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Abstract
We investigate protocols for generating a state t-design by using a fixed
separable initial state and a diagonal-unitary t-design in the computational basis,
which is a t-design of an ensemble of diagonal unitary matrices with random
phases as their eigenvalues. We first show that a diagonal-unitary t-design

generates a ( )O 1 2N -approximate state t-design, where N is the number of

qubits. We then discuss a way of improving the degree of approximation by
exploiting non-diagonal gates after applying a diagonal-unitary t-design. We

also show that it is necessary and sufficient to use ( )O tlog
2

-qubit gates with

random phases to generate a diagonal-unitary t-design by diagonal quantum
circuits, and that each multi-qubit diagonal gate can be replaced by a sequence of
multi-qubit controlled-phase-type gates with discrete-valued random phases.
Finally, we analyze the number of gates for implementing a diagonal-unitary t-
design by non-diagonal two- and one-qubit gates. Our results provide a concrete
application of diagonal quantum circuits in quantum informational tasks.
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1. Introduction

Diagonal quantum circuits in the computational basis have recently been attracting much
attention [1–5]. Despite the commutativity of diagonal gates, it has been shown that they are
likely to have stronger computational power than classical computers even if the initial state is
fixed to be a separable state. This implies that the commutativity of gates does not immediately
result in a trivial computational power. From an experimental point of view, diagonal gates can
be fault-tolerantly realized in, e.g., super- and semi-conducting systems [6]. Hence, any
applications of diagonal circuits will lead to an experimental demonstration of a quantum
advantage in informational tasks, but little is known about concrete applications of diagonal
circuits so far.

One of the applications of diagonal circuits, proposed by two of the authors [7], is related
to random states, which are an ensemble of pure states uniformly distributed in a Hilbert space
with respect to the unitarily invariant measure. They have many utilities in a wide range of
applications, e.g., in quantum communicational tasks [8], for efficient measurements [9], for an
algorithmic use [10, 11], and for estimation of gate fidelities [12]. Despite such applications,
exact random states cannot be efficiently generated. Hence, efficient generations of a t-design of
random states, called a state t-design, using quantum circuits have been intensely studied
[12–18, 20–23], where a t-design of an ensemble is an ensemble that simulates up to tth-order
statistical moments of the original ensemble [9, 12, 19]. In most applications of random states, a
state t-design for small t is sufficient [24] and it has been shown that an approximate state t-
design can be efficiently generated by a quantum circuit called a local random circuit [22]. In
[7], a protocol has been proposed for generating an exact state 2-design by combining a
diagonal quantum circuit with a classical probabilistic procedure, which provides a usage of
diagonal quantum circuits that leads to several applications in quantum tasks.

In this paper, we investigate protocols for generating a state t-design for general t by using
a t-design of random diagonal-unitary matrices called a diagonal-unitary t-design. We first
show that a good approximate state t-design is obtained simply by applying a diagonal-unitary
t-design in the computational basis to a fixed separable state. The degree of approximation is

given by − + ( )( )t t O1 2 1 2N N2 for a constant t, where N is the number of qubits. This result

is interesting from two perspectives. From a theoretical point of view, it shows that a diagonal
quantum circuit can generate an ensemble of states whose distribution in a Hilbert space is
difficult to distinguish from the uniform one when looking at lower order statistical moments.
This may aid in an intuitive understanding of a strong computational power of diagonal
quantum circuits. On the other hand, from an experimental point of view, our protocol extends a
usage of diagonal quantum circuits in quantum applications and can be used for demonstrating a
quantum advantage.

We also study a way of improving the degree of approximation by using a local random
circuit after applying a diagonal-unitary t-design. Since an ensemble of states after a diagonal-
unitary t-design is already a good approximate state t-design, it is natural to expect that this
protocol has the advantage of reducing the number of gates in the local random circuit
compared to the one that uses only a local random circuit. We numerically confirm that this
seems to be the case.

It is also important to investigate efficient implementations of a diagonal-unitary t-design
by quantum circuits. Although a diagonal-unitary t-design contains only diagonal matrices, it
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cannot be implemented in general by using only two- and one-qubit diagonal gates since multi-
qubit diagonal gates are generally not decomposable into diagonal gates acting on a smaller
number of qubits. For instance, a three-qubit gate −( )diag 1, 1, 1, 1, 1, 1, 1, 1 cannot be
represented by a quantum circuit consisting of only two- and one-qubit diagonal gates. This
indecomposability of multi-qubit diagonal gates into two-qubit diagonal gates should be
contrasted with the decomposability of multi-qubit general unitary gates into two- and one-qubit
unitary gates. We show that, if we use only diagonal gates, it is necessary and sufficient to use

+⎢⎣ ⎥⎦( )tlog 1
2

-qubit gates with random phases for generating a diagonal-unitary t-design, where

⎢⎣ ⎥⎦x denotes the maximum integer that does not exceed x. We also show that the multi-qubit
diagonal gates in the circuit for implementing a diagonal-unitary t-design can be replaced by
multi-qubit controlled-phase-type gates with discrete random phases. We finally discuss how to
generate a diagonal-unitary t-design by using non-diagonal two-qubit gates, and provide a

construction of a quantum circuit implementing a diagonal-unitary t-design by ( )O N tlog2 two-

qubit gates for a constant t, although it will not be optimal.
Before leaving the introduction, we would like to note that partially randomizing unitary

matrices while preserving some properties, which is the case in a diagonal-unitary t-design, is
not necessarily simpler than full randomization in the unitary group, which is a concern of a
unitary t-design. For a partial randomization, we need to perform two conflict tasks,
randomization and preservation, at the same time. Thus, although commutativity of diagonal
gates simplifies an investigation of random diagonal-unitary matrices, it is not trivial whether an
implementation of diagonal-unitary t-design is simpler than that of a unitary t-design.

This paper is organized as follows. In section 2, we review the definitions of terms used in
this paper. We summarize all of our main results in section 3. Their proofs are provided in
section 4. We make concluding remarks in section 5.

2. Random unitary matrices and t-designs

We first review the definitions of random unitary and diagonal-unitary matrices [7, 25], random
and phase-random states [26], and their t-designs [19]. In the following, we denote by 0 and

1 the computational bases of the Hilbert space of a qubit, which are the eigenstates of the Pauli
Z operator with eigenvalues +1 and −1, respectively. For simplicity, we also denote by  an
expectation over a probability distribution, where we specify the underlying probability space
by a subscript if necessary.

Definition 1 (Random unitary matrices and random states). Let  ( )d be the unitary group
of degree d. Random unitary matrices Haar are the ensemble of unitary matrices uniformly

distributed with respect to the Haar measure on  ( )d . Random states ΥHaar are the ensemble of

states Ψ
∈{ }U

U Haar

for any fixed state Ψ ∈  , where  is a Hilbert space with dimension

d.
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Definition 2 (Random diagonal-unitary matrices and phase-random states). Random

diagonal-unitary matrices in an orthonormal basis { }un denoted by  ( ){ }undiag are an

ensemble of diagonal unitary matrices of the form = ∑φ
φ

=U e u u
n

d i
n n1

n , where the phases φ
n
are

uniformly distributed according to the normalized Lebesgue measure φ φ φ π= ⋯ ( )d d d 2
d

d

1
on

π( )0, 2
d
. Phase-random states Υ Ψ( ){ }u u,n nphase are an ensemble of states

Ψ
∈{ } ( )

U
{ }U undiag

.

Note that a distribution of random states is independent of an initial state Ψ due to the
unitary invariance of the Haar measure. This is not the case in phase-random states, whose
distribution depends on the initial state.

A t-design of an ensemble is defined by an ensemble that simulates up to the tth-order
statistical moments of the original ensemble on average [9, 12, 19, 27]. Although a t-design is
required to be a finite ensemble in several definitions, we do not require it to be more general.

Definition 3 (ϵ-approximate unitary t-designs). Let  be random unitary matrices or random

diagonal-unitary matrices. An ϵ-approximate t-design of , denoted by ϵ ( )t, , is an ensemble of
unitary matrices such that

  ϵ⊗ − ⊗ ⩽ϵ
⊗ † ⊗

∈
⊗ † ⊗

ϵ
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ( ) ( )U U U U ,( )U

t t

U
t t

1

t,

where ∥ · ∥ = ·tr1 is the trace norm. The t-designs for random unitary and diagonal-unitary
matrices are called unitary and diagonal-unitary t-designs, respectively.

Definition 4 (ϵ-approximate state t-designs). Let Υ be random states or phase-random states.

An ϵ-approximate t-design of Υ , denoted by Υ ϵ( )t, , is an ensemble of states such that

 ψ ψ ψ ψ ϵ− ⩽ψ Υ ψ Υ∈
⊗

∈
⊗

ϵ
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ .( )

t t

1

t,

In particular, we call a t-design of random states a state t-design in this paper.

A t-design for ϵ = 0 is called an exact t-design. We mean the exact ones when we simply
use the term t-designs in this paper. Although we have presented definitions of ϵ-approximate t-
designs in terms of the trace norm, there are other definitions using different distance measures,
such as the diamond norm and the Schatten norms (see, e.g., [28]). However, they are shown to
be all equivalent, namely, if  is an ϵ-approximate t-design in one of the definitions, then it is

also an ϵ′-approximate t-design in other definitions, where ϵ ϵ′ = ( )poly 2tN [28].

A unitary and a state t-design can be used in many quantum informational tasks. For
instance, random states saturate the classical communication capacity of a noisy quantum
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channel [8], and are also related to optimal measurements in tomography [9]. POVM
measurements in a random basis can be used for solving hidden subgroup problems efficiently
[10]. Random states in these can be replaced by a state t-design for a small t [24]. A 2-design of
random states is known to be useful for checking the fidelity of quantum gates [12].

3. Main results

We summarize our results in this section. In subsection 3.1, we provide protocols of generating
a state t-design by using a diagonal-unitary t-design in the computational basis. Our results
about implementations of diagonal-unitary t-designs by diagonal circuits are presented in
subsection 3.2. All the proofs are given in section 4.

3.1. Protocols of generating a state t-design by using a diagonal-unitary t-design

Applying a diagonal-unitary t-design on any pure state achieves a t-design of the corresponding
phase-random states by definition. If we choose an appropriate initial state and a basis of the
diagonal-unitary t-design, we can also achieve a good approximation of a t-design of random
states, as stated in the following proposition:

Proposition 1. A t-design of phase-random states obtained by applying a diagonal-unitary t-

design in the computational basis onto an initial state + ⊗N
, where + = +( )0 11

2
, is

an η ( )N t, -approximate state t-design, where η = +− ( )( )N t O, ( )t t

d d

1 1
2 and =d 2N .

As we will see in the next subsection, a diagonal-unitary t-design for a small t can be
achieved by using only diagonal gates acting on a small number of qubits, where the order of
the applications of gates does not matter due to the commutativity of diagonal gates, i.e., there
is no inherent temporal structure in the circuit. This is a big advantage in experimental
implementations of the circuit. In particular, a diagonal-unitary t-design for ⩽t 3 is
implementable by using two- and one-qubit diagonal gates and the total number of gates

is ( )O N2 . This means that the protocol in proposition 1 generates an η ( )N t, -approximate

state t-design for ⩽t 3 by a quantum circuit composed of ( )O N2 two- and one-qubit diagonal

gates that has no temporal structure. This should be contrasted to a previously known protocol
using a local random circuit [22], which is composed of two-qubit gates randomly chosen
from ( )U 4 acting only on neighboring qubits. Although it achieves the same degree

of approximation by using at most ( )( )O t t Nlog5 2 gates, the circuit is necessarily temporally

structured. Thus, our protocol has a practical advantage for large N as long as the required
degree of approximation is up to η ( )N t, , particularly when ⩽t 3.

To achieve a better degree of approximation, it may help to combine a diagonal-unitary
t-design with other procedures. In [7], it was shown that an exact state 2-design is obtained
if we combine a diagonal-unitary 2-design with a classical probabilistic procedure. However,
we can show that adding a classical probabilistic procedure improves the degree
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of approximation by −( )O d t1 in general, so that it is not effective for ⩾t 3 (see appendix A).

Here, we examine a method to apply a local random circuit following the application of a

diagonal-unitary t-design on + ⊗N
. Since an η ( )N t, -approximate state t-design is already

achieved by a diagonal-unitary t-design, it is natural to expect that this protocol generates an
ϵ-approximate state t-design more efficiently than the one that uses only a local random
circuit. We numerically check this. In contrast to the previous results about a local random
circuit, where an input state is arbitrary, input states of the local random circuit in our protocol

are determined by output states obtained by applying a diagonal-unitary t-design on + ⊗N
.

Hence, the necessary length of the local random circuit in our protocol is not directly obtained
from the previous results.

Let T be the length of a parallelized local random circuit after applying a diagonal-
unitary t-design, where we mean by a parallelized local random circuit that unitary gates
acting on different qubits are applied simultaneously. We denote by D(T) the trace distance

between an expectation of ϕ ϕ ⊗t
over the resulting ensemble and that over a state t-

design (see definition 4). We numerically check how D(T) scales with T for t = 2 and
=N 3, 4, 5, 6. In the numerics, we randomly generate a unitary matrix representing a

parallelized local random circuit, and apply it to the states obtained by applying a diagonal-

unitary t-design on + ⊗N
. By repeating this and averaging the resulting states, we evaluate

the expectation of ϕ ϕ ⊗t
over the ensemble obtained by our protocol. The result is shown

in figure 1. We observe that the distance exponentially decreases for each N. Although the
exponent of the exponential decrement depends on N for up to N = 6, we expect from the
right figure in figure 1 that it converges to some value α ( )t that depends on t but not on N.
Accordingly, we conjecture the following.
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Figure 1. The left figure shows how D(T) changes when we apply a parallelized local
random circuit of length T after the application of a diagonal-unitary t-design on the

initial state + ⊗N
. The numerics is performed by Mathematica 9 for t = 2 and each plot

○ (green), □ (red), ▵ (purple), and × (blue), represents =N 3, 4, 5, 6, respectively.
The number of sampling at each point of the plot is 1000. The right figure shows how
the coefficient α depends on N



Conjecture 1. Let D(T) be the trace distance as defined above. Then,

η∼ ∼
−α α− −( ) ( ) ( )

D T N t
t t

d
, 2

1
2 .( ) ( )T t T t

If this is the case, a parallelized random circuit of length ϵ( )T following a diagonal-unitary
t-design achieves an ϵ-approximate state t-design, where

ϵ
ϵ η

α ϵ ϵ η
=

⩾

− + − <⎪
⎪⎧⎨
⎩ ⎡⎣ ⎤⎦( )

( )
( ) ( ) ( )

T
N t

t N t t N t

0 for , ,

log 1 log 1 for , .
2 2

3.2. Implementations of diagonal-unitary t-designs

We present our result that an r-qubit phase-random circuit achieves a diagonal-unitary t-design,
where r is determined by t. An r-qubit phase-random circuit is an extension of a phase-random
circuit [7, 26]. An r-qubit phase-random circuit for an N-qubit system is a quantum circuit
consisting of r-qubit diagonal gates in the computational basis with random phases applied on
all combinations of r qubits out of N qubits (see also figure 2 ). Note that each r-qubit gate
cannot be decomposed into a sequence of s-qubit diagonal gates ( <s r) since the phases of r-
qubit diagonal gates should be chosen independently and randomly, which cannot be achieved
by randomizing the phases of gates acting only on <s r qubits.

Our first result on an implementation of diagonal-unitary t-designs is given in the
following theorem.

Theorem 1. An r-qubit phase-random circuit is a diagonal-unitary t-design if and only if

⩾ +⎢⎣ ⎥⎦r tlog 1
2

for ⩽ −t 2 1N , and r = N for ⩾t 2N .

This result implies that we cannot achieve a diagonal-unitary t-design for ⩾t 4 if we use
only two- and one-qubit diagonal gates.

Our second result is that each r-qubit gate for implementing a diagonal-unitary t-design
can be replaced by a sequence of multi-qubit controlled-phase-type gates that act on s qubits
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Figure 2. An r-qubit phase-random circuit for an N-qubit system where N = 5 and r = 3.
The black circles imply the places on which the r-qubit gate acts. Each r-qubit gate is
diagonal in the computational basis with random phases, i.e., ⋯ϕ ϕ ϕ( )e e ediag , , ,i i i r1 2 2

and ϕ π∈ [ )0, 2
k

. Note that the number of r-qubit diagonal gates is given by ( )N
r .



( ⩽s r), where a multi-qubit controlled-phase-type gate is a unitary operation represented by

⋯ α( )ediag 1, 1, , 1, i in the computational basis. We also prove that a phase of a multi-qubit

controlled-phase gate acting on s qubits can be randomly selected from a +−⎢⎣ ⎥⎦( )t 2 1s 1 -valued

discrete set of phases. Thus, the smaller number of discrete phases is required for the gates
acting on the larger number of qubits. This result also shows that a phase-random circuit
achieves a diagonal-unitary t-design with a finite number of elements.

These results enable us to analyze implementations of diagonal-unitary t-designs by using
two- and one-qubit non-diagonal gates. An explicit construction of a multi-qubit controlled-

phase-type gate acting on r qubits is known and it requires ( )O r 2 two-qubit gates [29], although

it is unlikely to be optimal. By decomposing the multi-qubit controlled-phase gates in an r-qubit
phase-random circuit, we can show that a diagonal-unitary t-design for an N-qubit system is
obtained after applying M two-qubit non-diagonal gates, where

∑=
=

−

( ) ( )( )M N
r O s r

s ,
s

r

1

1
2

and r is given in theorem 1. For a constant t, ∼ ( )M O N tlog2 and the construction is efficient.

For larger t such as = ( )t Npoly , this provides a sub-exponential implementation of a diagonal-
unitary t-design.

4. Proofs

We present proofs of all statements presented in section 3. In subsection 4.1, we show the proof
of proposition 1. We present implementations of a diagonal-unitary t-design by an r-qubit
phase-random circuit in subsection 4.2 and show a decomposition of each r-qubit gate into
multi-qubit controlled-phase gates in subsection 4.3.

Before presenting the proofs, we introduce our notation. We denote t N-bit sequences by

= ⃗ ⋯ ⃗( )n nn : , ,( ) ( )t1 , where ⃗n ( )k is an N-bit sequence for = ⋯k t1, , , and a set of all n by ,

i.e., = ⃗ ⋯ ⃗ ⃗ ∈ = ⋯× { }( ) { }n n n k t, , 0, 1 for 1, ,( ) ( ) ( )t k N1 . Let t be a permutation group of

order t. We introduce an equivalent relation in by t; ∼n m if and only if there exists σ ∈ t

such that ⃗ = ⃗ σn m( )( ) ( )i i for all ∈ ⋯{ }i t1, , . We denote by  t a quotient set of  by the
equivalent relation. For simplicity, we choose a representative of each equivalent class by n that

satisfies ⃗ ⩽ ⃗ +n n( ) ( )i i 1 for every ∈ ⋯ −{ }i t1, , 1 . Note that the inequality is taken in binary,

namely, ⃗ ⩽ ⃗n n( ) ( )i j if and only if ∑ ⃗ ⩽ ∑ ⃗=
−

=
−n n2 2( ) ( )

k

N
k

i N k
k

N
k

j N k
1 1

, where ⃗ ∈ { }n 0, 1( )
k

i is the kth bit

of ⃗n ( )i . We finally introduce a canonical map π from  to  t, and define

π π′ = ∈ = ′− { }( ) ( )n n n n1 for ′ ∈  n t. Using this notation, we define for ′ ∈  n t,

∑π
π

′ =
′ π

−

−
∈ ′−

( )
( )

n
n

m:
1

,
( )m n

1

1 1
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where π ′− ( )n1 is the number of elements in π ′− ( )n1 .

4.1. Generating an approximate state t-design by a diagonal-unitary t-design

We show proposition 1 given in section 3.

Proof 1. The expectation of ϕ ϕ ⊗t
over random states is given by

 ∑ϕ ϕ π π=
+ −

′ ′ϕ Υ∈
⊗

′∈

− −⎡⎣ ⎤⎦
 ( )

( ) ( )
t d

t

n n
1

1
.

t

n

1 1

t

Haar

This is obtained simply by applying Schurʼs lemma [30]. For a t-design of phase-random states

Υphase obtained by applying a diagonal-unitary t-design on + ⊗N
, the expectation is given by

 ∑ϕ ϕ π π π= ′ ′ ′ϕ Υ∈
⊗

′∈

− − −⎡⎣ ⎤⎦
 

( ) ( ) ( )
d

n n n
1

.
t

t
n

1 1 1

t

phase

The difference η ( )N t, between the expectations is given by

 

∑

η ϕ ϕ ϕ ϕ

π

= −

=
+ −

− ′

ϕ Υ ϕ Υ∈
⊗

∈
⊗

′∈

−

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

  ( )

( )

( )

N t

t d
t

n

,

1
1

.

t t

d
n

1

1 1

t

t

Haar phase

We expand + −( )t d
t

1 by α∑! = d
t k

t
k

k1
1

, where α = 1t and α = −− ( )t t 1 2t 1 , and obtain

∑ ∑ ∑η α π α= ! − ′
=

−
−

′∈

−

=
−

⎛
⎝⎜

⎞
⎠⎟  

( ) ( )N t d t
d d

n,
1 1

. (1)
k

t

k
k t

t
k

t

k t k
n1

1

1

1
2

t

We explicitly calculate this up to the order d1 . For ≫d 1 and a constant t, α∑ =
− −( )d

k

t
k

k t
1

1
is

given by

∑α = −
−

+
=

−
−

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

( )
d

t t

d
O

d
1

1

2
1 1

. (2)
k

t

k
k t

1

1

2

The other term in equation (1), π ′− ( )n1 , depends only on the number of the same N-bit

sequences in ′n . For ′n such that ⃗ ≠ ⃗n n( ) ( )i j for ≠i j, π ′ = !− ( ) tn1 and the number of such ′n is

( )d
t

. For ′n such that there exists only one pair (i, j), where ≠i j, satisfying ⃗ = ⃗n n( ) ( )i j ,

π ′ = !− ( ) tn 21 and the number of such ′n is − −
⎜ ⎟
⎛
⎝

⎞
⎠( )t d

t
1

1
. In other cases, the number of

each type of ′n is at most −dt 2. Since the inside of the summation ∑
′∈ n t

in equation (1) is at

most ( )O d1 t , we obtain that
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∑ ∑π α! − ′

= !
−

+ + −
−

! + +

=
−

+

′∈

−

=
−

+ + +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

 

( )

( )

( ) ( )

( )

t
d d

d
t

t
t t

d
O

d
t d

t
t

d
O

d
O

d

t t

d
O

d

n
1 1

1

2
1 1

1
1 2

1 1 1

1 1
, (3)

t
k

t

k t k

t t t t

n

1

1
2

1 2 1 2

2

t

where we have used relations such as = + !−( ) ( )( )d
t

d O d tt t 1 for a constant t. From

equations (2) and (3), we obtain

η =
−

+ ⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

N t
t t

d
O

d
,

1 1
.2

□

4.2. An r-qubit phase-random circuit achieves a diagonal-unitary t-design

We prove theorem 1 by restating it in a different way. Since the statement is obvious for r = N,
we consider only ⩽ −r N 1 in the following.

Let S be  ⊗∈
⊗ † ⊗⎡⎣ ⎤⎦ ( )U UU

t t

diag
and introduce expansion coefficients Snm in the

computational basis defined by

∑= ⊗
∈

S S n n m m .
n m

nm
,

Note that S is diagonal in the computational basis since S is an expectation of ⊗⊗ † ⊗( )U Ut t
for

∈ U diag, and ∈ U diag is diagonal in the computational basis. A simple calculation leads to

π π

π π
=

=
≠⎪

⎪⎧⎨
⎩

( ) ( )
( ) ( )

S
n m

n m

1 when ,

0 when .
(4)nm

Our goal is to derive the value of r for which the r-qubit phase-random circuit achieves the
coefficients Snm.

We denote by Is a subset of ⋯{ }N1, , with s elements. For a given = ⋯{ }I i i, ,s s1 , we

denote s-bit subsequences in ⃗n ( )k and m⃗( )k at Is by ⃗ = ⋯n n n:( ) ( ) ( )
I

k
i

k
i

k

s s1
and ⃗ = ⋯m m m:( ) ( ) ( )

I
k

i
k

i
k

s s1
,

respectively, and ⃗ ⋯ ⃗( )n n, ,( ) ( )
I I

t1

s s
and ⃗ ⋯ ⃗( )m m, ,( ) ( )

I I
t1

s s
by n Is

and m Is
, respectively. We

generalize a canonical map π to the one mapping t s-bit sequences s to a quotient set  s t by
the permutation group t. In this notation, = N . We call the number of 1 in a bit sequence
the weight of the sequence. By using these expressions, we first prove the following lemma.

Lemma 1. Let ∈ n m, s be such that π π≠( ) ( )n m and π π=
− −( ) ( )n mI Is s1 1

for any
⊂ ⋯− { }I s1, ,s 1 . Denote by ⃗( )G nn the number of ⃗n in n. Then, for any s-bit sequence ⃗n ,
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⃗ − ⃗ =( ) ( )G n G n g, (5)n m

where g is a constant positive integer. Moreover, ⩾ −t g2s 1 .

Proof 2. If ∃ ′ ∈ ⋯{ }q q t, 1, , such that ⃗ = ⃗ ′n m( ) ( )q q , we remove them from n and m. As a
result, we obtain ñ and m̃, which are composed of ′t s-bit sequences for ′ ⩽t t. Note that ñ and

m̃ still satisfy π π˜ = ˜
− −( ) ( )n mI Is s1 1

for any ⊂ ⋯− { }I s1, ,s 1 .

Without loss of generality, we assume that the s-bit sequence with the most occurrences in

ñ is ⋯00 0, and let g be the number of occurrences. Since π π˜ = ˜
− −( ) ( )n mI Is s1 1

for any

⊂ ⋯− { }I s1, ,s 1 and all s-bit sequences in ñ differ from those in m̃, all sequences with weight
one should be contained in m̃. Moreover, the number of each sequence with weight one in m̃ is
g since the number of ⋯00 0 in ñ is g. This in turn implies that all sequences with weight two
should be contained in ñ. Similarly, the number of each of such sequences should be g. By
repeating this, it follows that all sequences with zero or even weight are contained in ñ, and
those with odd weight are in m̃. In addition, the number of each sequence is g. Thus, we obtain
for any s-bit sequence ⃗n ,

⃗ − ⃗ =˜ ˜( ) ( )G n G n g,n m

and ′ = −t g2s 1 . By construction, ⃗ − ⃗ = ⃗ − ⃗˜ ˜( ) ( ) ( ) ( )G n G n G n G nn m n m , so that we obtain

equation (5). Moreover, as ⩾ ′t t , it follows that ⩾ −t g2s 1 . □

By using lemma 1, we show the following proposition.

Proposition 2. For ⩽ −r N 1, the following are equivalent;

(A) An r-qubit phase-random circuit achieves an exact diagonal-unitary t-design,

(B) For any n, ∈ m , if π π=( ) ( )n mI Ir r
for any ⊂ ⋯{ }I N1, ,r , then π π=( ) ( )n m ,

(C) >r tlog
2
.

From the equivalence of (A) and (C), we obtain theorem 1.

Proof 3. We first show the equivalence of (A) and (B), and then that of (B) and (C). The unitary
matrix corresponding to an r-qubit phase-random circuit is given by

∏=ϕ
⊂ ⋯

W W ,
{ }I N

I
1, ,r

r

where = ⋯ ⊗ϕ ϕ
⋯ ⧹( )W e e: diag , , { }I I

i i
N I1, ,r r

r

r

1 2 is a diagonal unitary matrix with random phases

ϕ ϕ⋯{ }, ,
1 2r acting non-trivially on the qubits at sites Ir. The matrix I represents the identity

matrix acting on qubits at sites ⊂ ⋯{ }I N1, , . Since the random phases are independently
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chosen for each WIr
, the expectation of ⊗ϕ ϕ

⊗ † ⊗( )W Wt t
over all random phases is given by

 

∑
⊗ = ∏ ⊗

= ∏ ⊗

ϕ ϕ
⊗ † ⊗

⊂ ⋯
⊗ † ⊗

⊂ ⋯
∈

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦



( )( )W W W W

W n n m m ,

{ }

{ }

t t

I N I
t

I

t

I N I
n m

nm

1, ,

1, ,
,

r r r

r r

where

π π

π π
=

=

≠

⎧
⎨⎪
⎩⎪

( ) ( )
( ) ( )

W
n m

n m

1 when ,

0 when .
(6)I

I I

I I

nm

r

r r

r r

By comparing equation (6) with equation (4), we obtain the equivalence of (A) and (B).
Next, we show that (C) implies (B) by showing its contraposition, namely, if there exists n,

∈ m that satisfies π π≠( ) ( )n m but ∀ ⊂ ⋯{ }I N1, ,r , π π=( ) ( )n mI Ir r
, then ⩾t 2r. By

assumption, there exists ′ ⩾r r and ′+Ir 1 such that π π≠
′ ′+ +( ) ( )n mI Ir r1 1

and π π=
′ ′

( ) ( )n mI Ir r

for any ⊂′ ′+I Ir r 1. It follows from lemma 1 that ⩾ ′t g2r , where ⩾g 1. As ′ ⩾r r , we obtain
⩾t 2r.

Finally, we show that (B) implies (C). This is also obtained by showing its contraposition.
Consider n and ∈ m such that, for a fixed +Ir 1, +

n Ir 1
and

+
m Ir 1

contain all +( )r 1 -bit sequences

with even or zero weight and those with odd weight, respectively, and =⋯ ⧹ ⋯ ⧹+ +
n m{ } { }N I N I1, , 1, ,r r1 1

.

Such n and m exist if ⩾t 2r. It is obvious that π π≠( ) ( )n m . However, it is easy to see that

π π=( ) ( )n mI Ir r
for any ⊂ ⋯{ }I N1, ,r . This shows the contraposition of the statement that

(B) implies (C), and concludes the proof. □

4.3. Decomposition of r-qubit gates into the controlled-phase-type gates

We show how to decompose each r-qubit diagonal gate in an r-qubit phase-random circuit into
a sequence of multi-qubit controlled-phase-type gates with discrete random phases. More
precisely, we prove the following.

Proposition 3. To implement a diagonal-unitary t-design by an r-qubit phase-random circuit,

every gate ⋯ ⊗ϕ ϕ
⋯ ⧹

− ( )e ediag 1, , , { }I

i i
N I1, ,

r

r

r

1 2 1 non-trivially acting on r qubits at Ir with

random phases ϕ π∈ [ )0, 2
k

for = ⋯ −k 1, , 2 1r can be replaced by

∏= ⋯ ⊗α

⊂ ⩽ ⩽
⋯ ⧹( )D ediag 1, 1, , 1, ,{ }I

I I s r
I

i
N I

,1
1, ,r

s r

s

Is

s
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where αIs
are randomly and independently chosen from

π
+−

= ⋯ −

⎪ ⎪

⎪ ⎪⎧
⎨
⎩ ⎢⎣ ⎥⎦

⎫
⎬
⎭ ⎢⎣ ⎥⎦

k

t

2

2 1
. (7)

s

k t

1

0,1, , 2s 1

Proof 4. We consider an r-qubit diagonal gate acting on qubits at Ir. Since it is sufficient to
consider a nontrivial part of the matrix, we investigate a diagonal matrix given by

∑= ⃗ ⃗ϕ

⃗

⃗W e n n .I
n

i
I Ir

Ir

nIr
r r

Its tensor product ⊗⊗ † ⊗( )W WI
t

I

t

r r
is given by

∑⊗ = ⊗ϕ⊗ † ⊗

∈
( )W W e n n m m ,I

t
I

t i
I I I I

n m,
r r

Ir Ir r

Ir Ir
r r r r

n m

where ϕ ϕ ϕ= ∑ −= ⃗ ⃗( )k

t

n mn m 1 ( ) ( )
Ir Ir Ir

k
Ir

k . If every phase is randomly chosen from π[ )0, 2 ,


π π

π π
=

=

≠
ϕ⎡⎣ ⎤⎦

⎧
⎨⎪
⎩⎪

( ) ( )
( ) ( )

e
n m

n m

1 when ,

0 when .
(8)i I I

I I

Ir Ir
r r

r r

n m

We investigate the coefficient of ⊗n n m mI I I Ir r r r
in ⊗⊗ † ⊗( )D DI

t
I

t

r r
. Our goal is

to show that the choice of the phases defined in equation (7) achieves the same average as
equation (8). For this purpose, it is sufficient to prove the following two properties: (a) For any

⊂I Ir1 , the average over αI1
makes the coefficient of ⊗n n m mI I I I1 1 1 1

vanish if

π π≠( ) ( )n mI I1 1
. (b) For any ⊂I Is r with any < ⩽s r1 , the average over αIs

makes the

coefficients of ⊗n n m mI I I Is s s s
vanish if π π≠( ) ( )n mI Is s

and π π=
− −( ) ( )n mI Is s1 1

for

all ⊂−I Is s1 .

The property (a) holds since the coefficients of ⊗n n m mI I I I1 1 1 1
in ⊗⊗ † ⊗( )D DI

t
I

t

r r

includes the factor ′αeit I1 with ⩽ ′ ⩽t t1 , which vanishes after taking the average of αI1
over

π
+ = ⋯

{ }k

t k t

2

1 0,1, ,
. The property (b) is obtained from lemma 1. When n Is

and m Is
satisfy

π π≠( ) ( )n mI Is s
and π π=

− −( ) ( )n mI Is s1 1
for all ⊂−I Is s1 , it follows from lemma 1 that, for an

s-bit sequence ⃗ = ⋯1 : 11 1s ,

⃗ − ⃗ =( ) ( )G G g1 1 .s sn mIs Is
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This implies that the coefficient of ⊗n n m mI I I Is s s s
for such n Is

and m Is
contains αeig Is or

α−e ig Is. We also obtain from lemma 1 that ⩾ −t g2s 1 , namely, ⩽ −⎢⎣ ⎥⎦g t 2s 1 , where the equality

holds for n Is
and m Is

that do not share the same s-bit sequences. Thus, for these terms to be zero

by taking the average over αIs
, it is sufficient to take αIs

randomly and independently from

π
⌊ ⌋ +−

= ⋯ ⌊ ⌋−

⎧⎨⎩
⎫⎬⎭

k

t

2

2 1
.

s

k t

1

0, , 2s 1

□

5. Summary and concluding remarks

We investigated protocols of generating a state t-design in an N-qubit system by using a
diagonal-unitary t-design in the computational basis applied on a fixed separable state. We have

first shown that a ( )O 1 2N -approximate state t-design is generated simply by applying the

diagonal-unitary t-design. We have then investigated a way of improving the degree of
approximation by exploiting a local random circuit in addition to a diagonal-unitary t-design,
which seems to result in a faster convergence than the protocol using only a local random
circuit. We have also investigated quantum circuit implementations of a diagonal-unitary t-

design, and have shown that an r-qubit phase-random circuit, where ⩾ +⎢⎣ ⎥⎦r tlog 1
2

for

⩽ −t 2 1N and r = N for ⩾t 2N , generates a diagonal-unitary t-design. The number of r-qubit

gates in the circuit is given by ( )N
r . Each r-qubit diagonal gate has been shown to be

decomposable into a sequence of s-qubit multi-qubit controlled-phase gates ( ⩽s r) with

+−⎢⎣ ⎥⎦( )t 2 1s 1 -valued discrete random phases.

We make remarks on possible future directions. First, numerical analysis of the method of
applying a local random circuit in addition to a diagonal-unitary t-design is less conclusive, so
that further numerical or analytical investigations are required. For an analytical investigation, it

is sufficient to check how the coefficients of π π− −( ) ( )n n1 1 are changed by a local random

circuit. Although we studied a protocol of generating a state t-design from a fixed initial state in
this paper, it is interesting to investigate whether our protocol also achieves a unitary t-design
more efficiently.

Another direction is to deepen the analysis of a quantum circuit implementation of a
diagonal-unitary t-design by using non-diagonal gates. We have provided an implementation of

an exact diagonal-unitary t-design by using ( )O N tlog non-diagonal two-qubit gates for a

constant t. However, the scaling is worse for a large t than for that of a unitary t-design

implemented by a local random circuit, which requires ϵ+( )( )O Nt N log 14 non-diagonal

two-qubit gates [22]. Since our implementation is probably not optimal, it is interesting to see a
lower bound of the length of the circuit to implement a diagonal-unitary t-design.

It will be also interesting to investigate in which cases a unitary t-design used in a quantum
protocol or task can be subsituted by a diagonal-unitary t-design. We have shown in this paper
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that generation of a state t-design is one of the cases. Random unitary matrices have been also
exploited for decoupling two systems [31, 32]. Since decoupling has many applications in
quantum information processing, it may be interesting and useful to investigate whether
diagonal-unitary t-designs are capable of achieving an exact or approximate decoupling.
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Appendix A. Generating a state t-design by a diagonal-unitary t-design and a
probabilistic procedure

We consider a protocol of generating a state t-design by using a diagonal-unitary t-design and a
classical probabilistic procedure, and show that the improvement of the degree of

approximation is limited to be −( )O d t1 .

We generalize a protocol introduced in [7] as follows:

(i) With probability p, apply a diagonal-unitary t-design on + ⊗N
.

(ii) With probability − p1 , choose a random N-bit sequence ⃗n and generate ⃗n .

We denote by Υ ( )p the resulting ensemble and show that

 ψ ψ ψ ψ η∥ − ∥ = −ψ Υ ψ Υ∈ ∈
⊗

∈
⊗

−
⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠( )N t O

d
min ,

1
,

[ ] ( )p

t

p

t

t0,1
1 1Haar

where the minimum is given by

=
− + −

− −

( )
p

d t d
t

d

1 1

1
.

t1

Following the calculations in subsection 4.1, the difference between the expectation over
random states and that over Υ ( )p is given by

 ϕ ϕ ϕ ϕ

π

= −

=
+ −

− + + ∑ − ′

ψ Υ ϕ Υ∈
⊗

∈
⊗

−
′∈ ′ + −

−

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

 ( )
( ) ( )

( )

( )

D p

d
t d

t

n

:

1
1

,

( )
t

p

t

p

d

p

d t d
t

p

dn

1

1 1

1

1
t

t
t

Haar

where ′ = ⧹ ⃗ ⃗ ⋯ ⃗ ⃗ ∈ ×  { }( ) { }n n n n, , , 0, 1
N

. In this notation, η=( ) ( )D N t1 , .
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Since D(p) is a linear function of p, it is sufficient to investigate the coefficient of p. It is
straightforward to observe the following:

+ −
− − +

< <

> >

− + −

−

− + −

−

−

−

⎜ ⎟⎛
⎝

⎞
⎠

⎧
⎨⎪

⎩
⎪⎪( )

( )

( )t d
t

p

d

p

d

p

p

1
1

1 0 when ,

0 when ,
t

d t d
t

d

d t d
t

d

1 1

1

1 1

1

t

t

1

1

for ′ = ⃗ ⋯ ⃗( )n nn , ,( ) ( )t1 , where ⃗ ≠ ⃗n n( ) ( )i j for ≠i j,

π
+ −

− ′
> <

< >
−

+ − !

+ − !

⎧
⎨
⎪⎪

⎩
⎪⎪( )

( )

( )
( )

t d
t

p

d

p

p
n

1
1

0 when ,

0 when ,
t

d

t d
t

t

d

t d
t

t

1
1

1

t

t

and, for other ′n ,

π
+ −

− ′ >−

( )
( )

t d
t

p

d
n

1
1

0.t
1

By taking the absolute values into account, we obtain that the coefficient of p is negative for

<p p
0
and positive for >p p

0
, where =

− + −

− −

( )
p

d t d
t

d0

1 1

1 t1 , so that ( )D p
0

is the minimum. The

order of ( )D p
0

is easily estimated from the fact that ∼ − !+ −( )p t d1 1 t
0

1 . Since p is a

probability of mixing a t-design of Υ ( )1 and a separable state ⃗ ⃗{ }n n ,

− = −( ) ( )( )D D p O d1 t
0

1 , resulting in η= − −( )( ) ( )D p N t O dmin ,p
t1 .
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