
To cite this article: C M Heyl et al 2014 New J. Phys. 16 109501

View the article online for updates and enhancements.

C M Heyl, S N Bengtsson, S Carlström, J Mauritsson, C L Arnold and A L’Huillier

Department of Physics, Lund University, P. O. Box 118, SE-22100 Lund, Sweden
E-mail: christoph.heyl@fysik.lth.se

Received 20 August 2014
Accepted for publication 20 August 2014
Published 28 October 2014

New Journal of Physics **16** (2014) 109501
doi:10.1088/1367-2630/16/10/109501

Figure 1. Comparison between NOG (a)–(c) and lighthouse (d)–(f). Normalized spatio-temporal field distribution $|\psi|^2$ of the generation field before focusing (a), (d), focusing scheme (b), (e) and generated XUV intensity distribution together with the fundamental field (grayscale) at a focal length distance behind the focus (c), (f). In order to achieve comparable spatio-temporal XUV pulse characteristics we consider $\Delta t = \tau$ for NOG, a beam radius before focusing that is a factor of 3.7 larger for the lighthouse scheme than for NOG and laser pulses that have the same spectral bandwidth, corresponding to $\tau = 2 T$. The dashed lines in (c), (f) indicate the time-to-space mapping.
The original article was published on 23 May 2014 with a production error in figure 4. One layer of this figure was shifted (figure 4(f)) and another was missing completely (figure 4(c)), leading to incorrect timing information between the fundamental field and the generated XUV field. The corrected figure is shown as figure 1 in this corrigendum.