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Abstract
We theoretically investigate the quantum statistical properties of light trans-
mitted through an atomic medium with strong optical nonlinearity induced by
Rydberg–Rydberg van der Waals interactions. In our setup, atoms are located in
a cavity and nonresonantly driven on a two-photon transition from their ground
state to a Rydberg level via an intermediate state by the combination of the weak
signal field and a strong control beam. To characterize the transmitted light, we

compute the second-order correlation function τ( )g( )2 . The simulations we
obtained on the specific case of rubidium atoms suggest that the bunched or
antibunched nature of the outgoing beam can be chosen at will by tuning the
physical parameters appropriately.

Keywords: Rydberg blockade, optical nonlinearities, electromagnetically
induced transparency

1. Introduction

In an optically nonlinear atomic medium, the dispersion and absorption of a classical light beam
depends on the powers of its amplitude [1]. At the quantum level, dispersive optical nonlinearities
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translate into effective interactions between photons. The ability to achieve such strong quantum
optical nonlinearities is of prominent importance in quantum communication and computation, as
it allows us to implement photonic conditional two-qubit gates. The standard Kerr dispersive non
linearities obtained in noninteracting atomic ensembles, either in off-resonant two-level or
resonant three-level configurations involving electromagnetically induced transparency (EIT), are
too small to allow for quantum nonlinear optical manipulations. To further enhance such
nonlinearities, EIT protocols were put forward in which the upper level of the ladder is a Rydberg
level. In such schemes, the strong van der Waals interactions between Rydberg atoms result in a
cooperative Rybderg blockade phenomenon [2–4], where each Rydberg atom prevents the
excitation of its neighbours inside a ‘blockade sphere’. This Rydberg blockade deeply changes the
EIT profile and leads to magnified nonlinear susceptibilities [5–8]. In particular, giant dispersive
nonlinear effects were experimentally obtained in an off-resonant Rydberg–EIT scheme using
cold rubidium atoms placed in an optical cavity [9, 10]. In this paper, we theoretically investigate
the quantum statistical properties of the light generated in the latter protocol. Note that, contrary to
other theoretical works, e.g. [11, 12], here, we are interested in the dispersive region. Moreover,
since we place the atoms in a cavity rather than in free-space, the theoretical framework and
calculations we perform also differ from [11, 12]. In particular, a technical benefit of our approach
is that we are not restricted to considering only photon pairs but could, in principle, investigate
higher-order correlations.

We first write the dynamical equations for the system of interacting three-level atoms
coupled to the strong control field and the nonresonant cavity mode fed by the probe beam. We
show that, under some assumptions, the system effectively behaves as a large spin coupled to
the cavity mode [13]. We then compute the steady-state second-order correlation function to
characterize the emission of photons out of the cavity. Our numerical simulations suggest that
the bunched or antibunched nature of the outgoing light, as well as its coherence time, may be
controlled through adjusting the detuning between the cavity mode and probe field frequencies.

The paper is structured as follows. In section 2, we present our setup and the assumptions
we make to compute its dynamics. We also explain the analytical and numerical methods we

employ to calculate the second-order g( )2 correlation function of the outgoing light beam. In

section 3, we present and interpret the results of the simulations we obtained for ( )g 0( )2 and

τ >( )g 0( )2 on the specific experimental case considered in [9]. Finally, we conclude in
section 4 by evoking open questions and perspectives of our work. The appendices address the
supplementary technical details that are omitted in the text for readability.

2. Model and methods

The system we consider comprises N atoms that present a three-level ladder structure with a
ground g , intermediate e , and Rydberg states r (see figure 1). The energy of the atomic

level =k g e r, , is denoted by ℏωk (by convention ω = 0g ), and the dipole decay rates from

the intermediate and Rydberg states are denoted by γe and γr, respectively. The transitions
↔g e and ↔e r are, respectively, driven by a weak probe field of frequency ωp and a

strong control field of frequency ωcf. To limit absorption, both fields are off-resonant; the

respective detunings are given by Δ ω ω≡ −( )e p e and Δ ω ω ω≡ + −( )r p cf r . Moreover, to
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enhance dispersive effects while keeping a high input–output coupling efficiency, the atoms are
placed in an optical low-finesse cavity. The transition ↔g e is supposed to be in the
neighbourhood of a cavity resonance. The frequency and annihilation operator of the
corresponding mode are denoted by ωc and a, respectively; the detuning of this mode with the

probe laser is defined by Δ ω ω≡ −( )c p c , and α denotes the feeding rate of the cavity mode with

the probe field, which is assumed real for simplicity. Finally, we introduce g and Ωcf, which are
the single-atom coupling constant of the transition ↔g e with the cavity mode and the Rabi

frequency of the control field on the transition ↔e r , respectively. In the following
paragraphs, we study the dynamics of the system, which, under some assumptions, is equivalent
to a damped harmonic oscillator, i.e. the cavity mode, coupled to an assembly of spins 1

2
, and

the Rydberg bubbles corresponding to the ‘super-atoms’ delimited by the Rydberg blockade
spheres.

Starting from the full Hamiltonian, we perform the rotating wave approximation and
adiabatically eliminate the intermediate state e as described in appendix A. Note that the result
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Figure 1. (a) The setup consisting of N cold atoms placed in an optical cavity, which is
fed by a weak (classical) laser beam of frequency ωp and a strong control laser field of
frequency ωcf. (b) The atoms present a three-level ladder structure { }g e r, , . The

transitions ↔g e and ↔e r are nonresonantly driven by the injected probe and
control laser fields, respectively, with the respective coupling strength and Rabi
frequency g and Ωcf (see the text for the definitions of the different detunings
represented here).



we obtain coincides with the lowest order of the EIT model—the nonlinearity of the three-level
atoms is neglected, and the leading nonlinear effect comes from the Rydberg–Rydberg

collisional effects. The system therefore consists of N effective two-level atoms { }g r, ,

with an effective power-broadened dipole decay rate from the Rydberg level
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Δ γ
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increased by the coupling to the atomic ensemble. The Hamiltonian reads
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In this expression, we have introduced the atomic operators

   σ ≡ ⊗ … ⊗ ⊗ ⊗ ⊗ … ⊗− +k l( ) ( ) ( ) ( ) ( )
kl

n n n N1 1 1 for =( )k l g e r, , , as well as the
effective detunings

Δ Δ
Ω Δ

Δ γ
˜ ≡ −

+( )4
r r
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e e

2
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and

Δ Δ
Δ

Δ γ
˜ ≡ −

+
g N

,c c
e

e e

2

2 2

respectively shifted from Δr and Δc by the light-induced Stark shift of the control beam and by

the linear atomic susceptibility. The quantity κ ≡ ⃗ − ⃗C r rmn m n6

6
is the van der Waals

interaction between atoms ( )m n, in their Rydberg level—when atoms are in the ground or
intermediate states, their interactions are neglected—while

Ω
Δ

=g
g

2
cf

e
eff

is the effective coupling strength of the two-photon transition →g r driven by the cavity
mode and the control laser.

At this point, following [13], we introduce the Rydberg bubble approximation. In this
approach, the strong Rydberg interactions are assumed to effectively split the sample into b

bubbles α= … { }1, , b
, each of which contains = ( )nb

N

b
atoms but can only accomodate a single

Rydberg excitation, delocalized over the bubble. Note that, within this approximation, all

New J. Phys. 16 (2014) 043020 A Grankin et al

4



bubbles have the same radius, which is fixed by the coefficient C6 and the detunings Δr and Δe,
as well as the control field Rabi frequency Ωcf; assuming that the atomic ensemble is
homogeneous, the number of atoms per bubble nb is approximately given by [9]

π ρ
Δ Ω Δ

=
−

n
C2

3 (4 )b
r cf e

2
at 6

2

where ρ
at
is the atomic density. Each bubble can, therefore, be viewed as an effective spin 1

2

whose Hilbert space is spanned by

− = ≡ ⊗

+ = ≡ … + … + …

α α

α α

∈α α
α

{ }

G g

R
n

rg g g gr
1

,

i
i

b

the ground state of the bubble α and its symmetric singly Rydberg excited state, respectively.

Introducing the bubble spin-1

2
operators = − +α

α α− s( ) , where the operator α
−s( ) corresponds

to the lowering operator of the spin and the annihilation of a Rydberg excitation, one can write
the Hamiltonian under the approximate form (see appendix A)

Δ α

Δ
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+ +
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where we introduced the collective angular momentum ≡ ∑α
α

− = −
J s( )

1
b . The system is, therefore,

equivalent to a large spin, i.e. the assembly of spin-1

2
Rydberg bubbles, coupled to a harmonic

oscillator. Its density matrix satisfies the master equation
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One can also write the Heisenberg–Langevin equations for the time-dependent operators

−( ) ( )a t t, J

Δ γ α∂ = ˜ − ˜ − + + ˜−

( )a a g n ai i i
J

(2)t c c eff b in

Δ γ∂ = ˜ − ˜ + + ˜
− − ( ) g N aJ i J i J (3)t r r eff b in

where ˜ ˜ ≡ ∑ ˜
=a F, J ( )

in in n

N
gr

n

1
are the Langevin forces associated with a and −J , respectively. Note

that we neglected the effect of extra dephasing due to, for example, collisions or laser
fluctuations.
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To study the quantum properties of the light transmitted through the cavity, we shall

compute the function g ( )
out

2 , which characterizes the two-photon correlations. In the input–output

formalism [14], one shows that this function simply equals the function g( )2 for the intracavity
field (see appendix B for details) given by

τ
ρ

ρ
=

τ† †

†

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

{ }
( )g

a ae a a

a a

Tr

Tr

( ) ss

ss

2
2

where ρss denotes the steady state of the system defined by ρ = 0
ss

; see equation (1).
In the region of the small feeding parameter α, one can compute ρss numerically by

propagating in time the initial state ρ ≡ = = ⊗ = =N N n n0 0 0 0r r c c0
, where

= … N 0, 1, ,r b represents the symmetric state in which ≡ +
( )Nr 2

Jb z bubbles are excited,

and = …n 0, 1,c are the Fock states of the cavity mode. To this end, one applies the

Liouvillian evolution operator e t in a truncated basis, restricted to states of low numbers of
excitations (typically with + ⩽n N 6c r ). The steady state is reached in the limit of large times,
ideally when → ∞t . The denominator of the ratio in equation (2) is directly obtained from ρss.
To compute its numerator, one first propagates in time ρ †a a

ss
from t = 0 to τ, using the same

procedure as earlier, then applies the operator †a a and takes the trace.

In the region of weak feeding, it is also possible to get a perturbative expression for ( )g 0( )2

by computing the expansion of † †a a aa
ss
and †a a

ss
in powers of α. To this end, one uses the

Heisenberg equations of the system in equations (2) and (3) to derive the hierarchy of equations
relating the different mean values and correlations …

ss
up to the fourth order in α. After

straightforward, though lengthy, algebra, one gets an expression for ( )g 0( )2 that is too
cumbersome to be reproduced here, but allows for faster calculations than the numerical
approach. Such a fully analytical treatment, however, cannot, to our knowledge, be extended to

τ >( )g 0( )2 ; for τ > 0, therefore, we rely entirely on numerical simulations.
To conclude this section, we consider the region of a large number of bubbles and low

number of excitations, i.e. ≫ 1b and ≪  b
Jz . As shown in appendix A, the operator ≡ −

b J

b

is then approximately bosonic, and the term +
( )2

Jb z can be put under the form
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Finally, we get the following approximate expression for the effective Hamiltonian

Δ α Δ κ˜ ≈ − ˜ + + − ˜ − ¯ + +† † † † † † †    ( ) ( )H a a a a b b b b bb g N ab a b
2c r eff

where κ Δ¯ ≡ ˜ 2 r b. In this region, the system thus behaves as two coupled oscillators: one is
harmonic, the cavity field; the other is anharmonic, the Rydberg bubble field. The cavity
resonance is therefore shifted depending on the number of excitations in the system.

In the following section, we present and discuss the results we obtained with the specific
system used in [9]. It appears that one can choose the bunched or antibunched behaviour of the
light transmitted through the cavity by adjusting the detuning Δc. We also show that the time

behaviour of the function τ( )g( )2 depends on the region considered, and can be roughly
understood as resulting from the damped exchange of a single excitation between the atoms and
field.

3. Numerical results and discussion

We now consider the physical setup presented in [9], i.e. an ensemble of Rb87 atoms whose state

space is restricted to the levels = =g s F5 ; 21
2

, = =e p F5 ; 33
2

, and

= =r d F95 ; 45
2

with the decay rates γ π= ×2 3
e

MHz and γ π= ×2 0.03
r

MHz. The

other physical parameters must be designed so that strong nonlinearities may be observed at the
single-photon level. In the specific system considered here, we find that this is achieved for a
cavity decay rate γ π= ×2 1

c
MHz, a volume of the sample π μ= × ×V 40 15 15 m3, a sample

density μ= −n 0.4 mat
3, a control laser Rabi frequency Ω γ= 10cf e

, a cooperativity C = 1000, a

detuning of the intermediate level Δ γ= −35e e
, a detuning of the Rydberg level Δ γ= 0.4r e

, and a

cavity feeding rate α γ= 0.01
e
. For these parameters, the cavity detuning Δ γ= −6.1( )

c e
0

corresponds to the maximal average number of photons in the cavity. Note that these physical
parameters are experimentally realistic and feasible.

Let us first focus on the second-order correlation function at zero time ( )g 0( )2 , represented

in figure 2(a) as a function of the reduced detuning θ Δ Δ γ≡ −( )( )
c c e

0 . The numerical and

analytical results are in such good agreement for the region considered that the corresponding
curves cannot be distinguished. One notes a strong bunching peak (B) θ = −4.9B and a deep
antibunching area centered on (A) θ = 0A . This suggests that around (A), photons are preferably
emitted one by one, while around (B) they are preferably emitted by pairs. Note, however, that

as a ratio, ( )g 0( )2 only gives information on the relative importance of pair and single-photon
emissions. Its peaks, therefore, do not correspond to the maxima of photon pair emission, but to

the best possible compromises between † †a a aa
ss
and †a a

ss

2
, which can be checked by

comparing figures 2(a) and (b). Hence, pair emission might dominate in a region where the
number of photons coming out from the cavity is actually very small.
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We now investigate the behaviour of τ >( )g 0( )2 for two different values of the detuning,
i.e. θ = −4.9B and θ = 0A , which respectively correspond to the peak (B) and minimum (A) of

( )g 0( )2 . The numerical simulations we obtained are given in figure 3. The plot relative to (B)

exhibits damped oscillations, alternatively showing a bunched τ >( )( )g 1( )2 or antibunched
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Figure 2. (a) Second-order correlation function at zero time ( )g 0( )2 (numerical and

analytical plots coincide) as a function of the reduced detuning θ Δ Δ γ≡ −( )( )
c c e

0 . In

the neighbourhood of the minimum (A) θ = 0A , a strong antibunching region is
observed (see inset); a strong bunching area is obtained around the peak (B) θ = −4.9B .

(b) Average number of pairs = −† † ( )a a aa n n 1
ss ss

(thin line) and the square of

the average number of photons =†a a n
ss ss

2 2
in the steady state (thick line). The

position of the peak of the correlation function ( )g 0( )2 is signaled by the vertical line.



τ <( )( )g 1( )2 behaviour. The plot corresponding to (A) always remains on the antibunched

side, though asymptotically tending to 1.
The dynamical features observed can be understood and satisfactorily accounted for by a

simple three-level model. Indeed, due to the weakness of α, the system in its steady state is
expected to contain, at most, two excitations (either photonic or atomic). After a photon
detection at t = 0, it contains, at most, one excitation, which can be exchanged between the
cavity field and atoms, as it has been known for a long time [15, 16]. In other words, the
operator ρ †a a

ss
can be expanded in the space restricted to the three states

≡ = = ≡ = = ≡ = ={ }N n N n N n00 0, 0 , 01 0, 1 , 10 1, 0r c r c r c and the effec-

tive non-Hermitian Hamiltonian for the system, in this subspace, takes the following form:

α
α Δ γ

Δ γ
= − ˜ − ˜

− ˜ − ˜

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 g N

g N

H

0 0
i

0 i

c c

r r

3 eff

eff

The order of magnitude of the frequencies and decay rates of the oscillations observed for g t( )( )2

in the specific cases (A,B) are satisfactorily recovered by this Hamiltonian, which validates the
schematic model we used and suggests it comprises the main physical processes at work.

To conclude this section, it is worth mentioning that the two-boson approximation, though
strictly speaking not applicable here—the parameters considered in this section indeed
correspond to a number of bubbles ≃ 2b —yields, however, the qualitative behaviour for

( )g 0( )2 . The minimum is correctly located, though slightly higher than in the spin model; the
antibunching peak is slightly shifted towards positive detunings and is weaker than in the
previous treatment. These discrepancies result from too low a value of the nonlinearity
parameter κ̄; they can be corrected by replacing κ Δ¯ = ˜ 2 b with κ Δ¯′ = ˜ −( )2 1b in the two-
boson Hamiltonian. We first note that κ̄ and κ̄′ coincide in the region of a large number of
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Figure 3. Temporal behaviour of τ( )g( )2 for (a) θ = −4.9B and (b) θ = 0A . Note that we
chose a dimensionless ‘time’ variable τ × γe on the x-axis.



bubbles. Moreover, κ̄′ makes sense in the region of a low number of bubbles: in particular,
when → 1b , i.e. when only one bubble is available, the nonlinearity proportional to κ̄′
diverges accordingly, thus forbidding the boson field to contain more than one excitation.
Finally, let us mention that κ̄′ can also be recovered via a perturbative treatment of the full
model, which will be presented in a future paper.

4. Conclusion

In this work, we studied how the strong Rydberg–Rydberg van der Waals interactions in an
atomic medium may affect the quantum statistical properties of an incoming light beam. In our
model, atoms are located in a low-finesse cavity and subject to a weak signal beam and a strong
control field. These two fields nonresonantly drive the transition from the ground to a Rydberg
level. The system was shown to effectively behave as a large spin coupled to a damped
harmonic oscillator, i.e. the assembly of Rydberg bubbles and the cavity mode, respectively.
The strong anharmonicity of the atomic spin affects the quantum statistics of the outgoing light
beam. To demonstrate this effect, we performed analytical and numerical calculations of the

second-order correlation function τ ⩾( )g 0( )2 . The results we obtained on a specific physical
example with rubidium atoms indeed show that the transmitted light presents either bunched or
antibunched characters, depending on the detuning between the cavity mode and the probe
field. This suggests that in such a setup, one could design light of arbitrary quantum statistics
through appropriately adjusting the physical parameters.

In this work, we performed the Rydberg bubble approximation, which allowed us to derive
a tractable effective Hamiltonian. This scheme is, however, questionable: interactions between
bubbles are indeed neglected, and the different spatial arrangements of the bubbles in the
sample are not considered. Though challenging, it would be interesting to run full simulations
of the system, rejecting those states that are too far off-resonant due to Rydberg–Rydberg
interactions. Besides validating the assumption of the present work, this would indeed enable us
to consider other regions, such as, for instance, the case of resonant transition towards the
Rydberg level. We also implicitly made the assumption that the cavity mode and control beam
were homogeneous. Spatial variations should be included in the model, and their potential
influence studied in future work. Finally, due to the very weak probe field region considered in

this paper, we only presented results on the function τ( )g( )2 : the production of = …n 3, 4,
correlated photons is indeed very unlikely. In principle, we can, however, numerically compute

τ( )g( )n for any >n 2, which might be relevant in a future work, if addressing stronger probe
fields.
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Appendix A. Derivation of the effective Hamiltonian

A.1. Rotating wave approximation

The full Hamiltonian of the system can be written under the form

∑ ∑
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where    σ α β≡ ⊗ … ⊗ ⊗ ⊗ ⊗ … ⊗αβ
− +( ) ( ) ( ) ( ) ( )n n n N1 1 1 , ωα is the energy of the

atomic level α for α = e r, (with the convention ω = 0g ), and κ ≡
⃗ − ⃗mn
C

r rm n

6
6 denotes the van der

Waals interaction between atoms in the Rydberg level. When atoms are in the ground or
intermediate states, their interactions are neglected.

We switch to the rotating frame defined by ψ ψ→ ˜ = −( )Hexp ti
0 where

∑ω ω σ ω ω σ≡ + + +†

=

   ( )H a a ( ) ( )
p p

n

N

ee
n

p cf rr
n

0
1

and perform the rotating wave approximation to get the new Hamiltonian ˜ = ˜ + ˜ + ˜
−H H H Va c a c,

where

∑ ∑

∑ ∑

∑

Δ σ Δ σ

Ω
σ σ κ σ σ

Δ α

σ σ

˜ = − −

+ + +

˜ = − + +

˜ = +

= =

= < =
† †

−
=

†

 




 



( )

( )
( )

H

H a a a a

V g a a

2

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

a e
n

N

ee
n

r
n

N

rr
n

cf

n

N

re
n

er
n

m n

N

mn rr
m

rr
n

c c

a c
n

N

eg
n

ge
n

1 1

1 1

1

with the detunings Δ ω ω≡ −( )c p c , Δ ω ω≡ −( )e p e , and Δ ω ω ω≡ + −( )r p cf r .
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The corresponding Heisenberg–Langevin equations are:

∑Δ γ α σ= − − − +( )d

dt
a a g ai i i (A.1)( )

c c
i

N

ge
i

in

σ Δ γ σ
Ω

σ σ σ= − − + − +( )( )d

dt
ga Fi i

2
i (A.2)( ) ( ) ( ) ( ) ( ) ( )

ge
i

e e ge
i cf

gr
i

ee
i

gg
i

ge
i

∑

σ Δ γ σ
Ω

σ σ

σ κ σ

= − − +

− +
≠

( )d

dt
ga

F

i i
2

i

i (A.3)

( ) ( ) ( ) ( )

( ) ( ) ( )

gr
i

r r gr
i cf

ge
i

er
i

gr
i

j i

N

ij rr
j

gr
i

∑

σ Δ Δ γ σ
Ω

σ σ

σ σ κ σ

= − − + −

+ − +†

≠

( ){ }( )d

dt

ga F

i i
2

i i (A.4)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

er
i

r e er er
i cf

rr
i

ee
i

gr
i

er
i

j i

N

ij rr
j

er
i

where ain and αβF ( )i denote Langevin forces.

A.2. Elimination of the intermediate state

Let us now simplify the system. First, one deduces from equation (A.4) that σer is of second

order in the small feeding constant α. The term σa ( )
er

i can, therefore, be neglected in equation
(A.3). Moreover, since the ground-state population remains dominant during the evolution of

the system, we can write σ σ− ≃ −( ) ( )
ee

i
gg

i ; from equation (A.2), the steady-state solution for σ ( )
ge

i

in the far detuned region is thus

σ
Ω

Δ γ
σ

Δ γ Δ γ
≃

+
+

+
+

+( ) ( ) ( )
g

a F
2 i i

i

i
( ) ( ) ( )
ge

i cf

e e

gr
i

e e e e

ge
i

Finally, substituting this relation into equations (A.1) and (A.3) one gets

∑Δ γ α σ= ˜ − ˜ − + + ˜
⎛
⎝⎜

⎞
⎠⎟( )d

dt
a a g ai i i (A.5)( )

c c eff
i

gr
i

in

∑σ Δ γ σ σ κ σ= ˜ − ˜ + − + ˜
≠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )d

dt
g a Fi i i (A.6)( ) ( ) ( ) ( ) ( )

gr
i

r r gr
i

eff gr
i

j i

N

ij rr
j

gr

i
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where

Δ Δ Δ
Δ γ

γ γ γ
Δ γ

Δ Δ Δ
Ω

Δ γ

γ γ γ
Ω

Δ γ
Ω

Δ γ

Ω
Δ

˜ = −
+

˜ = +
+

˜ = −
+

˜ = +
+

=
+

≈

( )

( )

( )

( )

( )

g N

g N

g
g g

4

4

2 i 2

c c e

e e

c c e
e e

r r e
cf

e e

r r e

cf

e e

eff

cf

e e

cf

e

2

2 2

2

2 2

2

2 2

2

2 2

are the parameters for the effective two-level model and ˜ ˜a F, ( )
in gr

i
are the modified Langevin

noise operators

∑ ∑
Δ γ Δ

Ω

Δ γ

Ω
Δ

˜ = +
+

≈ +

˜ = +
+

≈ +

( )

( )

a a
g

F a
g

F

F F F F F

i

2 i 2

( ) ( )

( ) ( ) ( ) ( ) ( )

in in

e e i
ge

i
in

e i
ge

i

gr

i

gr
i cf

e e

ge
i

gr
i cf

e
ge

i

Note that, in the absence of collisional terms, one simply recovers the standard three-level EIT
susceptibility in the far-detuned region

Δ γ
Δ

α= − −
−

− + ˜
Ω

γ Δ−

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟

da

dt

g N
a ai

i
ic c

e

in

2

4( i )
cf

r r

2

Finally, we get the effective Hamiltonian

∑ ∑

∑

Δ σ κ σ σ

Δ α σ

˜ = − ˜ +

− ˜ + + + +

= < =

† †

=
⎪ ⎪

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

 

  ( )

H

a a a a g a h c. .

( ) ( ) ( )

( )

r
n

N

rr
n

m n

N

mn rr
m

rr
n

c
n

N

rg
n

1 1

eff
1

A.3. Rybderg bubble approximation

As described in the main text, we introduce the Rydberg bubble approximation. In this
approach, the strong Rydberg interactions are assumed to effectively split the sample into b

bubbles α= … { }1, , b
, each of which contains = ( )nb

N

b
atoms but can only accomodate a single

Rydberg excitation, delocalized over the bubble. Note that the number of atoms per bubble nb is
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approximately given by [9]

π ρ
Δ Ω Δ

=
−

n
C2

3 (4 )b
r cf e

2
at 6

2

where ρ
at
is the atomic density. Each bubble can, therefore, be viewed as an effective spin 1

2

whose Hilbert space is spanned by

− = ≡ ⊗

+ = ≡ … + … + …

α α

α α

∈α α
α

{ }

G g

R
n

rg g g gr
1

i
i

b

the ground state of the bubble α , and its symmetric singly Rydberg excited state, respectively.

Introducing the bubble Pauli operators = − +α
α α− s( ) , the operator α

−s( ) corresponds to the
lowering operator of the spin and the annihilation of a Rydberg excitation, one can write

∑ ∑ ∑

∑ ∑

∑

σ σ

σ

=

≈ − +

≈

=

α

α

α

α α

α

α

= = ∈

=

−

∈

=

−

−

α α

α

α α

α














n

n

s

s

J

( ) ( )

( )
( )

( )

n

N

gr
n

i
gr

i

i
gr

i

b

b

1 1

1

1

b

b

b

where we introduced the collective angular momentum ≡ ∑α
α

− = −
J s( )

1
b . In the same way,

∑ ∑ ∑

∑ ∑

∑

σ σ

σ

=

≈ + + + +

≈ +

≈ +

α

α
α α α α

α

α

= = ∈

= ∈

=

α α

α

α α

α

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟















1
2

s

2

J

( ) ( )

( )

( )

n

N

rr
n

i
rr

i

i
rr

i

z

b z

1 1

1

1

b

b

b

where we used + + ≡ +α α

α

( )1

2

s( )
z . Finally, the Hamiltonian of the system takes the

approximate form

New J. Phys. 16 (2014) 043020 A Grankin et al

14



Δ α

Δ

˜ ≈ − ˜ + +

− ˜ +

+ +

† †

+
†

−

⎛
⎝⎜

⎞
⎠⎟





 




( )

( )

H a a a a

g a a

2

J

J J

c

r
b z

beff

which represents the interaction of the large spin −J with the cavity mode a.

A.4. Region of a large number of bubbles and a low number of excitations

From the well-known relation = ⃗ − ++ − J J J J Jz z

2 2 , we deduce the second-order operator
equation

− −
+

+ =+ −

⎛
⎝⎜

⎞
⎠⎟

 
 J J

2

2

2
J J 0z z

b b2 2

In the region of a large number of bubbles ≫ 1b and for low excitation numbers, i.e.

eigenstates of the total angular momentum = = − + j m k;
2 2

b b with ≪ k b, the solution of

this equation is approximately given by

≈ − +
+

+
+

+ − + −

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭


 

 
( )

( ) ( )
J

2

J J

1

J J

1
z

b

b b

2

2

4 3

whence, at the lowest order in the excitation number,

+ ≈
+

+
+

+ − + −⎛
⎝⎜

⎞
⎠⎟


   

( )
( ) ( )2

J J J

1

J J

1
(A.7)b z

b b

2

2

4 3

≈ −+ − [ ]J , J (A.8)b
2

Injecting equation (A.7) into the previous form of the Hamiltonian, we get

Δ α

Δ

˜ ≈ − ˜ + +

− ˜
+

+
+

+ +

† †

+ − + −

+ † −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 

 

 


 


 

( )
( )

( ) ( )

H a a a a

g N a a

J J

1

J J

1

J J

c

r
b b

b b

2

2

4 3

eff

Moreover, from equation (A.8), we deduce that the operator ≡ −

b J

b
is approximately bosonic

and, therefore, the Hamiltonian can finally be put under the form

Δ α Δ κ˜ ≈ − ˜ + + − ˜ − ¯ + +† † † † † † †    ( ) ( )H a a a a b b b b bb g N ab a b
2

(A.9)c r eff

where κ Δ¯ ≡ ˜ 2 r b.
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Appendix B. Calculation of g(2)
out

By definition, the second-order correlation function for the outgoing field is

=
† †

† †

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

g t t
a t a t a t a t

a t a t a t a t
( , )( )

out

out out out out

out out out out

2
1 2

1 2 2 1

2 2 1 1

Using the relations [14]

γ

γ

=

= −

† †( ) ( ) ( ) ( )
( ) ( ) ( )

a t a t a t a t

a t a t a t2

out out c

out c in

and keeping only nonzero terms (all terms like †a ....in and a.... in equal zero), one obtains in

the numerator four nonzero terms
† †

† †

† †

† †

a t a t a t a t

a t a t a t a t

a t a t a t a t

a t a t a t a t

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

in

in

in in

1 2 2 1

1 2 2 1

1 2 2 1

1 2 2 1

Let us consider the first term. Using the standard commutation relations between a and ain
operators, we have:

γ θ

=

+

= −

† † † †

† †

† †

[ ]
[ ]

a t a t a t a t a t a t a t a t

a t a t a t a t

t t a t a t a t a t

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ), ( )

2 ( ) ( ) ( ) ( ), ( )

in in

in

c

1 2 2 1 1 2 1 2

1 2 2 1

1 2 1 2 2 1

Here we used the relation

γ θ= −⎡⎣ ⎤⎦ [ ]( ) ( ) ( )X t a t t t X a, 2 ,in c1 2 1 2

where X is any system operator [14] and where θ τ( ) is the Heaviside step-function (with

θ =( )0 1

2
). Evaluating the other terms in the same way, one finally obtains

=
† †

† †( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

g t t
a t a t a t a t

a t a t a t a t
,

out

m M M m(2)
1 2

1 1 2 2

where ≡ ( )t t tmin ,m 1 2 and ≡ ( )t t tmax ,M 1 2 .
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