of equations (3)–(5).

It is straightforward to understand why the SC phase coherence is thermally disordered in
equation (35) at >T 0. Note that the phase Φs

i as defined in equation (11), is composed of
vortices locking with single b-spinons, which are thermally excited in Φ 〉| b once >T 0, and
consequently lead to disordering the phase coherence in equation (34). Later we shall show that
the LPP-I state actually has an SC instability at a finite Tc. At <T Tc, the thermally excited
spinons in Φ 〉| b will further form loosely bound pairs, due to the confinement force generated by
the vortices locking with the b-spinons. This will go beyond the mean-field solution (35).

2.3.2. LPP II. At T = 0, equation (35) naturally recovers SC phase coherence even at the mean-
field level. This is due to the fact that all the b-spinons form short-range RVB pairs in the
ground state, which ensures the phase coherence in equation (2). In order to make phase
disordering at T = 0, a natural case is that the b-spinons form long-range RVB pairings such
that free neutral spinons can be spontaneously generated without energy cost, which may
happen in the dilute doping boundary with the AFLRO starting to recover [60, 61].

But in the following, we shall consider another case of non-SC ground state at finite
doping, in the absence of the AFLRO. It corresponds to the case that the pairing amplitude Δ〈 〉ˆ

ij
0

vanishes, while the phase coherence (24) is still maintained. Here, the pairing of the a-spinons is
destroyed in Φ 〉| a to result in a vanishing amplitude of the Cooper pairing at T = 0. Such a non-
SC ground state may be realized by, say, applying strong magnetic fields in the underdoped
regime. It will be called the LPP-II, which is described by

Φ Φ Φ Φ= ⊗ ⊗Δ− =( )ˆ . (36)h a bLPP II 0a
In the ground state of the LPP-II, the holon and b-spinon states, Φ Φ〉 ⊗ 〉| |h b , will remain

essentially the same as in the SC state. But the a-spinon pairing disappears in Φ 〉 Δ =| a 0a .
Consequently, a free Fermi gas state of Φ 〉 Δ =| a 0a will dominate the low-energy physics in an
LPP-II state, as to be detailed below.

10
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2.4. Effective Hamiltonian

In order to get the effective Hamiltonian for the variational wave function (2), we reexpress the
original t–J model in equation (1) in terms of the fractionalization formalism (9) as follows:

= +− ( )H H Hˆ ˜ ˜ ˆ , (37)t J t J 
where [25]

∑= − +
σ

σ σ
ϕ+ −( )( )H t h h a a e˜ e h.c., (38)t

ij
i j

A ieA
i j

† i † iij
s

ij
e

ij
0

and

⎡
⎣⎢

⎤
⎦⎥∑ Δ Δ= − − − ( )( )( )H

J
n n˜

2
1 1 ˆ ˆ , (39)J

ij
i
h

j
h

ij
s

ij
s†

in which the bosonic RVB order parameter

∑Δ ≡
σ

σ
σ σ

−e b bˆ . (40)ij
s A

i j
i

¯
ij
h

Here, the h-holon field formally carries charge +e and couples to the external
electromagnetic field Aij

e in equation (38). The h-holons and b-spinons are further mutually
coupled to each other via the U(1)⊗U(1) gauge fields, Aij

s and A ,ij
h respectively, in

equations (38) and (39), which are topological (mutual Chern–Simons) fields as their gauge-
invariant flux strengths in an arbitrary closed (oriented) loop c are constrained to the numbers of
spinons and holons within the enclosed area Σc:

∑ ∑= −
Σ∈

↑ ↓( )A π n n , (41)
c

ij
s

l
l
b

l
b

c

and

∑ ∑=
Σ∈

A π n . (42)
c

ij
h

l
l
h

c

The origin of such mutual Chern–Simons gauge fields can be traced [25, 27] back to the large
gauge (mutual duality) transformation Θei ˆ in equation (86), which precisely incorporates the
non-local topological effect of the phase string sign structure hidden in the t–J model.

Now we introduce the most essential mean-field order parameter [14, 25, 55] for the t–J
model in the representation of (38) and (39):

Δ Δ≡ ˆ , (43)s
ij
s

with =i NN j( ). It is a bosonic RVB order parameter characterizing the spin singlet
background, which reduces to the original Schwinger-boson mean-field order parameter [53] at
half-filling, where it well describes quantum AF spin correlations over a wide temperature
regime ∼T J k0 B (kB is the Boltzmann coefficient). A finite Δs will persist into the underdoped
regime to define a pseudogap phase known as the UPP [29], which covers both the SC state as
well as the LPP states discussed in this work.

According to equation (9), one expects an additional U(1) gauge symmetry between the h-
holon and a-spinon: → θh hei i

† i †i and →σ
θ

σ
−a e ai i¯

† i
¯
†i . The presence of this gauge symmetry

11
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implies that a new U(1) gauge field denoted by Aij
a is minimally coupled to h-holons and a-

spinons via +1 and −1 gauge charge, respectively. Because of the RVB pairing of the a-spinons
in the ground state of LPP-I as we will discuss later, this gauge field is generally ‘Higgsed’. In
fact, the projection operator ̂ in equation (37) will result in a general relation [25]:
Δ Δ Δ Δ= n n( ˆ ) ˆ ( ˆ ) ˆ

ij
a

ij
a

i
h

j
h

ij
s

ij
s† † , which ties the RVB pairing of the b-spinons with that of the

backflow a-spinons. If one imposes this constraint by introducing a Lagrangian multiplier γ,
then a fractionalized effective Hamiltonian can be finally written down as follows:

= + +H H H H˜ ˜ ˜ ˜ , (44)h s aeff

with

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑λ δ= − + + −+( )H t h h h h N˜ e h.c. , (45)h h

ij
i j

A eA
h

i
i i

† i †ij
s

ij
e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑Δ λ= − + + −

σ
σ σH J b b N˜ ˆ h.c. , (46)s s

ij
ij
s

b

i
i i
†

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑γ Δ Δ λ δ= − + − + −

σ
σ σ

ϕ

σ
σ σ

− ( )H t a a e a a N˜ h.c. ˆ ˆ , (47)a a

ij
i j

ij
ij
a

ij
a

a

i
i i

† i
† †

ij
0

where

Δ=J J 2, (48)s
s

eff

δ γδ= − −J J(1 ) 2 , (49)eff
2 2

and λh b a represents the chemical potential for the degrees of freedom of the holon/the b-
spinon/the backflow a-spinon.

Note that slightly different from [25], here the pairing amplitude of the a-spinons is
introduced via the Lagrangian multiplier γ by implementing the average constraint:
Δ Δ δ Δ≃( ˆ ) ˆ | |ij

a
ij
a s† 2 2. The fluctuations going beyond this mean-field equality can be expressed

[25] by ∑ +〈 〉 ( )J S S S Sˆ · ˆ ˆ · ˆ
ij i

b
j
a

i
a

j
b
. Such a term is to be omitted in the following since we shall

be mainly concerned with the mean-field description of the LPP at lower temperature, where at
least one of the degrees of freedom is gapped.

The effective coupling constants, th and ta, in H̃eff can be determined either variationally or
by mean-field approximation, which depend on the bare t, J and the doping concentration, as
well as the projection operator ̂ . In fact, based on the renormalized Gutzwiller approximation
scheme [12], we have approximately doping-independent ≈ ≈t t ta h . But since the basic sign
structure of the t–J model has been rigorously captured by the mutual Chern–Simons gauge
fields together with the statistics of the constituent particles, the basic physical behavior that we
are concerned with at long wavelength, low energy, should not be qualitatively sensitive to the
choices of these effective coupling constants.

Therefore, the hidden ODLRO of Δ ≠ 0s , without explicitly breaking symmetries,
provides the necessary ‘rigidity’ for the present fractionalization to occur. It defines the
underdoped regime of the t–J model and ensures the validity of the above effective Hamiltonian
in the so-called UPP (see below).
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2.5. Fractionalized states as mean-field solutions

There are three subsystems in the fractionalized ground state (2), which can be determined at
the mean-field level by the effective Hamiltonian H̃eff in equation (44). Since the LPP states
defined at the beginning of this section are closely related to these mean-field solutions, in the
following we discuss each degree of freedom as well as their interplay one by one.

2.5.1. The holon degree of freedom. The charge degree of freedom is characterized by the
bosonic h-holons in Φ 〉| h in equation (3). In both the SC and LPP states, the holons as bosons
will further experience a Bose-condensation (i.e., 〈 〉 ≠h 0) according to the definition. Such a
holon condensation will provide another hidden rigidity in addition to the two-component RVB
pairings of the spinons. As a result, the corresponding low-lying excitation will be
‘supercurrents’ generated from the holon condensate, which lead to the following unique
observable consequences.

Based on H̃h in equation (45), the supercurrents contributed by the holon condensate are
described by a generalized London equation [45–47]

ρ ϕ= + +( )eJ r A A( ) . (50)h s
s e

Here, the superfluid stiffness ρ ≡ ρ
s m

h

h
, where ρh is the superfluid density of the holons with an

effective mass = mh a t2 h

2

2
(a is the lattice constant of the square lattice). Reflecting the Mott

physics, ρ → 0s in the half-filling limit. ϕ ensures the U(1) gauge invariance and satisfies

∮ ϕ = × πrd · 2 integer (51)
c

under the requirement of single-valueness of the holon field.
What is special in equation (50) is the presence of an emergent ‘electromagnetic field’

vector As in additional to the true external electromagnetic field Ae. Its gauge-invariant field
strength is given by equation (41) in a lattice version, or in the following continuum version

⎡⎣ ⎤⎦∮ ∫= −
Σ

↑ ↓π n nr A r r r rd · ( ) d ( ) ( ) , (52)
c

s b b2

c

where the flux of As within an arbitrary loop c on the left-hand side is constrained to the
enclosed spinon numbers on the right-hand side, as if a ±π flux-tube is attached to each
individual spinon. Here ↑ ↓n r( )b

, denotes the local density of spinons.
Based on equation (50), each unpaired b-spinon will automatically generate a supercurrent

vortex, known as a spinon–vortex composite [46, 47], as follows:

∮ ρ= ±πr J rd · ( ) ( ) , (53)
c

h s

where the loop c encloses a single unpaired spinon (for =A 0e ). In other words, besides
conventional minimal π2 -type vortices given in equation (51), the holon condensate can sustain
a minimal π-type vortex, in which a b-spinon has to be nucleated at the vortex core. This ‘cheap
vortex’ excitation is one of the most important elementary excitations in the LPP-I.

The supercurrents in equation (50) will generally cost a kinetic energy according to H̃h,
which is given by [45–47]

13
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∫ρ
=L rJ r

1
2

d ( ) . (54)h
s

h
2 2

At low concentration of spinon–vortex excitations, such a ‘London action’ will provide a
logarithmic potential between the vortices to make vortex–antivortex binding and thus SC phase
coherence. Beyond a critical concentration, the proliferation of these spinon-vortices will
effectively screen out the logarithmic interaction in the same fashion as a Kosterlitz–Thouless
(KT) type transition, resulting in the intrinsic LPP-I state at >T Tc.

Finally, to ensure the holon condensation, the fluctuations of As in equation (50) should be
under control. Indeed, according to its definition in equation (41), if the underlying neutral b-
spinons are all in short-ranged RVB-pairing in equation (5), As can get cancelled out
significantly in favor of Bose condensation of the holons as well as the mean-field decoupling
between the holon and b-spinon states in the ground state (2). In the following subsection, we
shall see that, as a matter of fact, a short-range RVB state in equation (5) will be in turn caused
by the holon condensation self-consistently.

2.5.2. The b-spinon degree of freedom. The building block of the neutral spin background
Φ 〉| b is the b-spinon, as shown in equation (5) at T = 0. It is governed by H̃s in equation (46), in
which such neutral spin degrees of freedom are influenced by the doped holes mainly through
the lattice gauge field Aij

h as well as Jeff . As the holons remain Bose condensed in both the SC
and LPP states, its gauge-invariant field strength in equation (42) is basically determined by the
local superfluid density ρh in the following continuum version

∮ ∫ ρ=
Σ

πr A r r rd · ( ) d ( ). (55)
c

h
h

2

c

Consequently, Aij
h becomes a non-dynamic field and H̃s in equation (46) can be easily

diagonalized, resulting in a mean-field solution [25, 62] Φ 〉| b in equation (5) (more details are
presented in appendix B).

At T = 0, the mean-field RVB pair amplitude Wij in the state Φ 〉| b of equation (5) has been
obtained previously as follows [25]: ∝ ξ−W e| |ij

r| | 2ij
2 2

if i and j belong to opposite sublattices and
=W 0ij for two sites on the same sublattice. Here ξ δ= a π2 is the corresponding spin–spin

correlation length of Φ 〉| b . Namely, with a finite hole concentration δ, Φ 〉| b describes a short-
range AF state with ξ essentially determined by the average hole–hole distance. It is a ‘ghost’
(neutral) spin liquid state always pinned at half-filling, with the spin excitation gapped at

δ∝E Jg in the spin-1 excitation spectrum [25, 62]. Note that ξ diverges at δ = 0, where
∝W r1 | |ij ij

3 actually becomes quasi long-ranged. Correspondingly Φ 〉| b exhibits an AF long-
range order with Φ〉 = 〉P|RVB |s b reproducing [25] a highly accurate variational ground state
energy for the t–J model at half-filling [54].

Thus, the ground state (2) reduces to 〉|RVB at half-filling, which is of the same form as the
LDA wave function [54] and naturally restores the AFLRO state of the Heisenberg model. In
the SC regime, 〉|RVB becomes a spin liquid state, which in turn ensures the phase coherence of
equation (24) for the Cooper pairs moving on the ‘vacuum’ 〉|RVB .

As discussed above, Φ 〉| b will remain the same mean-field solution of H̃s in the LPP-I at a
finite temperature. The gapped thermally excited b-spinons will then decide the basic
thermodynamic properties of the LPP-I as to be detailed in section 3.
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Besides the gauge field Aij
h, the doping effect will further influence the neutral spinon

background by strongly renormalizing the effective superexchange coupling Jeff or Js in H̃s

(equation (46)). In a previous approach [29], an empirical fitting of Jeff as a function of doping
has been used. Here Jeff can be determined self-consistently with the Lagrangian multiplier γ
after the consideration of the backflow a-spinon subsystem (see below). Based on equations (46)
and (47), the magnitude and doping dependence of Jeff at zero temperature are obtained from
the mean-field self-consistent equations as shown in figure 1 at different choices of the
parameter ta. Clearly, Jeff decreases monotonically from the bare J with the increase of doping
through the interplay between the localized spins (i.e., b-spinons) and the itinerant spins (i.e.,
the backflow a-spinons). The latterʼs density is commensurate with the doping concentration.
Once Jeff is known, the transition temperature T0 for the bosonic RVB order Δs can be
determined by

=T
J

k ln 3
, (56)

B
0

eff

which defines the UPP boundary [29]4. By approximately using Jeff calculated at T = 0 with
=t J2a and =J 120 meV, the crossover temperature T0 (as noted before, Δs does not

correspond to a real symmetry breaking) for the UPP is shown in figure 2 (the curve marked by
triangles). The critical doping at vanishing Jeff will separate the underdoped regime from the
overdoped regime in the present doped Mott insulator. With Δ = 0s in the ‘overdoped’ regime,
the electron fractionalization discussed so far will no longer be stable at the mean-field level (a
Fermi liquid like state may become stabilized at low temperatures as to be discussed later).

2.5.3. The spinon–vortex composite: an elementary excitation. Although the SC ground state
is explicitly fractionalized in terms of three mean-field-type subsystems in equation (2), the
aforementioned elementary excitations of two subsystems, i.e., the holon condensate and b-

Figure 1. The doping dependence of the renormalized superexchange coupling Jeff at
zero temperature, obtained by solving the mean-field self-consistent equations at
different values of the parameter ta.

4 Note that here the expression of T0 in equation (56) is slightly different from equation (15) given in [29] because
in the latter a slightly different constraint for b-spinons, i.e., δ∑ = −σ σ σb b N (1 )i i i

† , is used in the mean-field
theory.
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spinon RVB background, will be essentially ‘entangled’ by mutual Chern–Simons gauge fields
according to equations (45) and (46), resulting in a unique novel excitation: the spinon–vortex
composite [46, 47]. Such a spinon–vortex will be a crucial elementary excitation in
characterizing the LPP-I state.

Specifically, the b-spinon excitations are created by breaking up RVB pairs in the mean-
field spin liquid state Φ 〉| b . They are responsible for the pseudogap behavior in the spin degrees
of freedom as will be shown in the next section. According to the generalized London
equation (50), a superfluid current vortex of vorticity ±π (cf equation (53)) will be
spontaneously generated around each b-spinon excitation. Then, accompanying the b-spinon
excitations that are charge-neutral, the associated vortices will play a fundamental role to result
in non-Gaussian-type SC fluctuations in the LPP-I state.

Generally, the spinon–vortex excitations are described by +H H˜ ˜h s in equations (45) and
(46), whose low-energy effective description is a mutual Chern–Simons gauge theory [48, 60],
outlined in appendix A. In section 3.1 we will present the basic phenomenology of the LPP-I
state governed by such elementary excitations.

In the global phase diagram shown in figure 2, we present a characteristic temperature Tv
for the LPP-I, as estimated based on the criterion previously obtained [47], i.e., the holon
condensation is totally destroyed when the concentration nv of excited spinon-vortices becomes
equal to the concentration δ of the holons. In the same phase diagram, the SC phase transition Tc
is determined [45] by equation (77), at which the free spinon-vortices form bound pairs (cf
section IV below), leading to the so-called spinon confinement transition. In table 1, different
phases in the global phase diagram of figure 2 are marked by their corresponding ‘hidden’
ODLROs, where ‘1’ represents a non-zero value of the order parameter and ‘0’ denotes a
vanishing value.

Figure 2. The characteristic temperature scales for the UPP (T0) and the LPP-I (Tv) as
well as the superconducting (SC) phase (Tc) are marked based on the mean field theory
of the effective Hamiltonian (44). Note that in this phase diagram, the AFLRO state at
half-filling actually can persist [60, 61] over a small but finite doping concentration,
which will be further investigated elsewhere. The transport and charge dynamics in the
so-called strange metal regime at >T T0 have been previously explored in [63] based on
the effective Hamiltonians (45) and (46). In the overdoped regime with →T 00 , a
possible Fermi-liquid-like instability may occur at low temperature.
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2.5.4. The backflow a-spinon. An emergent fermionic spinon, i.e., the a-spinon, is an
important component of the ground state (2). It is described by H̃a in equation (47). The
corresponding ground state (4) can be obtained as the mean-field solution with Δ〈 〉 ≠ˆ 0ij

a
, which

is similar to a conventional BCS state, but does not carry charge due to its ‘Meissner’ response
to the gauge field as pointed out before. Such an itinerant neutral spinon serves as a spin
backflow accompanying the hopping of a holon, which describes the hopping effect, in addition
to the phase string effect via the mutual Chern–Simons gauge field Ah, on the spin degrees of
freedom [25].

In terms of H̃a in equation (47), one may write down the corresponding mean-field
Hamiltonian as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑ ∑

∑ ∑

γχ γ Δ σ

γ χ Δ λ δ

= − + − +

+ + + −

σ

ϕ
σ σ

σ

ϕ
σ σ

σ
σ σ

− −

( )

( ) ( )H t e a a e a a

a a N

˜ * h.c.

, (57)

a a
a

ij
i j

a

ij
i j

ij

a a
a

i
i i

MF i † i †
¯

†

2 2 †

ij ij
0 0

where χ χ≡ 〈 ∑ 〉 =ϕ
σ σ σ

−e a a ( )*a
i j

ai †
ij
0

and Δ σ Δ≡ 〈 ∑ 〉 =ϕ
σ σ σ

−e a a ( )*a
i j

ai †
¯

†
ij
0

. Note that in the

presence of a π flux depicted by ϕ0
ij, we have found that the s-wave solution of Δ〈 〉ϕ−eˆ

ij
a i ij

0
is

always more stable than the d-wave one at low doping, in contrast to [25]. Here, for
convenience, the gauge of ϕ0

ij will be chosen such that

= − =ϕ ϕ− + −+ +e ( 1) , e 1 (58)ii 1 ii i x y i i y, ˆ
0

, ˆ
0

so there are two sites in a unit cell, and the two sublattices are defined by:

⎪

⎧
⎨
⎩=

∈
∈

i
A i

B i

if odd

if even.
(59)

y

y

By the Fourier transformation:

∑=σ σ( )a
N

ak R
1

2
exp i · . (60)I

A B
I
A B A B

k
k

Table 1. Hidden ODLROs in the fractionalized degrees of freedom and the corre-
sponding characteristics in the global phase diagram illustrated in figure 2. Here ‘1’
represents a non-zero value of the corresponding order parameter and ‘0’ indicates a
zero value.

Phase Δs 〈 〉h 〈 〉Fij Δ〈 〉ˆ
ij
a

SC 1 1 1 1
LPP-I 1 1 0 1
UPP 1 0 0 1
LPP-II 1 1 1 0

Strange metal 0 0 0 0
Fermi liquid? 0 0 0 0
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Here R I
A B represents the position of A B site in the unit cell ‘I’. Then we get

∑Ψ Ψ γ χ Δ

λ δ

= + + ×

+ −

( )H N

N

˜ 2

(1 ), (61)

a
a a

a

k
k k k

MF † 2 2

where Ψ Ψ Ψ≡ ( , )A B T
k k k , Ψ ≡ ↑ − ↓a a( , )A A A T

k k k
† , Ψ ≡ ↑ − ↓a a( , )B B B T

k k k
† , and the matrix k is

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

λ σ γΔ σ σ γΔ σ

σ γΔ σ λ σ γΔ σ
=

− + − − −

− − + +
( )

( )
t k a k a t k a k a

t k a k a t k a k a

2˜ cos 2 cos 2˜ cos 2 cos

2˜ cos 2 cos 2˜ cos 2 cos
, (62)

a x a z
a

x x a y z
a

y x

a y z
a

y x a x a z
a

x x

k

in which γχ≡ +t tã a
a, σx and σz are the Pauli matrices. Then it is straightforward to

diagonalize the mean-field Hamiltonian equation (61) and obtain the energy dispersions, ϵ± a
k1

and ϵ± a
k2, by

ϵ ξ Δ ϵ ξ Δ= + = +( ) ( ) ( ) ( ), , (63)a a a a a a
k k k k k k1 1

2 2
2 2

2 2

where ξ λ= − + +t k a k a2˜ cos cosa
a x y ak1

2 2 , ξ λ= + +t k a k a2˜ cos cosa
a x y ak2

2 2 ,

Δ γΔ= +k a k a2 cos cosa a
x yk

2 2 due to the π-flux. The mean-field free energy reads

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥∑
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βϵ
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α
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F

N N

˜ 2
ln 2 cosh

2

2 (1 ), (64)

a
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k

kMF
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2

2 2

where β ≡ k T1 B . Next, by minimizing this mean-field free energy, i.e.

Δ χ λ
∂
∂

=
∂
∂

=
∂
∂

=
F F F˜ ˜ ˜

0, (65)a
a

a
a
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a
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we get the self-consistent equations:

∑

∑

∑
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α
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=

=

=

=
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=
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k
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where Ak and αBk are defined as

βϵ
ϵ

≡ + ≡α
α

α

( )
A k a k a Bcos cos ,

tanh 2
. (67)x y

a

ak k
k

k

2 2

Hence, the backflow a-spinons form a BCS-like pairing state in equation (4). Due to the s-
wave nature, in the SC state and LPP-I state, they will not contribute to the low-lying dynamics
and thermodynamics significantly except for providing a finite hopping integral th for the holons
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and renormalizing Jeff . In other words, the a-spinons constitute the backbone of the unique
fractionalization in equations (2) and (35) with a rigidity against the internal U(1) gauge
fluctuations. They will also contribute to some unique finite energy dynamics [25], which are
not the focus of the present work.

Finally, in the LPP-II state defined at the beginning of this section, a special case has been
considered, in which the pairing of the a-spinons gets suppressed, say, in magnetic vortex cores
by strong magnetic fields at low temperature. Here Φ 〉| a in equation (4) will reduce to a gapless
(Fermi liquid) nomal state as a local LPP-II state defined in equation (36). With vanishing Δa

inside the vortex core, the ‘Meissner’ effect or the rigidity due to the a-spinon pairing gets
destroyed, while the holons still remain Bose condensed in equation (36). Then the external
electromagnetic field Ae will be transferred, via the internal U(1) gauge degree of freedom, from
the holon part in equation (45) to solely act on the a-spinons. In other words, the a-spinons will
become charged and exposed to the probe of external electromagnetic fields in the LPP-II. On
the other hand, with the holon condensation, the internal U(1) gauge fluctuations are still
‘Higgsed’, and thus the a-fermions should be quite coherent without feeling strong gauge
scattering.

Therefore, a Fermi liquid composed of the a-spinons will emerge as a new state of matter
in the LPP-II, which violates the Luttinger theorem for the original electrons without explicitly
breaking a global symmetry. Due to the fractionalization in equation (36), such a new Fermi
liquid state is embeded in the backdrop of a SC/pseudogap background where the majority of
the spin degrees of freedom are still governed by the b-spinons. Only in the overdoped regime
with →J 0eff , would a different non-SC state appear which is beyond the scope of the
present work.

3. Phenomenology of LPPs: experimental consequences

In the previous section, we have shown that the low-temperature pseudogap states, i.e., the
LPP-I and -II, can be naturally connected to the SC ground state (2) as its normal states. In the
following, we shall further study the generic spin and charge properties based on the elementary
excitations associated with the fractionalized degrees of freedom in the LPP. On one hand, such
anomalous properties can be directly compared to the experimental observations in the cuprates.
On the other hand, the unique behaviors of the LPP can reveal the intrinsic non-BCS nature of
the SC ground state.

3.1. LPP I

According to the discussion in the previous section, the LPP-I is characterized by three hidden
ODLROs, with the SC phase coherence destroyed by the thermally excited spinon-vortices.

In the LPP-I, the spinon–vortex, as a composite of a b-spinon binding with a holon
supercurrent vortex, plays the essential role in dictating the basic properties. In the following we
first focus on the b-spinon excitations based on the mean-field description, which determine the
spin pseudogap phenomenon.

3.1.1. Uniform spin susceptibility and specific heat capacity. The spin uniform susceptibility
χu
b contributed by the b-spinons is shown in figure 3 at δ = 0.1. It is obtained based on H̃s in
equation (46) (cf appendix B):
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⎡⎣ ⎤⎦∑χ
β

= +( ) ( )
μ

N
n E n E

2
1 , (68)u

b B

m

B m B m

2

where Em is the eigen energy of the b-spinon excitation, μB is the Bohr magneton and nb(x) is
the Bose function: β≡ − −n x x( ) [exp ( ) 1]B

1.
χu
b exhibits a continuous suppression in magnitude with decreasing temperature over the

whole regime of the pseudogap phase ( <T T0). In particular, the vanishing χu
b at low

temperature limit is due to a spin gap Eg openned up in the LPP-I. Note that a dotted vertical
line in figure 3 marks the SC instability of the LPP-I at Tc, which is also closely correlated with
Eg (see below).

Similar pseudogap behavior is also exhibited in the spin specific heat capacity of the b-
spinons, which are shown in figure 4(a) at the same doping concentration as in figure 3. The
spin specific heat capacity γb can be expressed by (cf appendix B)

⎡⎣ ⎤⎦∑γ = +( ) ( )
N

E

k T
n E n E

1 2
1 . (69)b

m

m

B
m m

2

3 B B

It has been noted that both χbu (figure 3) and γb (figure 4(a)) exhibit two distinct
‘pseudogap’ behaviors: a slow general decrease with temperature over a wide range down from
T0 (defining the UPP as shown in figure 2) versus the much steeper suppression at sufficiently
low temperatures. The former is due to the formation of the spin RVB pairing (i.e., Δ ≠ 0s ),
which is already encoded in the mean-field Hamiltonian (46) and is present even at half-filling,
indicating the enhanced AF correlations with reducing T. On the other hand, the latter
suppression is due to the fact that a true small spin gap Eg opens up in the LPP-I. It is a direct
consequence of the charge condensation in the LPP-I, driven through Aij

h in H̃s. As discussed
before, the LPP-I and UPP are distinguished (cf table 1) by that in the latter the bosonic charge
carriers (holons) are no longer condensed due to the strong fluctuations of Aij

s in H̃h, where the
generalized London equation (50) is not valid anymore. In figures 3 and 4, the instability of the
LPP-I at Tc is marked by the dotted vertical line, which is also related to Eg by equation (77) as

Figure 3. The pseudogap behavior shown by the temperature dependence of the
uniform spin susceptibility χu

b contributed by the b-spinons at δ = 0.1, obtained with
=t J2a and =J 120 meV. The dashed vertical line marks the characteric temperature

Tc, below which the LPP-I is no longer stable (see text).
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to be discussed later. Moreover, the corresponding entropy per site sb contributed by the b-
spinons is shown in figure 4(b), which will be further discussed in section 4.

3.1.2. Longitudinal resistivity. The longitudinal resistivity ρe in the LPP-I will not be described
by a Drude formula, since the quasiparticle excitations are no longer coherent due to the
electron fractionalization [25]. By contrast, the motion of spinon-vortices will generate a
distinct dissipation, which is essentially governed by the dynamics of b-spinons [46].

This is a very unique property in the charge transport described by the mutual
Chern–Simons theory [60]. In contrast with the Ioffe–Larkin rule in the U(1) gauge theory [8],
the so-called non-Ioffe–Larkin rule has been previously obtained [60]:

⎡⎣ ⎤⎦ρ ω σ ω σ ω= +− 
e

πq q q( , )
1

( , ) ( , ) . (70)e h s2
1 2 2

Here σh represents the longitudinal holon conductivity, σs represents the longitudinal b-spinon
conductivity with using the SI units: σ σ= = −[ ] [ ] [ ]h s

1 (cf appendix C). At any temperature,
the static conductivity may be obtained by taking the limits, →q 0 first and then ω → 0. Notice
that there is no contribution of the backflow a-spinon in equation (70) which is gauge neutral
with regard to the mutual Chern–Simons fields and is in a ‘BCS’ state with regard to the
external electromagnetic field.

Due to the condensation of the holon in the LPP-I, we further have σ =− 0h
1 such that

ρ σ ω= = →π

e
q( 0, 0), (71)e s

2 2

2

Figure 4. The pseudogap behavior shown by the temperature dependence of (a) the
specific heat cofficient γb and (b) the corresponding entropy per site sb contributed by
the b-spinon at δ = 0.1, with =t J2a and =J 120 meV. The dashed vertical line marks
the characteric temperature Tc, below which the LPP-I is no longer stable (see text). The
magnitude of γb is ∼10mJ/K2mol in the LPP-I above Tc, which is quite comparable to
the experimental data around the optimal doping [35, 36].
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where σ ωq( , )s denotes the b-spinon conductivity. The underlying physical meaning of
equation (71) can be understood by that each spinon excitation behaves like a supercurrent
vortex, namely, the spinon–vortex [46, 47].

At T = 0, ρ → 0e with σ ω= = =q( 0, 0) 0s as there are no free spinon excitations due to
the spin gap Eg. This corresponds to the SC ground state. At a finite T, the thermally excited b-
spinons will make σs and thus ρe in equation (71) finite, meaning that a non-SC phase is
naturally realized via the vortex fluctuations associated with the thermal b-spinon excitations.
Here the SC phase coherence disappears, unless the excited b-spinons remain ‘confined’ within

<T Tc, paired up via the logarithmic interaction introduced in Lh by equation (54) [45]. While a
finite Tc will be discussed in the next subsection, in the following we shall simply assume that
such an interaction has been screened such that the LPP-I persists over the whole low-
temperature regime at >T 0, as described by a finite resistivity in equation (71).

In the LPP-I, the b-spinons are deconfined and described by the mean-field H̃s. The spinon
conductivity σs can be calculated by the Kubo formula as given by equation (D.20) in
appendix D. Figure 5 shows the temperature dependence of σs and thus ρe at δ = 0.1. (Here ρe is
obainted by the one-layer resistivity multiplied by the lattice constant along the c axis by
d = 7.7Å.) The magnitude of the resistivity is quite comparable to the experimental data around
the optimal doping [31, 39]. To obtain this result, we fix the parameters at =t J2a and

=J 120 meV. In addition, a small broadening, Γ ≪ Es g, is introduced in the spectral function
for the mean-field spinon energy level (cf appendix D):

ω
Γ

ω Γ
=

− +( )
A m

π E
( , )

1
. (72)s

m s
2 2

In figure 5, ρe (σs) versus T at different choices of Γs are shown.

3.1.3. Nernst effect. Another peculiar transport phenomenon for the LPP-I in the presence of
spinon-vortices is a large Nernst signal [46–48]. Physically, the spinon-vortices will move along

Figure 5. The longitudinal resistivity ρe in the LPP-I is determined in a non-Drude
formula (71) by the b-spinon conductivity σs contributed by the b-spinons. Here
δ = 0.1, =t J2a and =J 120 meV. The parameter Γ ≪ Es g specifies the broadening of
the spinon spectrum. In order to make comparision with the cuprates, ρe is obtained by
multiplying the 2D resistance by a lattice constant along the c axis: d = 7.7Å. Here the
magnitude of ρe above Tc is in the range of 0.1 mΩ cm ∼ 0.5m Ω cm, which is
comparable to the experimental data [31].

22

New J. Phys. 16 (2014) 083039 Y Ma et al



an applied temperature gradient, driven by the entropy associated with the spin-1 2 free
moments centered at vortex cores. Because of the motion of supercurrent vortices, transverse
electric voltage will be spontaneously established, if those vortices have a net vorticity polarized
by the perpendicular magnetic filed, which is known as the Nernst effect.

The Nernst effect is therefore an important signature of the LPP-I state due to the presence
of spontaneous spinon-vortices [46], which are thermally excited to destroy the SC phase
coherence.

Based on the generalized London equation (50), the Nernst coefficient can be expressed by
[46]

α ρ=e , (73)N xy e

where

α
ϕ

=
ϕBs

n
. (74)xy

v0
2

Here B denotes the magnetic field strength, ϕ ≡ hc e20 is the flux quantum. The ‘transport
entropy’ ϕs comes from the the spinon with a free S = 1/2 moment locking with a supercurrent
vortex, given by [47]

⎡⎣ ⎤⎦β β β= −ϕ { }( ) ( )s k μ B μ B μ Bln 2 cosh tanh . (75)B B B B

The temperature dependence of Nernst signal eN at δ = 0.1 and =B T20 is shown in figure 6.
The magnitude of the Nernst coefficient is quantitatively comparable to the experimental data
[40, 41, 43].

3.1.4. Spin Hall effect. As a unique signature for the presence of spinon-vortices, a
dissipationless spin Hall effect has been predicted [64] for the LPP-I. Physically, spinon–vortex
composites can be driven to move by a perpendicular electric field Ee

y and consequently a spin
current Jsx is simultaneously generated if the free moments at the centers of the vortex cores are

Figure 6. The temperature dependence of the Nernst signal eN at δ = 0.1 and =B T20 ,
with =t J2a , =J 120 meV, and different choices of Γs (cf figure 5). Here the
magnitude of eN around ∼ 1 μVK−1 above Tc is comparable to the experimental data in
the same doping and temperature regime [40, 41, 43].
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polarized by an external magnetic field b along the ẑ-axis. A quantitative prediction is
σ=J Ex

s
H
s

y
e, and based on the generalized London equation (50), the spin Hall conductivity can

be expressed by [64]

⎛
⎝
⎜

⎞
⎠
⎟σ

χ
ϕ

=

gμ

B

n
, (76)H

s u
b

B v 0

2

where, the electron g-factor ≈2. The temperature dependence σsH at δ = 0.1 and =B T20 is
shown in figure 7(a) and the magnetic field dependence at = >T K T125 c is shown in
figure 7(b).

3.1.5. SC instability. As shown in figures 5 and 6, the resistivity is quickly diminished with a
divergent Nernst signal as →T 0. Such strong non-Gaussian fluctuations in the LPP-I indicate
that an intrinsic SC instability may happen at a low temperature.

Note that equation (50) will reduce to a conventional London-like equation describing a
SC state if the internal gauge field =A 0s . In fact, the London action (54) will provide a
logarithmic ‘confinement force’ for the spinon-vortices to pair up at sufficiently low

Figure 7. The temperature (a) and magnetic field (b) dependence of the spin Hall
conductivity σsH at δ = 0.1 with =t J2a and =J 120 meV.
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temperatures to make =A 0s at a large length scale. In other words, the true SC condensation is
signalled by the confinement of the b-spinons below a critical temperature Tc. Correspondingly,
the phase coherence condition in equation (33) is achieved by a vortex–antivortex binding
associated with the spinon confinement transition [45–48]. Here one may see the similarity of
the current SC phase transition to the traditional KT transition for a 2D superfluid system [65].
As a matter of fact, the Tc formula can be similarly obtained as follows [45] (cf appendix B)

κ
=k T

E
, (77)B c

g

which is controlled by the spin gap Eg with κ ∼ 6. Such a Tc has been marked by vertical dotted
lines in figures 5 and 6.

There are several important remarks that concern the nature of the SC phase as given
below. First, an ordinary KT transition is driven by conventional π2 vortices (in the field of ϕ of
equation (50)). But here the spinon-vortices involve a vorticity π. In contrast to the former, the
spinon–vortex–antivortex pairing will not annihilate each other at T = 0, because of the
conserved spinon numbers. Instead, they form tightly bound vortex–antivortex pairs as the
corresponding spinons form RVB pairs in the ground state (5). When single spinon-vortices are
created by breaking up such RVB pairs, the minimal excitation energy essentially measures the
b-spinon excitation spectrum (without creating vortices as they are already there in the ground
state). Therefore, the spinon–vortex excitation is a ‘cheap vortex’ not only because of the lower
vorticity (π instead of π2 ), but most importantly because of the fact that it still exists as a vortex
in the ground state. One can estimate [47] the lowest energy to create a pair of spinon-vortices
from the ground state as δ≃ ∝E Jg eff , which controls Tc as shown in equation (77).

Second, corresponding to a finite spin gap Eg, the RVB background of the b-spinons has a
finite spin–spin correlation length ξ δ∼ 1 . The contribution of those RVB paired spinons to
As is thus cancelled out at a length scale larger than ξ or in other words the ground state is a spin
liquid state and at the same time a vortex–antivortex binding state. Thermally excited spinons in
the LPP-I are spontaneous vortices which form a vortex liquid [46–48]. Then, when temperature
is substantially lower than E kg B, only a very small amount of free spinons get thermally
excited. One finds that the logarithmic potential provided by the London action (54) is sufficient
to cause the confinement of these free spinons and make ∮ ϕ + =r Ad · ( ) 0

c
s at length scales

much larger than that of the spin–spin correlation. Subsequently the SC phase coherence is
realized. So the precursor of superconductivity in the LPP-I is closely related to the opening up
of the spin gap Eg, concomitant with the holon condensation at Tv in figure 2.

Third, an important distinction of equation (50) from the conventional London equation
for a BCS superconductor is that a charge +e instead of e2 condensate couples to the
electromagnetic field Ae here. Nevertheless, a minimal magnetic flux quantization at hc e2 can
be still expected in the present SC state [46]. This is because the flux quantization condition is
now given by

∮ ∮ ϕ= + + =( )r er J A Ad · d · 0, (78)
c

h
c

s e

where, according to equation (52), the unit flux quanta of ∮ = ± hc er Ad · 2
c

e (with restoring
the full units of ℏ and c) can be still found. The prediction [46] is that each magnetic vortex core
must trap a non-trivial zero mode: a free spinon, which leads to ∮ = ± πr Ad ·

c
s .
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3.2. LPP II: quantum oscillation

In the above, we have discussed a novel magnetic vortex core which traps a free b-spinon. At a
finite temperature close to Tc, spinon-vortices are more easily nucleated by external magnetic
fields, right before the thermally excited spinon-vortices destroy the SC phase coherence. On
the other hand, at sufficiently low-temperature: ≪T E kg B, such a novel magnetic vortex may
no longer energetically competitive, due to the minimal spin gap Eg in breaking up an RVB
pair, as compared to a conventional magnetic vortex of quantization hc e2 , which is realized by
that the external magnetic field penetrates the a-spinon subsystem, thanks to the U(1) gauge
freedom associated with decomposing the holon and a-spinon as discussed in section 3. In this
case, one finds Δ → 0a at the vortex magnetic core. Namely, inside the vortex core, one has the
gapless a-spinon state, i.e., the LPP-II state, instead of trapping a b-spinon in the LPP-I. In other
words, two types of magnetic vortices are predicted for this non-BCS superconductor, which
may appear in different temperatures and doping regimes.

In the following, instead of justifying its stability, we shall explore the LPP-II state at the
mean-field level, which is obtained by turning off Δa in H̃a

MF
(equation (57)). In the SC phase,

the a-spinons are fully gapped due to its s-wave pairing with Δ ≠ 0a . On the other hand,
according to the definition of the LPP-II in equation (36), the a-spinons in the LPP-II state will
become gapless with Δ = 0a . As shown in figure 8, the mean-field state discussed in
section 2.5.4 for the a-spinons will reduce to two Fermi pockets around both (0, 0) and π( , 0).

As a matter of fact, in the LPP-II, the DC transport will be solely carried by the a-spinons
that are in a Landau–Fermi liquid state. To see this clearly, let us first generalize the non-
Ioffe–Larkin rule in equation (70), in which the contribution from the a-spinon is not included
because the latter remains in the BCS-pairing state in the LPP-I.

By taking account of the internal gauge field Aa that is minimally coupled to h-holons and
s-spinons via +1 and −1 gauge charge respectively, we may end up with a general combination

Figure 8. The emergent Fermi surfaces of the a-spinon in the LPP-II state, after the
superconducting state is suppressed with Δ = 0a by a strong external magnetic field
(δ = 0.1 and =t J2a ).
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rule for transport properties (cf appendix E):

⎡⎣ ⎤⎦ρ ω σ ω σ ω σ ω= + +− − 
e

πq q q q( , )
1

( , ) ( , ) ( , ) . (79)e a h s2
1 1 2 2

Here σa is the ‘conductivity’ of a-spinons and this general formula is applicable to the whole
phase diagram where Jeff is non-zero. In the LPP-I, σ = ∞a (at zero frequency) due to BCS
pairings of a-spinons, which sends equation (79) back to equation (70). Then the
aforementioned U(1) gauge field between a-spinons and h-holons is ‘Higgsed’. However, in
the LPP-II considered here, a-spinons form a Fermi liquid since strong magnetic field breaks the
BCS-pairing of a-spinons inside the vortex core with a finite σa. By noting that σ = ∞h (holon
condensation) and σ = 0s (RVB pairing of the b-spinons) at zero temperature, we have the
following formula specific to the LPP-II:

ρ σ= −

e

1
(80)e a2

1

which indicates that the physical electric transport is merely carried by the a-spinons, Namely,
the a-spinons become charged with vanishing Δa inside the vortex core, which is already
discussed in section 2.5.4.

At low doping δ ≪ 1, the energy dispersion around =k (0, 0) at the lower band may be
approximatively expressed by

ξ λ≈ − ′
m

k
2

, (81)a

a
ak1

2 2

where the effective mass ≡ m a t2 ˜a a
2 2 and the effective chemical potential is defined

by λ λ′ ≡ −t2 2 ˜a a a.
In 2D, the density of states of the a-spinon is given by = N m π2a a

2, and the chemical
potential can be obtained from the constraint δ∑ + ∑ =σ σ σ σ σ σa a a a NI I

A
I
A

I I
B

I
B† † . The 2D area

(denoted by F ) expanded by each of the Fermi surfaces of the a-spinons is

δ=
4

(82)F BZ 
where = π a4BZ

2 2 . According to the Onsager relation, we can get the frequency of the
quantum oscillation by

ϕ
δ= =c

πe a2 2
. (83)F

0

2
 

If δ = 0.1, we find the frequency of the quantum oscillation ≈ 697 T, and the magnitude of
this result is comparable to the experimental data: = ±(530 20)exp T at the similar empiracal
doping concentration [49].

Apart from the quantum oscillation, the emergent Fermi pockets of the a-spinons provide a
qualitative explanation for some other experimental consequences in strong magnetic fields at
low temperature. For example, a finite value of uniform susceptibility and a linear-T specific
heat capacity at extremely low temperature corresponding to the finite density of state on the
Fermi energy have been observed after the SC state is suppressed by a strong external magnetic
field [50, 51]. In particular, here the low-T Fermi liquid behavior has been found to be
embedded in a larger pseudogap background presumably from the b-spinons in the present
approach.
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4. Critical comparison with the ‘plain vanilla’ RVB theory and the slave-boson approach

In the previous sections, we have explored the LPP physics based on the SC ground state ansatz
(2) and shown a systematic agreement with the experiments in the cuprate. In particular, we
have emphasized throughout the paper that the pseudog physics has truthfully reflected the non-
BCS nature of the SC ground state. Since such SC ground state as well as the LPP are obtained
based on the t–J model, it is very meaningful to make a critical comparison of the present
approach with the standard ‘plain vanilla’ RVB theory and the slave-boson approach to the
same model.

4.1. The present SC ground state versus the Gutzwiller projected BCS state

An alternative ansatz for the SC ground state of the t–J model is the well-known Gutzwiller
projected BCS state proposed by Anderson [9]. It can be written as

Ψ = −P dˆ BCS , (84)RVB G

where |d- 〉BCS denotes an ordinary d-wave BCS state and P̂G is a Gutzwiller projection operator
enforcing the following no double occupancy constraint ⩽n̂ 1i . Because of P̂G, the Cooper
pairing in |d- 〉BCS reduces to the neutralized RVB pairing [9] at half-filling.

Mathematically, in order to implement the no-double-occupancy constraint, there are many
choices for a formal fractionalization. For example, one may treat the spinon as fermion and the
holon as boson, in the so-called slave-boson decomposition [8, 66, 67] or vice versa in the so-
called slave-fermion decomposition [53, 68, 69]. In the literature, a popular electron
fractionalization is the slave-boson approach [8], in which the ground state is obtained with
the neutral fermionic spinons forming a d-wave RVB state Φ 〉| f and the holons being in a Bose-
condensed state Φ 〉| h . Namely,

Ψ Φ Φ= ⊗( )CP̂ , (85)hf h fRVB

where the Gutzwiller projection operator P̂hf implements the no double occupancy constraint on
the bosonic holons and fermionic spinons: + =n n 1i

h
i
f . In fact, Φ 〉 → − 〉P P dˆ | ˆ | BCShf f G due

to the holon condensation, where the RVB and Cooper pairings are not explicitly distinguished
at finite doping. Namely, the ‘plain vanilla’ RVB state is equivalent to the electron
fractionalization in the slave-boson formalism.

By contrast, the present SC ansatz (2) involves a quite different electron fractionalization
from the usual slave-particle decomposition, which is given in equation (9). One may reexpress
equation (2) in terms of equation (9) as follows:

Ψ Φ= Θe , (86)G
i ˆ

G
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where

∑Θ ≡ − n Ωˆ ˆ , (87)
i

i
h

i

and

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑Φ ≡ ↑ ↓C g c cexp ˆ ˆ RVB , (88)

ij
ij i jG

with = −g g( 1) ˜ij
i

ij.
Firstly, the bosonic RVB state 〉|RVB in equation (88) remains always at half-filling,

describing an RVB or neutral spin liquid background defined in equation (7). Then doped holes
are further introduced by the electron annihilating operators, which are paired in equation (88)
with a pairing amplitude gij. Namely, the neutral RVB pairing of spins and the charge BCS-
pairing are explicitly separated in equation (88), in contrast to the Gutzwiller projected BCS
ground state in equation (84) where the two are not distinguished. Here the no double
occupancy constraint is automatically enforced so long as 〉|RVB remains singly occupied.

Secondly, the above distinction between the neutral spins and doped holes makes the
definition of a non-local unitary transformation, i.e., Θei ˆ in equation (86), possible. Here with ni

h

in equation (87) as the hole number operator, each doped hole will generate a non-local phase
shift Ω̂i via equation (87). It plays a crucial role to regulate the singular sign structure of the t–J
model at the lattice scale by transforming it into a large-scale geometric/topological phase shift
[27, 28]. Consequently, in a mean-field-type treatment of Φ 〉| G , this important sign structure can
be accurately retained.

To understand such a sign structure, now imagine a given hole moving through a closed
path and then count the geometric (Berry) phase contributed by Θei ˆ in equation (86). Note that,
combining with Φ0

i , an ↑-spin will contribute totally nothing but a ↓-spin will give rise to a π2
phase vortex to Ω̂i in equation (10). It is then easy to see that all the ↓ spins enclosed within the
loop will each contribute to a ± π2 phase while 0 outside the loop. As for those ↓-spins right on
the hole loop, meaning those ↓ spins exchanged with the hole during the thinking experiment,
will each give rise to a ±π phase, resulting in a string of signs as a non-trivial geometric phase
given by

→ − ×Θ Θ↓
e ( 1) e , (89)N ci ˆ ( ) i ˆ

h

in which ↓N c( )h denotes the total number of hole-↓-spin exchanges on the closed loop c.
Furthermore, additional statistical signs can be contributed by the fermionic ĉ-operators in Φ 〉| G

of equation (88), i.e.,

Φ Φ→ − ×( 1) , (90)N c
G

( )
Gh

h

where N c( )h
h denotes the total number of exchanges between doped holes in a set of close path c

by which holes are exchanged. Here it is noted that the half-filled spin background 〉|RVB will
not produce any statistical signs as described by bosonic wavefunction in equation (5). Then,
combining equations (89) and (90), the so-called phase string sign structure [27, 28] of the t–J
model is precisely reproduced, which are both geometric and topological as identified
previously for arbitrary doping and temperature on a bipartite lattice of any dimensions [28],
and in this procedure, the unitary-transformed representation Φ 〉| G becomes ‘smooth’ and
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locally singular-free to allow for a mean-field treatment. The unitary transformation in
equation (86) may be also called a mutual-duality transformation.

4.2. Nature of Mott physics

It has been well appreciated that the no double occupancy constraint in the t–J model is a key
ingredient reflecting the basic physics of the doped Mott insulator. In both the ‘plain vanilla’
RVB state in equations (84) and (85) and the present one in equations (86) and (2), such a
constraint is implemented.

However, in the present approach, the Mott physics for a doped Mott insulator further
means the following: the fermionic statistical sign structure of the original electrons has been
completely changed to the phase string sign structure in the restricted Hilbert space. In short, the
Mott physics should be understood as the no double occupancy constraint plus a non-Fermi sign
structure.

Consequently, different from the conventional slave-particle scheme, a new electron
fractionalization (9) is found. It leads to the construction of the new class of ground state (2) or
(86), which precisely satisfies the sign structure. Moreover, the ground state naturally reduces to
the most accurate AF state 〉|RVB (the LDA state [54]) at half-filling, where long-range AF
correlations are correctly recovered. It serves as an appropriate starting point to understand the
doping problem.

The two SC ansatz states in equations (84) and (86), or in the fractionalized form
equations (85) and (2), are further distinguished by their dramatically different elemenary
excitations.

First of all, they both have bosonic holons in a Bose-condensed state Φ 〉| h . However, other
than this similarity, the rest is so drastically distinct. In particular, the holon condensation in the
slave-boson approach as given in equation (85) should be destroyed at Tc to result in a
pseudogap phase. Correspondingly the charge degree of freedom is characterized by a Bose
metal [8, 70] with uncondensed bosonic holons in Φ 〉| h . By contrast, the holons still remain
condensed in the present LPP.

Secondly, in the slave-boson approach, the low-lying elementary excitation (nodal
Bogoliubov quasiparticle) is reduced to the f-spinon in the SC phase based on the fermionic
RVB state in Φ 〉| f of equation (85). By contrast, the Bogoliubov quasiparicle is emergent as a
bound state of the holon and a-spinon as given in section 2.2.2.

Thirdly, in contrast to the fermionic f-spinon in the slave-boson approach, there is a
bosonic b-spinon in the present state. Such a neutral spin excitation will always induce a
supercurrent vortex to form a spinon–vortex composite. In particular, a pair of them form the
so-called spin-roton excitation as the unique excitation in the SC phase, which determines the
SC phase transition at a lower temperature than the characteristic temperature of the holon
condensation, which decides the LPP-I.

Fourthly, a gapped fermionic a-spinon is predicted as a unique feature of the two-
component RVB state of the present case in equation (2) or (86), associated with the spin
backflow of the holon hopping. In contrast to the f-spinon in the slave-boson approach where its
number is equal to the total electron number, here the number of a-spinons is commensurate
with the holon number.

Finally, we point out that although the LPP state has been expressed in terms of three
fractionalized particles, the holon, b-spinon and a-spinon, the total entropy contributed by them
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is not expected to be overcounted because each of the subsystems is in an ODLRO state, in
which the entropy is generally suppressed. However, all the hidden ODLROs, including the
holon condensation and the spinon pairs, will be melted in a high-temperature (strange metal)
regime at >T T0 (cf figure 2). It is a natural question if the existence of the three fractionalized
particles would lead to an overcounting of the entropy, as is the case for the slave-boson mean-
field state in comparison with the high-temperature series expansion results [71]. We emphasize
that different from a Fermi liquid description of the f-spinons in the slave-boson approach,
which is the main reason for the overcounting there, in the present case, the b-spinons in
equation (88) are localized free moments satisfying the Curie–Weiss behavior with the entropy
per site bounded by k ln 2B . Furthermore, the contribution of the a-spinons as fermions will be
reduced by δ δ−(1 ) as compared to that of the f-spinons in the slave-boson approach.
However, a more quantitative comparison to the high-temperature numerical results for the t–J
model, which is beyond the present scope focusing on the LPP at low temperatures, will be
discussed elsewhere.

4.3. Nature of pseudogap physics

As noted already, the pseudogap phase in the slave-boson approach is basically a Bose metal,
with the fermionic spinons remaining in a d-wave RVB state. Namely, the fermionic RVB state
Φ 〉| f in equation (85) is responsible for the pseudogap properties in the spin degrees of freedom,
which should be similar to the SC state. On the other hand, the charge dynamics will be
governed by the uncondensed holons of a Bose metal, which is subject to further investigations.
Eventually, a strange metal phase is expected at higher temperatures/doping concentrations,
after the RVB pairing is destroyed.

In the present approach, the UPP, which has not been discussed in the present paper,
corresponds to the above pseudogap phase in the slave-boson approach. However, the LPP,
which has been explored in this work, has no correspondence in the slave-boson approach.
Specifically, the holons still remain Bose-condensed in the LPP. In fact, all the three subsystems
in equation (35) are still in the ODLROs in the LPP-I as emphasized before.

Hence, the LPP is something unique, as predicted by the SC ground state (2) or (86)–(88).
Here it is distinguished from the SC state by the thermally excited unpaired spinon–vortex
excitations in the LPP-I or by vanishing RVB pairing of the a-spinons in the LPP-II.

The most essential characteristic of the LPP is the opening up of a doping-dependent spin
gap Eg as indicated in figures 3 and 4 at low temperature. Such a spin gap in Φ 〉| b of
equation (35) describes a spin liquid with a finite spin correlation length. In particular, Eg

vanishes in the dilute hole limit to result in an AFLRO in Φ〉 = 〉|RVB ˆ | b , which at half-filling
becomes a very accurate variational ground state of the Heisenberg Hamiltonian.

A finite Eg is caused by the holon condensation via the mutual Chern–Simons gauge field
Ah, which is due to the altered statistical sign structure of the t–J model explicitly formulated in
equation (86) as the mutual duality transformation. This is absent in the slave-boson approach.

Another important prediction of the mutual duality is that the neutral spin excitations (b-
spinons) will strongly affect the charge condensate by creating supercurrent vortices, i.e., the
spinon-vortices. In the LPP-I, their thermal excitations disorder the SC phase coherence,
resulting in a large non-Drude resistivity and strong Nernst effect as the characteristics of non-
Gaussian-like SC fluctuations as illustrated in figures 5 and 6. Note the reduction of the
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resistivity in figure 5 and the divergence of the Nernst siginal in figure 6 as the temperature is
lowered below E kg B.

Eventually, at a sufficiently low temperature, with the thermally excited spinon-vortices
greatly reduced in number due to the spin gap, the confinement of them into vortex–antivortex
pairs becomes possible, in a fashion of KT-type transition, which results in a true SC phase
coherence below ⩽T Tc as controled by the spin gap Eg in equation (77).

Finally, even in the zero temperature, a non-SC state, i.e., an LPP-II state, can be also
realized when the BCS-like pairing of the a-spinons in Φ 〉| a of equation (4) is destroyed, say, by
strong magnetic fields before the occurrence of phase disordering by thermally excited b-
spinon–vortex excitations (cf table 1). Correspondingly, the Cooper pairing amplitude vanishes
to result in a non-SC normal state, at least in the magnetic vortex core region.

Note that the a-spinon in the SC phase and the LPP-I state is charge-neutral as well as
gauge-neutral, immune from the mutual Chern–Simons gauge force between the b-spinons and
holons. But once in the LPP-II, with vanishing RVB pairing, the a-spinons will carry the full
charge as the holons are still condensed, and the corresponding Fermi pockets of the fermionic
a-spinons give rise to quantum oscillation, a Pauli susceptibility and a linear-T specific heat just
like in a typical Fermi liquid.

Therefore, the LPP studied in the present work is a unique low-temperature pseudogap
phenomenon, which is not present in the simple slave-boson approach. It is physically related to
the rigidity associated with the hidden ODLROs in the fractionalized degrees of freedom in the
ground state. Due to the sharp distinctions between the SC ground states as well as elementary
excitations in the slave-boson and present fractionalization schemes, the nature of the low-
temperature pseudogap physics thus differ strongly.

5. Discussion

In this work, we have intended to understand the pseudogap phenomenon observed in the
cuprate superconductor through a model study. Namely, we have explored the so-called low-
temperature pseudogap state in a doped Mott insulator based on the t–J model. In addition to its
intrinsic SC instability, such a state exhibits a systematic pseudogap behavior in both spin and
charge degrees of freedom, as shown by the uniform spin susceptibility, specific heat, non-
Drude resistivity, Nernst effect, as well as the quantum oscillation in strong magnetic fields, etc.
These anomalous properties in the low-temperature pseudogap phase are found to be
qualitatively consistent with the experimental measurements in the cuprates.

As an important lesson that we learned from this study, these pseudogap properties unveil
the most essential non-BCS nature of the SC state. Namely, they are hidden in the SC ground
state as an integral part of it, and start to explicitly manifest once the SC ODLRO is turned off
by temperature, magnetic field or other means. In a conventional BCS state, the SC ground state
is composed of the Bloch electrons filling up a Fermi sea and forming the Cooper pairs close to
the Fermi energy. The non-BCS superconductivity means that the normal state is no longer a
conventional Fermi liquid dominated by the low-lying Landau quasiparticle excitations. In the
present ground state, while the Cooper pairing of the electrons as the true SC ODLRO is still
present, the quantum numbers of the electrons are in fact all fractionalized with a peculiar
composite structure. The Mottness, namely, the strong on-site Coulomb repulsion, is the
fundamental driving force behind such fractionalization.
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We point out that the SC state of the doped Mott insulator, either the Gutzwille-projected
BCS state (84) or the present one (86), is a natural ground state of pure electrons, without
needing an extra ‘gluon’-like phonon in a BCS superconductor. In the latter, a Fermi liquid state
is a natural ground state for purely electronic degrees of freedom, which sets in as a ‘normal
state’ once the Cooper pairing mediated by phonons is turned off [5].

In this sense, the proposed SC ground states in the doped Mott insulator are the stable
infrared fixed point states that essentially control all the anomalous pseudogap behaviors at
finite temperature above Tc. In other words, the basic correlations exhibited in high-temperature
‘normal state’ regimes are already encoded in the ground states, in the specific forms of electron
fractionalization, as shown in equations (85) and (2), respectively.

With both the SC ansatz states mentioned above satisfying the no double occupancy
constraint of the t–J model, the present one has two advantages: (I) it naturally reduces to the
most accurate AF state (the LDA state) at half-filling; (II) it precisely keeps track of the altered
statistic signs (known as the phase string sign structure) of the t–J model at finite doping. Then
the specific fractionalization dictated by the new sign structure of the doped Mott insulator leads
to a peculiar non-BCS SC ground state, which manifects the unique low-temperature pseudogap
behavior once the SC coherence is removed. The pseudogap phenomenon here is thus
physically related to the rigidity associated with the hidden ODLROs in the fractionalized
degrees of freedom in the ground state, which does not necessarily correspond to any explicit
spontaneous symmetry breaking.

Several important issues have not yet been explored in the present work. (A) How does the
SC ODLRO terminate at a finite but sufficiently low doping? We have pointed out that at half-
filling, the AF LDA state is naturally recovered as the ground state. But the AF order is
expected to persist over some very dilute amount of doped holes before the SC ground state sets
in at zero temperature. The doped holes have been predicted to be self-localized [72, 73] in this
non-SC regime, and the transitions between the AF and SC phases have been studied in the
framework of mutual Chern–Simons gauge theory [60]. But more detailed properties like the
fate of the backflow fermionic spinons remain to be investigated and compared with
experiment. (B) In the overdoped regime with vanishing Jeff , does the low-temperature
pseudogap state eventually become unstable towards a Fermi liquid state at low temperatures?
If the answer is yes, then how can this picture can be reconciled with the non-Fermi sign
structure of the t–J model [17]? If the answer is no, then what would be the non-Fermi-liquid
ground state after the superconductivity disappears beyond a sufficiently large doping in the t–J
model? In particular, if the Fermi liquid behavior of the overdoped cuprates corresponds to the
so-called Mott collapse [17, 18] due to a finite Hubbard U, it should be already beyond the
scope of the t–J model. Then what would be the reliable doping regime that the t–J model may
be relevant to the experiment? (C) In the low-temperature pseudogap state studied in the present
work, the detailed behavior of the quasiparticle excitation remains to be investigated. With the
vanishing d-wave order parameter due to the proliferation of the spinon-vortices, the
quasiparticles are expected [74] to become incoherent with the Fermi arc feature observed in the
ARPES spectral function [2]. But a quantitative study is still absent here. (D) The fractionalized
structure should not only be exhibited in the pseudogap phase, but also be present in the SC
state, for instance, in the normal core of the magnetic vortex as well as in the excitation spectra
of the bulk. While the fate of the backflow fermionic spinons in a normal core has been studied
as in the LPP-II, the contributions of such spinon excitations, emerging at finite doping, to the
dynamic spin susceptibility function and the single-particle spectral function need further study.
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Appendix A. Compact mutual Chern–Simons gauge theory description

In the main text, the LPP state has been discussed in terms of the effective Hamiltonian (44) at
the mean-field level. To go beyond the mean-field treatment [48], an effective topological field
theory description known as the compact mutual Chern–Simons gauge theory [60] will be
needed. In the following, such a field-theory description for the low-energy physics of
equations (45) and (46) is presented.

The holons and b-spinons are generally coupled via a pair of mutual Chern–Simons gauge
fields in the effective Hamiltonians in equations (45) and (46), which represent the most
fundamental force originated from the phase string sign structure of the doped Mott insulator as
emphasized in the main text. In the following Lagrangian formulation [60], these two degrees of
freedom can be expressed generally as

⎡⎣ ⎤⎦ ∑λ= − + −
α

α−α( )h h A h iA h t h h, ; d e , (A.1)h μ
s

I
s

h I h I
A

I
† †

0 0
† i s

⎡⎣ ⎤⎦ ∑ ∑σ λ= − + − +
σ

σ σ
ασ

σ
ασ σ+α+( )( )b b A b i A b J b b, ; d e h.c. , (A.2)s μ

h
i

h
b i s

A
i i

† †
0 0

i
ˆ

†
¯
†i i

h
ˆ,

⎡⎣ ⎤⎦ ϵ= − −λ λ
νλ

ν λ λ( )( )A A
π

A π d A π, ; ,
i

2 2 , (A.3)CS μ
s

μ
s h h μ

μ
s

μ
s h h    

where the bosonic matter field h b representing the holon/spinon field is coupled to the statistic
gauge field A Aμ

s
μ
h, respectively. The two gauge fields are entangled by the mutual-

Chern–Simons term CS , where μ
s

μ
h  is an integer field in the compact mutual-

Chern–Simons theory. Here αA s h, are the compact link variables with ∈ −αA π π[ , )s h, and
∈ A s h

0
, . Notice that α β in the superscript or subscript represents the direction, i.e., x̂ or ŷ in

real space. The total Lagrangian is apparently invariant under the local ⊗U U(1) (1) gauge
transformation up to mod π2 .

The LPP state has been defined by the holon condensation 〈 〉 ≠h 0. Define = ϕh n eI h
Ii ( )

with ρ=n ah h
2. One has

= − + α( )iA n t n A . (A.4)h
s

h h h
s

0
2

Here the change of variable: ϕ→ +A A dμ
s

μ
s

μ , has been made and after this shift, the vector
field ∈ Aμ

s instead of − π π[ , ), which ensures the correctness of subsequent Gaussian
integral.

Summing up the intger field s
0 , one gets the quantization of the gauge field

ϵ −αβ
α β βd A π( 2 )

π
h hi 0  and the following effective Lagrangian
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In the LPP, we may separate the spatial components of the gauge field αA h into two parts:
δ= +α α αA A A¯h h h, where αĀ h depicts the background component which satisfies

ϵ =αβ
α βA πnd ¯ , (A.6)h

h
0

and δ αA h represents the fluctuating component. Next we combine the original gauge field with
corresponding integer field: δ= −α α αA A π˜ 2

h h h and = −A A π˜ 2
h h h

0 0 0 , and thus the new
defined field ∈ Ãμ

h
, which ensures the correctness of subsequent Gaussian integral in the

resulting effective Lagrangian
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After intergrating out Aμ

s, one obtains
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where a constraint on αÃ
h
is ϵ =αβ

α βd Ã 0
h0 .

Here we may ignore the imaginary time-dependence of αÃ
h
. Then we arrive at
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where σ σ≡ ∑ = ∑σ σ σ σ σn n b br( )s i i
b

i i
† . Define the spinon vorticity
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After integrating out Ã

h
0 , we finally obtain the effective action which works in both the LPP and

SC phases:
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The intrinsic SC instability of the LPP-I state at low temperature will be further discussed
based on the above mutual Chern–Simons gauge theory formulation in appendix B.
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Appendix B. Pseudogap behavior and SC instability

The link variables, Aij
s and Aij

h, can be regarded as mediating the mutual statistics coupling
between the charge and spin degrees of freedom, i.e., the ‘mutual semion statistics’
entanglement. But in the ground state, these two subsystems can be effectively ‘disentangled’,
with each in a condensed state with an ODLRO of its own. Consequently, the fluctuations
around such a ‘saddle-point’ state will become well controlled and well behaved, just as in all
the conventional systems with an ODLRO where the emergent ‘rigidity’ suppresses the violent
fluctuations of the many-body degrees of freedom.

B.1. Mean-field solution of the b-spinon

The Hamiltonian H̃s in equation (46) with the mean field approximation can be diagonalized by
a Bogoliubov transformation [55, 62]

∑ γ γ= −σ σ σ σ( )u v wb (i), (B.1)i

m

m m m m m¯
†

which results in
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λ ξ= −E , (B.4)m b m
2 2

where ξm is the eigenvalue of σw i( )m which is the eigenstate of the equation

∑ξ = −σ
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σ
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w i J w j( ) e ( ), (B.5)m m s

j i

A
m
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i ij
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with Δ≡J J 2s
s

eff . In determining the spinon excitation spectrum Em, the self-consistent
conditions: Δ Δ〈 〉 =ˆ

ij
s s and ∑ =σ σ σb b Ni i i

† have to be used.
Based on the above mean-field solution, the ground state of the b-spinons, which is

effectively decoupled from the other fractional particles, is given in equation (5), in which one
finds that the RVB pairing amplitude Wij = 0 if both i and j belong to the same sublattice and
decays exponentially at large spatial separations for opposite sublattice sites i and j [25]

∝ ξ
−

W e . (B.6)ij

r

2

ij
2

2

Here rij is the spatial distance and ξ is the characteristic pair size determined by the doping
concentration: ξ δ= a π2 . As pointed out above, once the b-spinons are all short-range paired
up in Φ 〉| b , the fluctuations of Aij

s would become negligible and the two subsystems of the
holons and b-spinons are decoupled as depicted by Φ 〉⊗| h Φ 〉| b . Note that at half-filling where
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ρ = 0h , H̃s in equation (46) reduces to the Schwinger-boson mean-field Hamiltonian, which
well captures the AF correlations including the long-range AF order at T = 0 [25, 54].

B.2. Spin degrees of freedom

Uniform spin susceptibility is defined by

χ =
→

M

NB
, (B.7)u

b

B 0

where B is the strength of external magnetic field and the b-spinon magnetization is given by
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ω Γ− +σ( )
A m( , )

π E

1 s

m s
2 2

and σ= −σE E μ Bm m B . One gets

⎡⎣ ⎤⎦∑χ
β

≈ +( ) ( )
μ

N
n E n E

2
1 (B.9)u

b B

m

B m B m

2

at Γ ≪ Es g.
Furthermore, the contribution of the b-spinon to the specific heat can be evaluated as

follows:

γ ≡ = − ∂
∂

C

T N T
F

1 ˜ , (B.10)b V
s

2

2

MF

where the mean field free energy F̃s
MF

is given by

∑ ∑
β

Δ λ= − + − +β−( )F e J N N E˜ 2
ln 1 2 . (B.11)s

m

E s
b

m

m
MF

eff
2

m

Consequently

⎡⎣ ⎤⎦

∫ ∑

∑

γ ω ω ω ω ω= +

≈ +

[ ]

( ) ( )

N k T
n n A m

N

E

k T
n E n E

2
d ( ) ( ) 1 ( , )

2
1 . (B.12)

b

B
B B

m

m

m

B
B m B m

2

3

2

3

B.3. SC instability

In the LPP, the holons are always condensed such that the holon conductivity σ = 0h . Thus,
according to the non-Ioffe–Larkin rule in equation (70), the dc resistivity is essentially
determined by the b-spinon conductivity σs, which will be evaluated based on the above mean-
field solution in appendix D.

Due to the interaction term in equation (A.12), the residual interaction between the b-
spinon-vortices can lead to their ‘confinement’ at low temperatures. Namely, at a sufficiently
low temperature, the dilute spinon-vortices and spinon-antivortices tend to form bound pairs,
which then leads to the true SC phase coherence as discussed in the main text. Indeed, such a
spinon confinement will make the b-spinon conductivity σs vanishing such that

37

New J. Phys. 16 (2014) 083039 Y Ma et al



ρ σ ω σ ω= = → ∝ = → =π

e
q q( 0, 0) ( 0, 0) 0. (B.13)e s s

2 2

2

In the following, we briefly discuss such a KT-like vortex–antivortex binding transition
based on the mutual Chern–Simons gauge theory outlined in appendix A.

Note that in the above mean-field solution, an eigen state of the b-spinon has a wave-
packet wave function like [45]

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟≃ −

−
σw

a

πa a
r

r R
( )

2
exp

2
, (B.14)m i

c

i m

c

2
2

2 2

with a ‘cyclotron length’ δ≡a a πc . Here the degenerate levels are labeled by the coordinates
Rm, the centers of the spinon wave packet, which form a von Neumann lattice with a lattice
constant ξ = π a2 c0 . So the effective Lagrangian Seff in appendix A can be further simplified
as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∫

∫

∑

∑

τ

τ
ξ

≃ = +

≃

−
−

≠

′
′

′

( )
( )

( ) ( )

S S A S

E
q

πn t
q q

R

R
R R

R

˜ 0

d
2

d
2

ln , (B.15)

s μ
h

k T

m

m

k T h h
m

m m
m

R R

eff sv

0

1 g
sv

0

1

sv
0

sv

B

B

m m

where Eg denotes the minimal energy gap of the spin-1 excitation. Finally by noting ρ=n ah h
2,

= t m a2h h
2 2 and the spin stiffness ρ ρ≡ ms h h, the effective action is rewritten as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑

ρ
ξ

= −
−

≠ ′

′
′( ) ( ) ( )S

E

k T
q

π

k T
q qR R

R R
R

2 4
ln . (B.16)

B m

m
s

B m m

m
m m

meff
g

sv sv
0

sv

Next one can take a standard procedure in dealing with a conventional KT transition
[45, 65]. Define the reduced stiffness ρ=K k Ts B and the effective fugacity of each spinon
vortex ≡ −y e E k T2g B .

Finally, the differential renormalization group (RG) equations are obtained by [45]

= +
−

( )K

l
g π y O y

d
d

, (B.17)
1

2 3 2 4

⎜ ⎟
⎛
⎝

⎞
⎠= − + ( )y

l

π
K y O y

d

d
2

4
, (B.18)3

where, g = 4 is degeneracy for each site Rm in the von Neumann lattice due to the time reversal
and bipartite lattice symmetries. It is easy to find that the two RG equations above could also be
obtained if we replace (K, y) by K gy( 4, ) in the RG equations of conventional KT transition.
Here K is replaced by K 4 because the unit vorticity of each spinon vortex is π instead of π2 of
a conventional vortex; and y is replaced by gy because of the g degeneracy for each site Rm in
the von Neumann lattice.

Therefore, the RG flow in the present case is the same as in a conventional KT transition if
we replace (K,y) in the latter by K gy( 4, ). The RG equations result in a fixed point at =K π* 8
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and =y* 0, and there is a separatrix passing through the critical point = =−K π y l8, ( ) 01 .
Points above this separatrix flow towards large values of −K 1 and large values of y, in other
words, toward the phase with unbound spinon vortices. Points exactly on the separatrix with

<−K π 81
flow to the critical point. The starting point of flows is on the line

ρ= − = −y E k T E Kexp ( 2 ) exp ( 2 )g B g s . The transition temperature is then determined by
the intersection of this line with the separatrix. The flow for <T Tc is towards the line y = 0,
which means no spinon excitation is allowed below Tc, which corresponds to the spinon
confinement in the SC phase.

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ξ

= −
−

→′
′

−

( ) ( )q q g yR R
R R

2 0, (B.19)m m
m m

πK

sv sv
2 2

0

2

where, the fugacity y is renormalized to zero when <T Tc. The transition temperature Tc
determined [45] is given in equation (77) in the main text.

Appendix C. Definitions and the units of spinon and holon conductivities

In the compact mutual Chern–Simons theory, the b-spinon/holon/a-spinon conductivity [60] is
defined by

σ=J E , (C.1)s s h

σ= + +( )eJ E E E , (C.2)h h s e a

σ= −J E . (C.3)a a a

Here σs h a represents the b-spinon/h-holon/a-spinon conductivity, and the vector field Js h a

represents the corresponding current. Equation (C.1) is due to b-spinon, which is coupled to Ah

in equations (40) and (46). Equation (C.2) is due to h-holon, which is charged and also coupled
to As in equation (45), moreover, there is another internal U(1) gauge field Aa between h-holon
and a-spinon in equation (9) (cf the discussion in the paragraph just above equation (44)), i.e.
Ea in equation (C.2); in equation (9), the U(1) gauge charges of a-spinon and h-holon should
have opposite sign, and this is the origin of minus sign in equation (C.3).

On the one hand, we have the conservation equation of ρ=j J( , )s
μ

sspin :

ρ+ ∂ = J· 0, (C.4)s t spin

where ρ = −L[ ] [ ]spin
2. Thus = − −L TJ[ ] [ ] [ ]a

1 1. On the other hand, = ∂E Ah t
h and

ρ× = πAh
h. ρ = −L[ ] [ ]h

2, thus = − LA[ ] [ ][ ]h 1 and = =− − −T L TE A[ ] [ ][ ] [ ][ ] [ ]h
h 1 1 1.

Finally, one gets the unit of b-spinon conductivity

σ = =− −[ ][ ]J E[ ] [ ] , (C.5)s s h
1 1

and similarly, σ σ σ= = = −[ ] [ ] [ ] [ ]h a s
1.

Appendix D. The calculation of the b-spinon conductivity σs

In the LPP, the excited b-spinons are deconfined and free, which will decide the longitudinal
resistivity via the non-Ioffe–Larking rule (71).
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The b-spinon conductivity σs can be calculated by the Kubo formula as follows:

σ ω
ω

Π ω ω= = → +αβ αβ +( )i iq( )
i

0, 0 . (D.1)s s n

Here the polarization tensor in the real space/imaginary time is given by

Π τ Π τ Π′ ≡ ′ +αβ αβ αβi i i i( , ; ) ( , ; ) , (D.2)s curr. diam.

where Πdiam. represents the diamagnetic term of the polarization tensor, and Π τ′αβ i i( , ; )curr.
denotes the spinon current–current correlation function:

Π τ τ′ ≡ −αβ
τ

α β+ ′ + ′i i T J J( , ; ) ( ) (0) , (D.3)s
i i

s
i i

curr.
ˆ, ˆ,

in which the spinon current density α+Js
i i, is defined by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ σ α= − +α

σ

σ
ασ σ

+
+α+J iJ b be h.c. ˆ. (D.4)s

i i
s

A
i i

ˆ, i ¯
ˆ

†
¯
†i i

h
ˆ,

Define the Matsubara Greenʼs function for the Bogoliubov quasiparticle of the b-spinons:

τ γ τ γ= −σ τ σ σG m T( , ) ( ) . (D.5)m m
†

After taking the Fourier transformation, the mean-field solution is given by

ω
ω

=
−σ ( )G m

i E
, i

1
, (D.6)n

n m

0

where iωn is the bosonic Matsubara frequency ω = nπk T2n B . One may further introduce the
spectral function ωσA m( , ) such that

∫ω ω
ω

ω ω
=

−σ
σ( )G m

A m

i
, i d

( , )
, (D.7)n

n

where

ω ω ω≡ − → +σ σ
+( )A m

π
G m i i( , )

1
Im , 0 . (D.8)n

At the mean-field level, the spectral function simply reduces to ω δ ω= −σ σA m E( , ) ( )m
0 . Then the

momentum-frequency representation of the spinon current–current correlation can be obtained:

∑Π ω ω=αβ αβ

′
′ ′( ) ( )i J F i Gq q, ( ), (D.9)n s

mm

mm n mmcurr.
2

where

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢
⎤
⎦
⎥⎥

∑ ∑ ∑

∑

α β

β

= + ′ + ′

− ′ + ′

αβ

σ

σ
σ σ

σ
σ σ

σ
σ σ

′ ′
′

−
′

′

− −
′

α β

β

+ ′ ′+ ′
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( )

( )
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N

w i w i w i w i

w i w i
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1
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e e ˆ ( ) . (D.10)
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A
m m

i

A
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i i i
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Here it is easy to verify that ⎡⎣ ⎤⎦= −αβ αβ
′ ′G Gq q( ) ( ) *

mm mm , and one may define a real number
≡ = ∈αβ αβ

′ ′ G G q( 0)mm mm . Then

⎡⎣

⎤⎦
⎡⎣ ⎤⎦

∑

∑

ω
β

ω ω ω

ω ω ω
β

ω ω ω ω ω ω
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+ ′ − + +

× ′ + + ′ − +

ω

ω
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( ) ( ) ( )

( ) ( )
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m

After summing over the Matsubara frequency, we get

⎛
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⎞
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⎛
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⎞
⎠⎟

∫ ∫

∫ ∫
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ω ω ω ω ω ω
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where

ω Σ

ω Σ Σ
=

− − +( )
A m

π E
( , )

1 Im

Re (Im )
, (D.13)

m
2 2

in which ΣRe and ΣIm denote the real part and imaginary part, respectively, of the self-energy
of the b-spinon.

Substituting the mean-field result ω δ ω= −A m E( , ) ( )m , one obtains

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦
⎛
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−
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− +

′ ′ ′ ′
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. (D.14)
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n m m n m m

2

2

The diamagnetic term of the polarization tensor is given by

Π τ Δ δ δ δ τ− ′ =αβ
αβ ′i i J( , ) 2 ( ). (D.15)MF s

s
iidiam.

Numerically, we have checked that the diamagnetic term of the polarization tensor gets
precisely canceled:

Π ω Δ Π ω= = = − = − = =αα αα( ) ( )i J iq qRe 0, 0 2 0, 0 . (D.16)n s
s

MF ncurr. diam.
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Now we consider
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σ ω
Π ω ω
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ω ω
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Finally, we arrive at

∫∑σ ω ω ω ω
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Or, after recovering the SI unit, i.e. σ = −[ ] [ ]s
1,

∫∑σ ω ω ω ω
ω
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∂
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αβ αβ

′
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( )π
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Appendix E. Derivation of equation (79)

First of all, we may list the following useful formulas:

σ=J E , (E.1)e e e

σ=J E , (E.2)s s h

σ= + +( )eJ E E E , (E.3)h h s e a

σ= −J E , (E.4)a a a

ϵ=
π

J E
1

· , (E.5)s s

ϵ=
π

J E
1

· , (E.6)h h

= =e eJ J J . (E.7)e h a

The notations are defined as follows: σs h a denote the ‘conductivity’ of b-spinons / h-holons / a-

spinons. Js h a denote their currents. ⎜ ⎟
⎛
⎝

⎞
⎠ϵ ≡ −

0 1
1 0

is a matrix acting on x̂- and ŷ- coordinates,
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ϵ ϵ ϵ ϵ= = = = −1, 1xy yx12 21 . Je is the electric current that is physically detected in transport
experiments. = − ∂E As h a t

s h a are electric fields formed by gauge fields As h a.
The physical pictures of the seven formulas are explained as follows. Equation (E.1) is the

definition of the well-known Ohmʼs law. Ae is external electromagnetic field. Equation (E.2) is a
response formula in analog to ‘Ohmʼs law’, meaning that ‘electric field’ Eh formed by Ah

generates a b-spinon current owing to the minimal coupling between Ah and b-spinons. This
minimal coupling can be found in equations (40) and (46). Likewise, equation (E.3) is a
response formula about h-holon current. h-holons simultaneously couple to three gauge fields,
namely, As (i.e. equation (45)), Ae (i.e. equation (45)) and, Aa (see the discussion above
equation (44)). Due to opposite Aa gauge charges carried by h-holons and a-spinons,
equation (E.4) that describe the linear response of a-spinons can also be easily understood.

Equations (E.5) and (E.6) can be understood via equations (41) and (42). For instance,
equation (42) indicate that h-holon particle density is the source of the magnetic flux of Ah

gauge field. Therefore, once h-holons moves and thereby there is a holon current Jh, h-holons
will necessarily generate electric field of Ah along the transverse direction. More rigorous
derivation of equations (E.5) and (E.6) can be performed in the mutual Chern–Simons gauge
field theory which has space-time covariant form as shown in [60].

The first identity in equation (E.7) is obvious since each h-holon carries a fundamental
electric charge while a-spinons and b-spinons are charge-neutral in our fractionalization
framework. The second identity in equation (E.7) can be understood as a consequence of the
internal gauge field Aa. More pictorially, h-holons and a-spinons are created and annihilated
together implied by equation (9). In the following, we may apply these seven formulas to derive
equation (79).

Es in equation (E.5) can be expressed as: ϵ ϵ= = −− π πE J J· ·s s s
1 . Eh in equation (E.6)

can be expressed as: ϵ ϵ= = −− π πE J J· ·h h h
1 . Further considering (E.2), we end up with:

ϵ ϵ σ ϵ ϵ σ σ= − = − = = −π π π πE J E J J· · · · . (E.8)s s h s h s h s
2 2

Considering equations (E.7) and (E.1), we have

σ
σ σ σ

= − = − = −π
π

e

π

e
E J J E . (E.9)s h s e

s
e

e s2
2 2

Considering equations (E.7), (E.1) and (E.4), we have

σ
σ σ σ

= − = − = −−
− −

e e
E J J E . (E.10)a a a

a
e

a e
e

1
1 1

Substituting (E.9) and (E.10) into equation (E.3), we end up with

⎛
⎝
⎜

⎞
⎠
⎟σ

σ σ σ σ
= − −

−
e

π

e e
J E E E . (E.11)h h e

e s
e

a e
e

2 1

By further considering σ= =eJ J Eh e e e, for any Ee, the following identity is valid:

σ σ σ σ σ σ= − − −( )e π , (E.12)e h e s a e
2 2 1
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which is identical to:

σ σ σ σ= + +− − −( )
e

π
1

. (E.13)e h a s
1

2
1 1 2

Once the SI unit is recovered, equation (79) is obtained:

σ σ σ σ= + +− − − ( )
e

π
1

. (E.14)e h a s
1

2
1 1 2 2
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