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Abstract
The electrical transport characteristics and anomalous Hall effect (AHE) were
investigated for a hydrogen-injected Co-doped ZnO thin film. Based on the
measurements of resistivity and the Hall effect between 5K and 300K, the
existence of Co-H-Co complexes was observed to introduce the AHE and enable
the AHE to persist up to room temperature. The observed H-induced AHE
originates from the asymmetric scattering of carrier hopping between the loca-
lized states driven by ferromagnetic Co-H-Co complexes, and a theoretical study
using first-principle calculations supports the experimental results well. This
large ferromagnetic response of charge carriers by the hydrogen-induced AHE
on semiconducting oxides will stimulate the further investigation of room-
temperature spintronic applications.
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1. Introduction

Ferromagnetic semiconductors have been considered suitable materials for future spintronics
due to the beneficial advantage of the strong coupling between their magnetic and electrical
transport characteristics [1]. One of the most promising characteristics of ferromagnetic
semiconductors is the anomalous Hall effect (AHE), which can provide the electrical
manipulation of a ferromagnetically spin-polarized carrier. The AHE signal has also been
assumed to be a useful experiment for characterizing the intrinsic ferromagnetism and providing
evidence of the presence of a spin-polarized current. For III-V ferromagnetic semiconductors,
the electrical-field control of ferromagnetism as well as magnetization reversal and photo-
induced ferromagnetism have been achieved using AHE [2–4]. However, the low Curie
temperature of group III-V materials, which is far below room temperature, has hindered the
realization of spintronic devices that are operable at room temperature.

Since the possibility of room-temperature ferromagnetism was first predicted based on
wide-band-gap semiconductors, there have been tremendous research efforts focused on
transition-metal-doped II–VI semiconductors [5–7]. Among these materials, Co-doped ZnO has
been intensively studied as a promising candidate for room-temperature ferromagnetism.
Several experimental results have provided evidence of the intrinsic ferromagnetism of this
material; however, the origin of ferromagnetism still remains unclear, and there are
controversial arguments about the extrinsic contributions. Recently, it was reported that
nano-clusters of magnetic impurities occur due to spinodal nano-decomposition [8, 9]. The
nano-clusters are well separated and show super-paramagnetism. However, ferromagnetic
behaviour can be observed in the magnetization process at finite temperatures due to the
blocking effect [8, 9].

In previous papers, we theoretically and experimentally demonstrated the ferromagnetism
in ZnCoO:H originating from the ferromagnetic spin–spin interaction of the Co-H-Co complex
[10–14]. We also demonstrated that hydrogen (H)-induced ferromagnetism can be reversible
and reproducible by tuning the injected H. Currently, the localized ferromagnetic domain has
been observed using anodic aluminium oxide templates and the localized hydrogenation
method [15]. Theoretical calculations predict that the macroscopic percolation of ferromagnetic
Co-H-Co complex units would result in ferromagnetic long-range ordering exhibited as room-
temperature ferromagnetism, which can contribute to the development of spintronic devices that
are operable at room temperature [10]. However, the H-injection is simultaneously
accompanied by a large change in the electrical characteristics and by the mediation of spin
ordering. Therefore, to manipulate the percolation of complexes in ZnCoO:H, it is necessary to
investigate the correlations between the changes of electrical transport and magnetic
characteristics due to H incorporations.

Here, we report on the clear H-induced AHE and the changes of carrier density (n) and
mobility (μ) in Co-doped ZnO thin films with increasing H incorporation from the surface. We
also examined the electronic structure of ZnCoO:H using first-principles calculations.
Generally, the local density approximation (LDA) is not sufficient to describe the electronic
structure of the localized orbitals in the magnetic semiconductors due to the self-interaction
effect [16]. Therefore, in this work, we used the LDA+U method, which compensates for the
self-interaction. Through the measurements of resistivity and the Hall effect as well as first-
principles calculations, we demonstrate that the injected H can increase the characteristic AHE
due to the localized states formed by the hybridization between the H-s orbital and the Co-t2
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orbitals and that unlike other n-type impurities in ZnCoO, the characteristic nature of H can
contribute to the formation of ferromagnetic Co-H-Co complexes and to the enhancement of a
spin-dependent asymmetric carrier scattering up to room temperature.

2. Experimental

2.1. Sample fabrications

Figure 1(a) presents a schematic diagram for the fabrication of the ZnCoO:H Hall bar structure.
Co (10mol%)-doped ZnO (ZnCoO) thin films were fabricated on Al O2 3(0001) substrates using
RF-magnetron sputtering at 350 oC. The details of the sample fabrication and measurements are
presented and were published in previous studies [11–13]. Six-contact 1–2–2–1 Hall bars with
300–1000 μm channel sizes were fabricated using conventional UV-lithography with
photoresist (PR) patterning (figure 1(a)). For this study, the thickness of all samples was
fixed at 100 nm. In this study, three different types of ZnCoO:H samples were prepared using
different H-injection processes. During the dry-etching process using a reactive ion etcher, H
was slightly injected into ZnCoO (H-1 sample). For this H-1 sample, additional H injection
processes were performed using RF-plasma with a power of 40 W (H-2 sample) and 80 W (H-3
sample) with an Ar-H2 (10 wt. %) gas mixture for 10min. After the H-injection process, the Au

Figure 1. (a) A schematic diagram of the fabrication of the ZnCoO:H Hall bar structure
using UV-lithography, reactive ion etching and H-injection. (b) Schematic diagrams for
the fabricated 1-2-2-1 Hall bar and measurement. (c) SEM image and (d) HRTEM
image of H-3.
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electrode was evaporated on the fabricated Hall bar using DC-sputtering with a shadow mask
(figure 1(b)).

As presented in our previous report of the secondary ion mass spectroscopy (SIMS) depth
profiles [11], H was uniformly distributed on both the surface and the inside of the
hydrogenated sample, but the H concentration was reduced by subsequent vacuum annealing.
After vacuum annealing and a second hydrogenation process, the H level was the same as that
of the sample inside the film prior to subsequent processing. There was no detectable change in
the oxygen level. The H was mainly concentrated 20 nm beneath the surface, and the levels of
Zn, Co and O changed at the surface during the second hydrogenation process; these results
were not seen in our recent study [13], due to optimized H treatment conditions using HIP.

Figures 1(c) and (d) present scanning electron microscope (SEM) and high resolution
transmission electron microscopy (HRTEM) images of the fabricated H-3 Hall bar sample,
respectively. Generally, an excessive H treatment can induce extrinsic ferromagnetism such as
metal clusters. However, as observed in HRTEM image in figure 1(d), no trace of clustering or
a secondary phase was observed, even for the highest plasma power for H-injection (H-3
sample). In our previous and current studies, x-ray absorption spectroscopy and synchrotron x-
ray diffraction measurements revealed that the contribution of metallic clusters or crystalline
defects is negligible in our optimized H-injection condition [14, 17]. Furthermore, the abnormal
magnetic behavior in temperature-dependent magnetization attributed to Co nano-clusters [18]
was also not observed for the H-2 or H-3 samples.

2.2. Electrical characterizations and Hall effect measurement

The Au electrode was evaporated on the fabricated Hall bar using DC-sputtering with shadow
mask. The transport properties of all the samples were measured by a combinations of a
Physical Properties Measurement System (PPMS-9, Quantum Design) with function generator
(HP 3325B), Lock-in amplifier (Stanford SR830 DSP) and source meter (Keithley 2425C). The
temperature was controlled from 5 to 300K. After fixing temperature, the magnetic field was
slowly swept perpendicular to both the sample surface and current direction between −3 T and
3 T during AHE measurements. In order to minimize the contribution of thermal energy, we
measured the transverse and longitudinal voltage with lock-in amplifier during the current (10
μA) reversal (19Hz). For eliminating any magnetic field effects showing the even function of
field, anomalous Hall voltage was obtained by V H V H V H( ) 1/2[ ( ) ( )]= − − . The
magnetization was measured as function of temperature by vibrating sample magnetometry
(VSM) in PPMS.

3. Results and discussion

3.1. Carrier density(n), mobility(μ) and resistivity(ρxx)

Figure 2(a) shows the temperature dependence of the DC resistivity (ρxx) and conductivity
( 1/xx xxσ ρ= ) (inset figure) as a function of the H incorporation. The as-grown Co-doped ZnO
exhibits insulator characteristics (n is almost 10 1015 16∼ cm−3 in our experiment). The H
incorporations largely decrease (increase) the ρxx (σxx) over the entire temperature region from
5K to 300K, indicating that some of the hydrogen should act as the shallow donor. All of the
results clearly indicate a negative temperature coefficient of resistivity without any transition to
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a metallic phase caused by the hydrogen injections. The thermally excited carrier from the
localized state to the conduction band exhibits a temperature dependence of ∼ E k Texp ( / )a B− ,
where Ea is the activation energy and kB is Boltzmanns constant. For the temperature region
between 150K and 300K, the Ea values for the H-1, H-2 and H-3 samples were observed to be
5.7, 3.3 and 2.7meV, respectively. These small activation energies suggest that the H-related
donor states are nearly degenerated on the conduction band minimum (CBM) [19]. In the low
temperature region, the variable range hopping (VRH) has well described the transport for ZnO
and Co-doped ZnO [20–22].

We examined the VRH characteristics of samples using the plot of ln ( )xxρ versus
T T( / )0

1/4− , where T0 is a characteristic temperature that is inversely proportional to the density of
state (N0) at the Fermi energy (EF) in Motts conduction theory [23, 24]. Thus, the well-fitted
linear slope below 50K allows us to presume the existence of hopping transport in the low-
temperature regime. However, compared with the reported T0 for ZnO:H, the fitting results
indicated a very small T0. This result appears to be due to the hybridization between the H-s
orbital and the Co-t2 orbitals. The electronic structures of the H-1, H-2, and H-3 samples are
discussed later in the first-principles calculation results.

Figures 2(b) and (c) illustrate the hydrogen effects on the n dependences of σxx and μ
obtained through the Hall effect measurements. The analogous n-dependences in the σxx-n
(figure 2(b)) and μ-n (figure 2(c)) graphs for the H-1 (black squares) and H-2 (green circles)
samples are explained by the dominant scattering of electrons with charged interstitial H.
However, σxx and μ of H-3 have different gradients from those of H-1 and H-2; in particular, the
μ of the H-3 sample decreases with increasing n. In the H-1 and H-2 samples treated by
relatively lower plasma powers, electrons dominantly scatter with the charged interstitial H near
the surface, which results in an increase of μ with increasing n due to the Coulomb interaction.
However, because the H in the H-3 sample is incorporated into the deeper layer of the ZnCoO

Figure 2. (a) Temperature dependences of longitudinal electrical resistivity (ρxx) of H-1,
H-2 and H-3. The inset figure represents the enhancement of conductivity ( 1/xx xxσ ρ= )
with increasing temperature. (b) and (c) represent the n dependences of σxx and μ,
respectively.
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thin film due to the higher plasma power, the contributions of a localized state driven by Co-H-
Co complexes can be enhanced, which results in the decrease of μ with increasing n.

3.2. Anomalous Hall resistivity (ρAHE (H))

Figure 3 shows that the increase of H drives H-induced localized states due to the formation of
Co-H-Co complexes and that the asymmetric scattering between carriers and the states causes

Figure 3. The temperature dependences of H( )AHEρ for (a) H-1, (b) H-2 and (c) H-3. (d)
Temperature dependence of magnetization (M) obtained at 20 kOe using a vibrating
sample magnetometer (VSM). (e) Temperature dependence of saturated amplitude of

AHEρ ( H( )AHE
sρ ). (f) The ρsAHE-M relations of H-1 (between 5 K and 30 K) and H-2 and

H-3 (between 5 K and 300K). The solid lines represent the anomalous Hall coefficient,
Rs, obtained by linear fitting.
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the AHE. Generally, in Hall effect measurements for non-magnetic materials, the transverse
voltage arises from a deflection charge caused by the Lorentz force effect (ordinary Hall effect)
[25]. In this case, the resultant Hall resistivity (ρxy) is proportional to the magnetic field.
However, in ferromagnetic materials, the ρxy additionally acquires the anomalous Hall
resistivity ( AHEρ ), which is proportional to the magnetization (M) of the materials. Empirically,
ρxy can be described as the sum of the ordinary and anomalous Hall resistivity,

R H R Mxy OHE o sAHE 0ρ ρ ρ μ= + = + , where Ro is the ordinary Hall coefficient, Rs is the
anomalous Hall coefficient, and μ0 is the vacuum permeability. Typically, the AHE is caused by
the asymmetric scattering due to the spin-orbit coupling in the presence of spin-polarization.

Figures 3(a)–(c) show the magnetic field dependences of H( )AHEρ of the H-1, H-2 and H-3
samples in the temperature range between 5 and 300K. From the measured H( )xyρ , we can
obtain H( )AHEρ by subtracting the contribution of OHEρ above 20 kOe of magnetic field. In
figure 3(a), the H-1 sample shows a relatively large H( )AHEρ at 5K, decreases rapidly with
increasing temperature and finally disappears at approximately 30K. The amplitude

cm( 27 μΩ∼ ) of AHEρ at 5K agrees with the reported value of the Al-doped ZnCoO sample,
which exhibited an almost identical n as the H-1 sample at 5K ( 5 10 cm18 3∼ × − ) [26, 27]. The
ρsAHE of Al-doped ZnCoO also abruptly decreases with increasing n because of the decrease of
spin polarization due to the spin-splitted conduction band [26–29]. Therefore, the large AHEρ of
the H-1 sample is considered to be due to the spin-split conduction band as well as low n, which
is similar to the case of Al-doped ZnCoO. In the H-2 sample (figure 3(b)), where the interstitial
H enhances n, AHEρ deceases unlike that of the H-1 sample. It should be noted that the AHEρ of
Al-doped ZnCoO abruptly decreases with decreasing (increasing) ρxx (n) [26, 27].

However, H-3 has a clear AHEρ and non-zero value even at room temperature (figure 3(c)),
though its ρxx was much smaller than those of H-1 and H-2 (figure 1(a)). Figures 3(d) and (e)
show the temperature dependencies of M and the fully saturated AHEρ (ρsAHE) at 20 kOe. In
particular, ρsAHE and M of H-3 show a much similar temperature dependency, which clearly
indicates a close link between electromagnetic transport and M. The linear behavior between
ρsAHE and M of H-3 is illustrated in figure 3(f), where Rs was determined to be

5.5 10 cm Oe6 1Ω∼ × − − over the entire temperature range. Considering the previous reports
about hydrogen mediation [10–15, 17, 18], the AHEρ of H-3 is thought to originate from the
asymmetric scattering of carriers by the Co-H-Co complex with parallel alignment of the Co-
spin. We recently reported the effect of n on ZnCoO and ZnCoO:H via Al doping [30]; higher n
did not contribute to greater ferromagnetism in ZnCoO:H. Furthermore, we have also reported
that ferromagnetism can be markedly enhanced while maintaining the n [13]. Based on the
relationship between the AHE and M, the Co-H-Co complex is one of strong candidates for
main contribution to the change in the AHE. Therefore, it is obvious that the H-induced AHE of
H-3 persisting up to 300K has a different physical origin from that of H-1 observed only at low
temperature. The small AHE signal for H-2 can be explained by the incorporation of interstitial
H at the surface, which led to less formation of ferromagnetic Co-H-Co complexes and limited
M to low values. In addition, the superparamagnetic contributions by ferromagnetic clusters
(without a percolation process) cannot induce a large AHE, as observed in figure 3(c) [31].

3.3. Anomalous Hall conductivity (σAHE (H))

Based on most theoretical predictions, the Hall conductivity ( /( )xx xy
2 2

xy xyσ ρ ρ ρ= + ) is considered
to be an essential measurement in investigating the origin of AHE, where the Hall conductivity
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σxy consists of OHEσ and AHEσ , and the strength of AHEσ depends on both the contents of the
carrier and the spin [7]. Figure 4(a) shows the temperature dependences of σsAHE for all samples.
H-1 only exhibits a small σsAHE because of its low σxx. Although the interstitial H slightly
enhanced the σxx value, H-2 still exhibited no remarkable enhancement of σsAHE.

However, H-3 exhibited a remarkable enhancement of σsAHE, especially at low
temperatures, and a non-zero value of σsAHE persisted up to room temperature. In particular,
it should be noted that σsAHE increased with decreasing temperature, though the σxx of H-3
clearly decreased with decreasing temperature (the inset of figure 1(a)). These results indicate
that the σsAHE of H-3 is strongly related to the formation of the Co-H-Co complex and its M (the
inset figure of figure 4(a)). As observed in figure 4(b), the σsAHE of H-3 also exhibits an almost
linear proportionality to M, while the σsAHE values of H-1 and H-2 are limited to low M and are
not proportional to M. σsAHE of H-3 at low temperatures has similar values to Co-doped TiO2,

Figure 4. (a) Temperature dependences of the saturated σsAHE for H-1, H-2 and H-3 (the
inset figure represents the ferromagnetic Co-H-Co complex). (b) The magnetization
dependence of σsAHE. The solid red line is obtained by linear fitting for H-3 from 5K to
300K. (c) The relation between σxx and σsAHE of H-3 on a log-log scale (the violet
dashed line represents the 1.6 scaling relation to guide the eye, and the red dashed line
represents the fitting result of H-3).
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and the value 0.7 10 cm3 1 1Ω∼ × − − − of H-3 observed at 300K is comparable to the reported
values enhanced by the gate-voltage at 300K [7].

If AHEσ has a scaling relation proportional to σxx, the AHE is ascribed to skew (asymmetric)
scattering. If AHEσ is proportional to σ2xx, the AHE is ascribed to the side-jump mechanism [32].
Recently, the characteristic scaling relation of AHEσ ∝ xx

1.6σ has been intensively investigated in
many transition-metal-doped oxides as well as in GaAs-based magnetic semiconductors
[1, 32–35]. Figure 4(c) shows the relations between σxx and σsAHE on a log-log scale. The violet
dashed line represents the 1.6 scaling relations to guide the eye. As observed in figure 4(c),
though the σxx values of H-3 were spread too narrow to determine an exact scaling relation in
the wide σxx range, we could estimate the scaling relation of σsAHE∼ xx

3.01σ− (red dashed line).
Hence, we now see that the origin of the AHE of H-3 is different from that of the other magnetic
semiconductors, showing the 1.6 scaling relation because the observed H-induced AHE
originates from the asymmetric scattering of carrier hopping between the localized states driven
by ferromagnetic Co-H-Co complexes.

3.4. Localized state driven by hybridization between the H−1s and Co-t2 orbitals

We examined the electronic structure of ZnCoO:H using first-principles calculations, which
were performed using the projector augmented wave (PAW) method [36] of the Vienna
ab initio simulation package (VASP) [37].

The Perdew–Burke–Ernzerhof exchange-correlation functional (PBE) [38] approach
utilizing the generalized gradient approximation (GGA) scheme was employed, and the local
spin density approximation (LSDA)+U method was used to compensate for the Coulomb
interaction in the localized semi-core Zn-3d and Co-3d orbitals [39]. We used U = 5 eV. The
state of the capture of H between two nearest CoZn, which is compared with the state without H
capture and the density of electronic states, is shown in figures 5(b) and (a), respectively. A
previous study indicated that H can be strongly captured between two Co ions and that the Co-

Figure 5. (a) The DOS and p-DOS for the Co-Co pair without H. (b) The calculated
density of electronic states (DOS) for the H captured by the two nearest Co ions and the
partial-DOS (p-DOS) from the H and Co-3d orbitals. The positive (negative) values
describe the majority (minority) spin state.
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spin can be parallelly aligned by the H capture, which was suggested to lead to the
ferromagnetism of ZnCoO [10].

In transition metal-doped ZnO, the competition between the ferromagnetic double-
exchange interaction and the antiferromagnetic superexchange interaction has been considered
[40, 41]. It has also been reported that the ferromagnetic state is stabilized by electron doping in
Co-doped ZnO [40, 41]. Electrically, H increases n by acting as a shallow donor. Based on the
Zeners double-exchange mechanism, the enhanced n contributes to ferromagnetism. However,
in ZnCoO:H, H serves as an additional strong magnetic channel for short-range ferromagnetic
spin–spin interactions between Co dimers; this interaction dominates the expected contribution
from the double-exchange interaction at room temperature [10]. In ZnCoO:H, the Zeners
double-exchange mechanism is expected, although it does not lead to room temperature
ferromagnetism [10]. In the ferromagnetic state, which can be mediated by H, the free carriers at
the conduction band edge can be partially spin-polarized by the spin-carrier double-exchange
interaction.

In figures 5(a) and (b), a remarkable finding is that the localized state driven by the Co-H-
Co center is generated at the CBM. The localized state originates from the hybridization
between the H-s orbital and the Co-t2 orbitals, which indicates that the electron carrier mobility
can be significantly reduced by the hydrogen contamination and that the electron carrier can be
transported by the hopping mechanism between the localized states. The electron carrier is not
provided by the Co-H-Co center; however, it can be generated by the interstitial H in the
presence of a high concentration of H. These results indicate that the observed H-induced AHE
originates from the asymmetric scattering of carrier hopping between the localized states
formed by a hybridization between the H-s orbital and Co-t2 orbitals, which is driven by the Co-
H-Co complex persisting ferromagnetic spin ordering up to room temperature.

4. Conclusion

In summary, we report the H-induced electrical transport characteristics and the unique AHE
attributed to a ferromagnetic spin ordering of Co-H-Co complexes in Co-doped ZnO thin films.
In H-1 with the low H-injection condition, the interstitial H causes a significant decrease in
ρxxwith the decreasing AHE originating from the spin-split conduction band, which is similar to
the contributions of other n-type dopants in ZnCoO. However, as the injected H forms
ferromagnetic Co-H-Co complexes with a higher H-injection process, the characteristic AHE
increases. Furthermore, the H-induced ferromagnetic response of the carrier persists up to room
temperature while being proportional to the amplitude of M due to the ferromagnetic
complexes. The origin of the AHE of H-induced ferromagnetism is different from that of other
magnetic semiconductors because it originates from the asymmetric scattering of carrier
hopping between the localized states driven by ferromagnetic Co-H-Co complexes. The
theoretical calculation results indicate that the localized state driven by the Co-H-Co center is
generated at the CBM, which supports very well the idea that the AHE in a hydrogen-mediated
system is attributed to the asymmetric scattering of carrier hopping between the localized states
driven by ferromagnetic Co-H-Co complexes.
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