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Abstract
The Itô–Stratonovich dilemma is revisited from the perspective of the inter-
pretation of Stratonovich calculus using shot noise. Over the long time scales of
the displacement of an observable, the principal issue is how to deal with finite/
zero autocorrelation of the stochastic noise. The former (non-zero) noise auto-
correlation structure preserves the normal chain rule using a mid-point selection
scheme, which is the basis Stratonovich calculus, whereas the instantaneous
autocorrelation structure of Itôʼs approach does not. By considering the finite
decay of the noise correlations on time scales very short relative to the overall
displacement times of the observable, we suggest a generalization of the integral
Taylor expansion criterion of Wong and Zakai (1965 Ann. Math. Stat. 36
1560–4) for the validity of the Stratonovich approach.

Keywords: stochastic differential equations, Stratonovich calculus, noise

1. Introduction

Stochastic dynamical models are basic to the understanding of the role of random forcing in a
wide range of scientific and engineering systems (e.g. [2–4]). The central theoretical approaches
arise from the Einstein and Langevin studies of Brownian motion [5, 6], which provide
mathematically different but physically equivalent and complimentary descriptions of the fate
of a body (a pollen particle in water observed under a microscope) under the influence of
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random non-deterministic collisions (water molecules). Einstein determined the time evolution
of the probability density of particles by solving the Fokker–Planck equation whereas Langevin
wrote down an explicit deterministic momentum equation for a particle augmented by a
Gaussian white noise forcing which perturbs the particle trajectory. The approach of Langevin
now constitutes a canonical ‘stochastic differential equation’ (SDE) for a daunting scope of
systems, but since its introduction the mathematical and physical interpretation of the noise term
has been discussed and debated.

Whether viewing the problem from configuration space through the solution of the
Fokker–Planck equation, solving a Langevin equation, or generating statistical realizations by
performing Monte-Carlo simulations of the particles under consideration (e.g. [7]), a consistent
interpretation and calculational scheme of the noise structure is needed. The approach
developed by Itô [8] rests upon the Markovian and Martingale properties; the former captures
the concept of a ‘memoryless’ process, wherein the conditional probability distribution of future
states depends solely on the present state and the latter that, given all prior events, the
expectation value of future stochastic events equals the present value. These properties have the
advantage of simplifying many complicated time integrals but the disadvantage of requiring a
new calculus which does not obey the traditional chain rule. In contrast, the approach of
Stratonovich [9] does not invoke the Martingale property and preserves the chain rule and
allows white noise to be treated as a regular derivative of a Brownian (or Weiner) process, Wt .

A model SDE (to which we shall return later) for a variable x(t) is

= +( ) ( )x

t
a x t b x t

W

t

d
d

, ,
d

d
, (1)t

wherein the first term is ‘deterministic’ and the second term is ‘stochastic’. The case in which

( )b x t, is constant is referred to as additive noise and when it depends on = ( )x x t it is
multiplicative noise. Now, despite being able to integrate equation (1) in a formal sense as

∫ ∫− = +′ ′ ′ ′( ) ( ) ( ) ( ) ( )x t x t a x t t b x t W t, d , d , (2)
t

t

t

t

t0
0 0

the crux of the ‘Itô–Stratonovich dilemma’ resides in the integral over the Brownian processWt .
The issue is laid bare by recalling the definition of the definite integral of a real valued function
f(t) in terms of the Riemann sum viz.,

∫ ∑≡ ˜ −′ ′
→∞

=

−

+( )( ) ( )f t t f t t td lim , (3)
t

t

n
k

n

k k k
0

1

1
0

where importantly ⎡⎣ ⎤⎦˜ ∈ +t t t,k k k 1 . The issues are (i) the Brownian process Wt is nowhere

differentiable and because dW

dt
t is δ-autocorrelated then in any interval on the real line the white

noise it represents fluctuates an infinite number of times with an infinite variance, and (ii) the
defining limit of the integral in equation (3) depends on the place in ⎡⎣ ⎤⎦+t t,k k 1 where t̃k is chosen;
the choice that provides the seed of the dilemma and the origin of the two different calculi.

In the Itô approach the choice is ˜ =t tk k, which maintains the Martingale property due to
the fact that tk is the present value in the integrand, thereby forcing the expectation value in
⎡⎣ ⎤⎦+t t,k k 1 to take the present value. In contrast, the Stratonovich approach defines

˜ = + +( )t t t 2k k k 1 , which abandons the Martingale property and hence maintains the normal
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rules of calculus. Stratonovich referred to his choice as a ‘symmetrization’ between past and
future. Despite its wide usage, we have not found a physical interpretation of the basis of
the past/future symmetrization of Stratonovich calculus.

The outline of this paper is as follows. In the next section we summarize our approach
and discuss its connection to the dilemma generally and to other studies. We then outline
the conventional physical science viewpoint and the perspective of stochastic calculus,
before coming to our main point. Finally, we discuss the relationship to other approaches
before concluding.

2. A brief comparison and contrast

Wong and Zakai [1] argued that in any real world system perfect white noise does not exist
and that Brownian motion x(t) approximates a description ( )x tn that is continuous with at

least a piece-wise continuous derivative. By showing that →( ) ( )x t x tn as → ∞n they
recovered Stratonovich calculus. Accordingly, the choice of stochastic calculus resides in
the characteristics of the noise and continuity arguments. In finance, it is argued that short
time scale processes are truly discontinuous and thus Itô calculus is preferred (e.g. [10]),
thereby maintaining the Martingale property. However, in physics the continuous motion of
Brownian particles influenced by high frequency white noise has long been considered
within the framework of normal calculus [11]. Conceptually, there is no clear distinction
between the statistics of water molecules colliding pollen grains and trading options or
stocks. Hence, it remains an open exercise to answer the questions of when, how and
whether to use continuity considerations as a core criterion to choose either of the calculi
being discussed here.

As noted in the introduction, the complimentary approaches of Einstein and Langevin,
with a reliance on δ-autocorrelated noise, provide consistent testable predictions of Brownian
motion. The combination of this and the additional consistency with Stratonovich calculus led
to the suggestion that physical scientists should avoid Itô calculus [12]. Although Van Kampen
[13] cautiously suggested that the Langevin equation is intrinsically insufficient for representing
systems with internal noise, it is still the case that Stratonovich calculus is appropriate for both
internal and external noise and there are an enormous number of problems in which one cannot
make this distinction.

Here we focus on an ostensibly physical argument to discuss the origin of Stratonovich
calculus. We generalize the theorem Wong and Zakai [1] using the integral Taylor
expansion and appealing solely to the L2 integrability of a function, thereby avoiding
discussions of the regularity of a stochastic process. Because the principal difference
between the Itô–Langevin and the Stratonovich–Langevin formulations lies in the drift
term, we focus on this in our approach and examine the intrinsic nature of short time scale
processes approximated by white noise to decide which calculus is more appropriate. As
opposed to Turelli [14], who took as a continuous deterministic model an approximation of
a discretized model (in population dynamics), we begin with a well defined deterministic
model.

New J. Phys. 16 (2014) 055017 W Moon and J S Wettlaufer

3



3. The conventional physical science perspective

The term ‘white noise’ refers to a random signal Γ ( )t in which all frequencies contribute
equally to the power spectral density. For a general stationary random process the

autocorrelation  Γ Γ− =′ ′( ) ( ) ( )t t t t , where · is the ensemble average, is by definition

independent of time and symmetric/even  − = −′ ′( ) ( )t t t t . If τ− ≡′t t , then let τc be the

de-correlation time such that  τ = −( ) ( )e 0c
1 . Typically, as τ → 0c and ∫ τ τ

−∞

∞
( ) dc c remains

finite, we say that  τ δ=( ) ( )0c and the white noise has a δ-autocorrelation structure.
In science and engineering the traditional form of the Langevin equation, slightly different

than that in equation (1), is written as

Γ= +( ) ( ) ( )x

t
a x t b x t t

d
d

, , , (4)

where the noise forcing is δ-autocorrelated as Γ Γ δ= −′ ′( ) ( ) ( )t t t t . Based on this, we

calculate x

t

d

d
starting with the first integral

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∫τ Γ+ − = +′ ′ ′ ′ ′ ′
τ+

( )( ) ( ) ( ) ( ) ( )x t x t a x t t b x t t t t, , d . (5)
t

t

We assume that τ is small relative to the time over which the macroscopic system evolves, but
large relative to the time scale of fluctuations in the stochastic process Γ ( )t . When ( )a x t, and

( )b x t, are analytic, we can Taylor expand them about a time t as

= + ∂
∂

− + ∂
∂

− + …
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∂

− + ∂
∂
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b
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x t x t

b
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, , . (6)

following Risken [15]. Inserting (6) into (5) leads to

∫
∫ ∫

∫
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∂
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1
2
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d . . . (7)
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t

t

t

2

For −′( ) ( )x t x t , we can treat equation (5) iteratively and then take the ensemble average, which is

∫ ∫τ τ Γ Γ τ+ − = + ∂
∂

+′ ″ ′ ″
τ+ ′

( )( ) ( ) ( ) ( ) ( )x t x t a x t b
b

x
t t t t O, d d . (8)

t

t

t

t
2

Therefore,

∫ ∫τ
τ

τ
Γ Γ+ − = + ∂

∂
′ ″ ′ ″

τ

τ

→

+ ′

( ) ( ) ( ) ( ) ( )x t x t a x t b
b

x
t t t tlim

1
,

1
d d . (9)

t

t

t

t

0
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By the definition of white noise discussed above, Γ Γ δ= −′ ″ ′ ″( ) ( ) ( )t t t t , we have

∫ ∫ ∫ ∫Γ Γ δ= −′ ″ ′ ″ ′ ″ ′ ″
τ τ+ ′ + ′

( ) ( ) ( )t t t t t t t td d d d . (10)
t

t

t

t

t

t

t

t

In the integral ∫ δ −″ ′ ″
′

( )t t td
t

t
, half of the contribution of the delta function is considered such

that the value of the integral becomes 1

2
. Therefore, ∫ ∫ Γ Γ′ ″ ′ ″

τ+ ′
( ) ( )t t t td d

t

t

t

t
is equal to τ1

2
.

What is the physical meaning of the half contribution of the delta function? The entire interval

′[ ]t t, does not contribute to the integral ∫ δ −″ ′ ″
′

( )t t td
t

t
. We shrink the interval near ′t as

ϵ−′ ′[ ]t t, , where ϵ can be interpreted as the size of a subinterval in the Riemann summation
discussed above in distinguishing the stochastic calculi. Because the delta function is even
δ δ− = −″ ′ ′ ″( ) ( )t t t t , the half contribution can be written as

∫ ∫δ δ− = −″ ′ ″ ″ ′ ″
ϵ

ϵ′

′−

′+

( ) ( )t t t t t td
1
2

d . (11)
t

t

t

t

Despite this being just a simple mathematical modification, we can interpret it as a
representation that the weighting from past is equal to that from future in the neighbourhood of
′t . The origin of this symmetry comes from the time symmetry of the autocorrelation function
 τ( ). We will connect this half contribution of the autocorrelation to the Stratonovich integral
below, but we note now the above development yields

= + ∂
∂

( ) ( ) ( )x

t
a x t b x t

x
b x t

d
d

,
1
2

, , , (12)

which is exactly same as that obtained from Stratonovich calculus.

4. The stochastic calculus perspective

Mathematicians have long questioned the validity of the conventional definition of white noise
because Brownian motion Wt is nowhere differentiable. Namely, defining Γ ( )t as W

t

d

d
t is poorly

grounded in normal calculus and we must revisit the interpretation of equation (4) in light of the
mathematical definition of Brownian motion Wt ;

(i) W0 = 0

(ii) Wt is almost surely continuous (or sample-continuous) with respect to t

(iii) Wt has independent increments and −W Wt s, with <s t, is governed by a normal
distribution, −( )N t s0, , with zero mean and standard deviation −t s .

Therefore, equation (4) can be rewritten as

= +( ) ( )x a x t t b x t Wd , d , d . (13)t

On the one hand, using this integral form avoids the issue of the differentiability of Wt , but this
comes at the cost of having to introduce a different sort of calculus. However, before coming to
the issue of the implementation of a particular stochastic calculus, we perform the same
expansion as discussed previously, in (7) and (8), which leads to
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∫ ∫τ τ τ+ − = + ∂
∂

+″ ′
τ+ ′

( )( ) ( ) ( ) ( ) ( )x t x t a x t b x t
x

b x t W W O, , , d d . (14)
t

t

t

t

t t
2

The first term ( )a x t, can be interpreted as the deterministic response to macro-scale forcing

and the second term embodies the interaction between a macroscopic quantity ( )b x t, and the
microscopic accumulation of random noise forcing. On a time τ that is short from the
macroscopic perspective, the interaction between two scales manifests itself multiplicatively.
The contribution of the micro-scale to the change of the macroscopic quantity x appears as a
double integral of the Brownian motion. It is at this point that we must decide upon a specific
calculus, and this choice determines the value of the double integral in equation (14).

The double integral can be written as ∫ ′ ′
τ+
W Wd

t

t
and approximated by a Riemann sum as

∫ ∑ Δ=′ ′
τ+

=

−

′W W W Wd , (15)
t

t

k

N

t t
0

1

k k

where Δ ≡ − ′+
W W Wt t tk k k1

. As should be intuitive from the previous discussion, the confusion lies

in the choice of ′tk for ′Wtk
. As can be seen below, this choice determines the average of the

integral viz.,

∑ ∑

∑

∑

Δ = − + −

= − −

= −′

=

= −

′
=

= −

′

=

= −

′

=

= −

+

+

( )

( )

( )

( )

( )

W W W W W W W

W W W W

t t . (16)

k

k N

t t
k

k N

t t t t t

k

k N

t t t t

k

k N

k k

0

1

0

1

0

1

0

1

k k k k k k k

k k k k

1

1

Itô [8] argued that by choosing ′tk = tk the most important characteristic preserved is the
Martingale property. This implies that the expectation value of a future event is equivalent to
that of the present value in the subinterval ⎡⎣ ⎤⎦+t t,k k 1 . Hence, the expectation value of the double

integral is zero. The disadvantage of Itô calculus is that the chain rule of normal calculus is lost;
one needs additional terms to preserve the Martingale property during integration. On the other

hand, Stratonovich [9] chose ′tk = + +t t

2
k k 1, and the integral has a value of τ1

2
. This approach

preserves the chain rule, implying that Stratonovich calculus must be used when we
approximate noise processes that are continuous and have piece-wise continuous derivatives
(e.g. [1]). When we approximate the rapid fluctuations of a stochastic process as white noise,
then we must preserve the normal rules of calculus if we are to capture the dynamics of
Brownian motion.

5. Autocorrelation structure and stochastic calculi: a simple example

In a classical physical world where the continuity is more or less guaranteed, Stratonovich
calculus is evidently the most appropriate. However, when we consider the colliding of particles
or the buying or selling of stocks or options, these short time-scale phenomena appear to be
discontinuous. Such circumstances lead us to question the validity of the continuity of a
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stochastic process. That said, it may be impossible to find events that have zero autocorrelation.
Thus it is a natural question to examine the effect of a non-zero autocorrelation in a
multiplicative noise process by investigating limiting behaviors, which may provide some
insight into the nature of the appropriate stochastic calculus. Hence we consider the simplest
case of multiplicitive behavior; = ( )x t xF td d , where F(t) is a stochastic process with a finite
decorrelation time. For this example, using the same procedure used to arrive at equation (8),
we find that

⎜ ⎟
⎛
⎝

⎞
⎠ ∫ ∫τ+ − = ″ ′ ″ ′

τ+ ′

( ) ( ) ( ) ( )x t
n

x t x t F t F t t td d . (17)
t

t n

t

t

An important feature of our argument involves the time τ n, with integer n, which is a
subdivision of the total domain τ+[ ]t t, . For example, consider the commonly used

autocorrelation =″ ′ σ
τ

τ− −″ ′( ) ( )F t F t e t t
2 c

c
2

, where τc is the decorrelation time of the amplitude

of the stochastic noise F(t) satisfying τ τ≪c . Now, let τ τ≡ nm be a minimum time over which
we can observe the decay of the stochastic noise.

Whereas it is always the case that τ τ≫ c, the value of τm depends on the fineness n of the
subdivision, with τm increasing as n decreases; coarsening the temporal resolution. So long as
τ τ≫ cm we can still justify the use of the stochastic differential equation but once τ τ⩽ cm this is
no longer the case. Therefore, increasing τm to values above τc but still small relative to τ one
reaches a value of τ τ≡ ⋆m that is sufficiently short that the decay of the noise can be observed
but sufficiently large so that the stochastic differential equation is valid. This is achieved as

follows. Consider n such that τ τ τ≫ = cm , which we rewrite as ≫ = τ
τ1

n

1 c . Now, as n decreases

from τ
τc

it will reach a value = ⋆n n such that ≫ ≫ τ
τ⋆

1
n

1 c and our analysis is valid for

⩾ ≫⋆n n 1 as described presently.
With the above form of the autocorrelation, equation (17) becomes

⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

τ σ τ τ
τ

+ − = × + −
τ
τ−( )( ) ( )x t

n
x t x t

n n
e

1
2

1 1 , (18)c n2
c

which for ⩾ ≫⋆n n 1 can be approximated as σ+ = +τ τ( )( ) ( )x t x t 1
n n

1

2
2 and then

rewritten as

⎜ ⎟⎛
⎝

⎞
⎠τ σ τ+ = +( ) ( )x t x t

n
1

1
2

. (19)
n

2

The limit ⩾ ≫⋆n n 1 insures that the right hand side converges to σ τ( )x t e
1
2

2

and hence

⎜ ⎟⎛
⎝

⎞
⎠τ σ τ+ = ≈ +σ τ( ) ( ) ( )x t x t e x t 1

1
2

, (20)
1
2

22

consistent with the result from Stratonovich calculus, in which σ τ1

2
2 is analogous to ΔW Wt t in

the Riemann sum with = + +
W W( )t t t 2k k 1

and Δ = −
+

W W Wt t tk k1
. This is the essence of Stratonovich

calculus; choosing the mid-point in a subinterval is equivalent to including only half of the
effect of a finite autocorrelation. Clearly, in this example, the magnitude of τc does not play a
role unless τ τ↘ cm and the neccessary separation of time scales starts to be violated. Therefore, in
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this case the commonly-used definition of white noise δ∝ −″ ′ ″ ′( ) ( ) ( )F t F t t t becomes an

increasingly better approximation, which we can understand as follows.
Recall that

∫ ∫σ
τ

σ δ σ≈ − ∼′ ″ ′ ″τ
′

−
′− ′ ′

( )( )e t t t t
2

d d . (21)
t

t

c

t t

t

t2
2 2

c

We can proceed along the same lines as above but without the need to invoke a specific form of
the autocorrelation. Rather, we only need to assume that F(t) is stationary,

∫ ∫ ∫ ∫ ∫
∫

τ

τ

= = +

≈

″ ′ ″ ′ ′
τ

τ

τ

τ

+ ′

− −

+

−

−∞

∞

( ) ( ) ( ) ( ) ( )

( )

F t F t t t s K s t K s s s

n
K s s

d d d d d

1
2

d , (22)

t

t n

t

t

n t s

t n

n

0 0

where = +( ) ( ) ( )K s F t F t s and we exploited τ τ≫n c, thereby neglecting s compared to

τ n (see e.g. chapter 15 of [16]). Here, ∫τ

−∞

∞
( )K s sd

n

1

2
is an approximation of ΔW Wt t in the

Riemann sum, where the appropriate form of stochastic calculus is determined by the

magnitude of ∫
−∞

∞
( )K s sd . Namely, if

∫ σ∼
−∞

∞

( )( )K s sd , (23)2

where σ=( )F t2 2, the determination of ΔW Wt t follows Stratonovich calculus and hence

choosing a δ-function for K(s) is appropriate. However, if

∫ σ≪
−∞

∞

( )K s sd , (24)2

then ∫τ

−∞

∞
( )K s sd

n

1

2
is negligible and the determination of ΔW Wt t follows Itô-calculus. Here,

K(s) can be considered approximately as a zero-measure function in L2 space such that a δ-
function cannot be used for the approximation of the autocorrelation function K(s). This
argument is similar to Moritaʼs [17], who also considered three time scales and his choice of
stochastic calculus also relies on the condition for the autocorrelation function, but as manifests
itself in the form of a generalized Fokker–Planck equation.

The choice of Stratonovich calculus for colored noise has been considered within the
framework of a master equation by Horsthemke and Lefever [18]. Colored noise converges to
Gaussian white noise through the application of the central limit theorem, which they argued
through a rescaling of time (Δt) and space (Δx) assuming a diffusive process, viz.,
Δ Δ ϵ Δ Δ ϵ→ →t t x x,2 . In the limit ϵ → 0 the master equation becomes the Fokker–Planck
equation with Gaussian white noise interpreted using Stratonovich calculus. Horsthemke and
Lefever note that the interpretation of Stratonovich calculus in the approach of Wong and Zakai
[1] requires the strong regularity of colored noise (a C1 function) for convergence to Gaussian
white noise. However, Wong and Zakai [1] demonstrate the convergence directly from an SDE,
whereas Horsthemke and Lefever [18] avoid the issue of regularity by beginning with an
Uhlenbeck–Ornstein process, which is not C1, and demonstrate convergence using a master

New J. Phys. 16 (2014) 055017 W Moon and J S Wettlaufer

8



equation, but do not connect the finite autocorrelation of colored noise with a physical
interpretation that underlies the construction of Stratonovich calculus.

6. Shot noise, white noise and the origin of Stratonovich calculus

It is the mid-point selection rule in the Riemann sum that is associated with the finite noise
autocorrelation. However, traditionally this selection rule has been interpreted as the ‘magical’
choice required in order to recover the normal rules of calculus, but Stratonovich calculus itself
does not provide any new dynamical insight that plays a role analogous to the Martingale
property of Itô calculus. Hence, we seek a basic understanding of how the mid-point selection
rule emerges as a consequence of applying the central limit theorem to colored noise. Our
approach is to consider shot noise, which has an autocorrelation represented by a δ-function.

What is the origin of the δ-function? Brownian motion can be generated by a collection of
independent random processes. In the Riemann-summation approximation of the integral

∫ ′ ′
τ+
W Wd

t

t
, we first considered the subdivision of the time domain τ+[ ]t t, using τ n with

integer n. As discussed in the argument leading to equation (20), so long as it is large the
freedom to choose n determined the time scale τ n over which the decay of the noise forcing is
observed; when τ τ≫n c then the noise signal appears as a discrete packet, appropriately
simulated as shot noise (e.g. [19]).

Consider two ‘square’ signals with amplitude h and time duration w, occurring with
probability αw. When both are contained in the same packet and have the same sign (±h) they
are positively correlated. Otherwise they are independent and uncorrelated. In the probability
domain Ω the autocorrelation  τ( ) is

 ∫τ =
Ω

( ) ( )n n P n n n n, d d , (25)1 2 1 2 1 2

where n1 (n2) is a random variable occurring at the time t ( τ+t ) and ( )P n n,1 2 is the joint
probability density function of n1 and n2. We need only consider the case when τ is smaller than
w, which is

⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝

⎞
⎠

 ∫τ

τ α

α τ

=

= − + −

= −

Ω
( )( ) ( )n P n P n n n n

w
w

h

w

h

w

h
w w

d d

1
1
2

1
2

1
1 , (26)

1
2

1 2 1 1 2

2 2

2

from which we can readily calculate

⎜ ⎟
⎛
⎝

⎞
⎠∫ ∫τ τ α τ τ α≈ − =

−∞

∞

−
( )R h

w w
hd

1
1 d 2 . (27)

w

w
2 2

Thus, the constant αh2 corresponds to σ 2, h w is analogous to W td d , and hence
 τ σ δ τ=( ) ( )2 2 . Therefore, despite our argument emerging from shot noise, it leads naturally
to the definition of white noise in which there exists a finite time correlation that is too minute to
be realized when viewed from a coarse time-scale, a coarseness which depends on the observer.

New J. Phys. 16 (2014) 055017 W Moon and J S Wettlaufer

9



Clearly, a similar procedure applies directly to the Riemann-sum so long as the same
constraints on the subdivision of the time domain are in place. When τ ≃n w, two signals of
the same sign are positively correlated in the interval. Hence, the random variables n n1 2 only

have the value h2 with probability ∫
Ω ( )( )P n P n n n nd d1 2 1 1 2, where ( )P n1 is ατ n and ( )P n n2 1

is 1 2. Because the conditional probability ( )P n n2 1 is equal to the fraction of >n n2 1 in the

domain τ τ< < < <{ }( )n n n n n n, 0 , 01 2 1 2 , n n1 2 take the value h2 with probability α τ
n

1

2
and

the value 0 with the probability α− τ1
n

1

2
. According to the central limit theorem, a very large

collection of realizations n n1 2 is given by a Gaussian distribution with mean α τh1

2
2 . This result is

analogous to σ Wt
1

2
2 2 which was obtained from the Stratonovich calculus integral of ∫ W Wd

t

t t0
.

Moreover, the factor of 1 2 originates in the time order of n1 and n2 which is traced to the

constraint <n n1 2 when ( )P n n2 1 is calculated. In other words, the present value n1 is influenced

in a time-symmetric manner and this factor of 1 2 reflects this symmetry through a properly
ordered time integration.

In this simple argument one sees that the δ-autocorrelated noise (used in the definition of
white noise) and the Stratonovich calculus approach have the same origin. Both formalisms use
different approaches to capture the accumulated influence of short time-scale correlations of a
noise source that are not represented in the long time-scale dynamics. Importantly, temporal
continuity of the noise is not a necessary condition. In order to demonstrate this, we used
discontinuous autocorrelated shot noise to recover both the δ-function definition of white noise
and the mid-point selection procedure of Stratonovich calculus. Moreover, one can make the
simple case more realistic by treating h as a random variable and the same logic holds.

Finally, we note that despite our pedagogical example = ( )x t xF td d , the results are

general. Thus, when we replace x in the right hand side with ∂
∂( ) ( )b x t b x t, ,
x

, we can
generalize our argument to any multiplicative noise case. There are of course a myriad of ways
to decide which calculus is most appropriate to the problem at hand. Hence, whereas the
integral Taylor expansion method enables one to only focus on the nature of the short time-scale
processes, the comparison between the integral of autocorrelation and the variance of the short
time-scale process focuses the choice on the specific mathematical model or scientific problem.
Of particular interest to us is the question of how the stability of the non-autonomous SDEʼs of
interest in climate dynamics are influenced by such considerations [20].

7. Related approaches

According to our result using shot noise, even an infinitesimal noise correlation in a stochastic
differential equation can be interpreted using Stratonovich calculus. One might consider our
analysis as a generalised version of the Wong and Zakai [1] approach because shot noise here is
not a C1 function. Considering the ubiquity of colored noise in real systems, Itô calculus might
be interpreted as an idealized mathematical procedure, only applicable to true white noise
processes that are never realized in nature. Hence, we ask whether there are situations in which
Itô calculus can be used for colored noise?
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The conceptual model we are dealing with in stochastic differential equations is that we
have a principle deterministic process whose fate is influenced by short time-scale fluctuations,
which are considered as noise. In building a mathematical model it is common to ignore the
influence of the short time scale processes on the deterministic dynamics, but there are
situations when this may be known to be a poor assumption such as is in the presence of inertial
[21] or feedback [22] effects. Indeed, Kupferman and colleagues [21] studied systems with
multiplicative colored noise and inertia to find that if the correlation time of the noise is faster
(slower) than the relaxation time, this leads to the Itô (Stratonovich) calculus form of the
limiting stochastic differential equation. Similarly, Itô calculus is invoked to interpret
experiments wherein the time delay of the feedback is much larger than the noise correlation
time [22].

These results may also be reinterpreted within the framework of our shot noise formalism.
When the inertial or feedback time scales are much shorter than the noise decorrelation time,
one can ignore the former and focus on the latter using the logic that lead us to the Stratonovich
calculus interpretation. However, when the inertial or feedback time scales are much longer
than the noise decorrelation time, the duration w of the shot noise is no longer equivalent to the
decorrelation time scale of the noise. Rather, in order for the principle dynamics to be valid, we
must interpret w as the inertial or feedback time scale. Hence, during a time increment w, we
must assume that two consecutive random events n1 and n2 are independent,

=( ) ( ) ( )P n n P n P n,1 2 1 2 , which is analogous to the equation (24). Therefore, despite the
colored noise in this case, Itô calculus prevails. Furthermore, this description provides an
unambiguous interpretation of the discrete nature of a system [18], which is believed to be a
central criterion for the use of Itô calculus.

8. Conclusion

When a system is described as having multiplicative noise, the criterion for choosing which
stochastic calculus is most appropriate—Itô or Stratonovich—has been a source of confusion
and great discussion. In most areas of physical science where white noise is defined in terms of
a δ-function autocorrelation, Stratonovich calculus is preferred, mainly due to the consistency
with the results emerging from the Fokker–Planck equation and the fluctuation-dissipation
theorem. In economics, where the Martingale property is considered as the most essential aspect
of stochastic random variables, Itô calculus is widely accepted and used in the development of
models. On the other hand, in population dynamics, Itô calculus is viewed as a proper
continuous approximation of an underlying discrete model in which the Martingale property is
guaranteed by construction. However, it would appear more prudent to choose the calculus
depending on a clear set of objective considerations.

The core difference between the approaches is seen through the presence of the Martingale
property in the multiplicative noise term of the stochastic Langevin equation, and hence
manifests itself in the drift term of the associated Fokker–Planck equation. Thus, the principal
ambiguity is associated with the ensemble mean of the product of two Brownian motion
processes and in the original form it is difficult to assess the validity of the Martingale property.
Here we used integral Taylor expansions to pinpoint the source of the deviation between the
two calculi, which resides in the characteristics of the short time-scale noise process, the nature
of which is described by the autocorrelation. The approach allows one to see the origin of the
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Stratonovich calculus, which resides in the mid-point selection scheme that is synonymous with
including the effect of a finite autocorrelation.

It appears that most realistic signals simulated by white noise have non-Markovian
structure, that is, a finite decorrelation time τc. When one writes down a model stochastic
differential equation, one typically initially assumes that τc is very small relative to the
characteristic deterministic dynamical time scales, in which case white noise is a proper
approximation. Thus, in such a case, the integral of the noise autocorrelation function and the
variance of the noise are of a similar order, and the δ-function autocorrelation is a good
approximation that is consistent with Stratonovichʼs calculus. However, when the integral of the
noise autocorrelation function is much smaller than the variance of the noise, the δ-function
autocorrelation is not an appropriate definition of white noise and Itôʼs calculus is appropriate.

Focusing on the noise itself, in the microscopic limit it is no longer Brownian but is instead
represented by discontinuous finite-time signals, or shot noise. A small but finite autocorrelation
of shot noise can be characterized by a δ-function, and the accumulation over time of its
autocorrelation is represented by the mid-point selection procedure in the Riemann sum of
Stratonovich calculus. This demonstrates that the origin of δ-correlated noise and Stratonovich
calculus is the infinitesimal autocorrelation of the stochastic noise. Thus, the consistency
between the Fokker–Planck equation and Stratonovich calculus has the same physical source,
the finite autocorrelation of the stochastic noise that is ignored on time scales long relative to the
fluctuation time scales. Therefore, a finite noise autocorrelation is the key criterion for choosing
a stochastic calculus, but we must take care in interpreting its origin generally as well as on a
case by case basis.
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