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Abstract
Using an Atomic Force Microscope (AFM) with a 5.3 μm diameter spherical
probe, we determined mechanical properties of individual human mammary
epithelial cells. The cells were derived from a pair of cell lines that mimic cell
progression through four phases of neoplastic transformation: normal (non-
transformed), immortal, tumorigenic, and metastatic. Measurements on cells in
all four phases were taken over both the cytoplasmic and nuclear regions.
Moreover, the measurements were made for cells in different microenvironments
as related to cell–cell contacts: isolated cells; cells residing on the periphery of a
contiguous cell monolayer; and cells on the inside of a contiguous cell mono-
layer. By fitting the AFM force versus indentation curves to a Hertz model, we
determined the pseudo-elastic Young’s modulus, E. Combining all data for the
cellular subregions (over nucleus and cytoplasm) and the different cell micro-
environments, we obtained stiffness values for normal, immortal, tumorigenic,
and metastatic cells of 870 Pa, 870 Pa, 490 Pa, and 580 Pa, respectively. That is,
cells become softer as they advance to the tumorigenic phase and then stiffen
somewhat in the final step to metastatic cells. We also found a distinct contrast in
the influence of a cell’s microenvironment on cell stiffness. Normal mammary
epithelial cells inside a monolayer are stiffer than peripheral cells, which are
stiffer than isolated cells. However, the microenvironment had a slight, opposite
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effect on tumorigenic and little effect on immortal and metastatic cell stiffness.
Thus, the stiffness of cancer cells is less sensitive to the microenvironment than
normal cells. Our results show that the mechanical properties of a cell can
depend on cancer progression and microenvironment (cell–cell interactions).

S Online supplementary data available from stacks.iop.org/NJP/16/105002/
mmedia

Keywords: atomic force microscopy, cancer cells, stiffness, human mammary
epithelical cells, microenvioroment

1. Introduction

Over the last few decades significant progress has been made in understanding the underlying
genetic and epigenetic causes of cancer [1]. However, despite much improved prognoses in
some cancers and slowly increasing overall survival rates, cancer remains a leading cause of
morbidity and mortality [2]. Breast cancer is the most common form of cancer for women and
ranks as the second leading cause of cancer death in US women [3].

Cancer is a disease that arises from malfunctioning cells [4]. Typically, cancer cells loose
differentiation and reproduce uncontrollably, which leads to a disruption of normal tissue
function. In metastatic cancer, cancer cells leave the primary tumor site, spread through the
vasculature or lymphatic system, and repopulate distal sites. Metastasized cancers account for
over 90% of deaths from solid tumors [3, 5] and, thus, understanding the progression of cancer
cells from the less dangerous, non-metastatic phase to the highly dangerous, metastatic phase is
a crucial current research concern.

The behavior of cancer cells is exceedingly complex and influenced by many, interrelated
factors. Prime among these factors are genetic mutations, which result in erroneous protein
expressions and aberrant signaling pathways. An additional emerging factor that influences
cancer cell behavior is the cancer microenvironment, which includes fibroblasts and other
neighboring cells, chemicals, oxygen levels, and the extracellular matrix [6]. In fact, it was
recently shown that changing the microenvironment can cause cancer cells to revert back to
cells that look and behave phenotypically like non-cancerous cells, despite a cancer genotype
[7]. Work over the last decade or so has shown that a cell’s microenvironment can have a strong
influence on its morphology [7], inter-cellular signaling [8], and differentiation [9]. Thus, it
appears that an intricate interplay between genetic mutations and environmental cues, rather
than genetic mutations alone, affect cell behavior and fate.

A substantial research effort termed ‘Physical Sciences Oncology’ has been underway in
the last few years with the general proposition of looking at cancer with a physicist’s eyes. One
emerging finding of this effort is that cancer cells may have distinct physical properties [10], in
addition to the genetic and biochemical traits that distinguish cancer cells from normal, non-
cancerous cells. These physical properties are a new layer of cancer cell behavior, and it is
hoped that a deeper understanding of these physical traits may point the way to new treatment
options for cancer. The physical properties of cancer cells are of particular interest because of
their possible role in the development and spread of cancer, i.e., metastasis [10–13]. Since
metastatic cancer cells have the ability to travel through the body, they likely have different
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physical properties, as compared to stationary regular tissue cells and localized tumor cells [14].
Current research efforts in Physical Sciences Oncology have several thrusts. Among these
thrusts are (i) building a data base of the physical properties of cancer cells, and (ii) determining
how those properties change as a function of the cancer cell environment. These two research
areas are also the topic of our research, with a focus on determining the mechanical properties
of human mammary epithelial cells (HMECs) and their cancer derivatives, and determining the
effect of the cell–cell interactions (microenvironment) on their mechanical properties.

Numerous physical properties of cells, such as stiffness, viscoelastic behavior, 2D and 3D
migration, traction force, and others [10] can be determined using a range of techniques [4].
Here, we’ll focus on cell stiffness, as determined by atomic force microscopy (AFM)
indentation. AFM indentation is a widely accepted technique to determine nanoscopic material
properties, and the body of literature on cell mechanical properties determined by this technique
continues to grow [15–24]. AFM indentation experiments can be done with a sharp probe—on
the order of tens of nanometers, or a spherical probe—on the order of several micrometers. Both
probe choices give good results. A sharp probe has the advantage that measurements can be
performed with high spatial accuracy over different cellular regions, but the indentation
geometry is more difficult to analyze and there is a risk of puncturing the cell membrane [17].
The larger spherical tip has the advantage of a simpler geometry for analysis, and less risk of
cell puncture; but the determined cell stiffness is an average value obtained from a contact area
of several μm2.

The elastic moduli of a wide variety of cancer cells have been measured using AFM
indentation, including bladder cells [18], esophageal cells [17], kidney cells [22], malignant
breast cancer tissue [21], breast cancer cells [20], and prostate cancer cells [24]. In addition,
several other techniques have been successfully applied to detect mechanical differences
between normal and cancer cells including optical deformability [11, 12], micropipette
aspiration [25], and a microplate stretcher [26]. AFM methods have also been used to measure
increasing rigidity of cells with age [27]. Researchers have also started to demonstrate that the
mechanical signatures of cancer cells can be used as a diagnostic tool. Using AFM
nanoindentation, Remmerbach et al were able to diagnose oral cancer by mechanical
pheonotyping [12], and Plodinec et al were able to distinguish normal cells and metastatic cells
by their stiffness signatures in breast needle biopsies from patients [21].

Ultimately, a better understanding of the physical and mechanical properties of cancer cells
might provide new approaches for cancer treatment. For example, changing the mechanical
properties of cells that are about to metastasize might prevent metastasis. Indeed, the anti-cancer
drug SAHA causes a change in cell stiffness and a change in malignancy, which might be due
to this change in stiffness [28]. In addition, increased cell stiffness has been correlated with drug
resistance [29], pointing to another connection between cancer therapy and stiffness.

In our work, we used a 5.3 μm diameter, spherical, fluorescent probe attached to an AFM
cantilever [30]. We selected a spherical probe, instead of a sharp tip, to avoid effects due to very
small scale inhomogeneities, and to be able to make large scale elastic measurements. The
5.3 μm probe still allowed us to distinguish larger scale structures such as the cytoplasm and the
nucleus. The micrometer-scale, spherical probe also ensured that we did not puncture the cells.
Our measurements were calibrated against known agarose gel standards of different
concentrations [30].

We chose HMECs from two cell lines: the Weinberg cell line [31] and metastatic cells
from the American Type Culture Collection (ATCC). The cells represent four different phases
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of cancer progression: normal—meaning non-immortal, non-tumorigenic and non-metastatic—
(HMEC); immortal (Imm); tumorigenic (Tum); and metastatic (Met). We chose these cells since
they are closely related to each other: they are either HMECs, or they are derived from cells that
once were HMECs. We determined the elastic moduli of all cells as (i) a function of the
subregion of a cell (over nucleus versus over cytoplasm), and (ii) as a function of the cell’s
microenvironment (inside, on the periphery, or isolated outside of a contiguous cellular
monolayer).

The key results of our work are:

(1) When grouping the results by cell types, normal epithelial cells and immortal cells have
about the same stiffness; they are stiffer than metastatic cells, which are slightly stiffer than
tumorigenic cells. This result is in agreement with most of the stiffness measurements
published by other researchers on similar cells and other cancer cell systems—typically
metastatic and tumorigenic cells are softer than normal cells.

(2) There are only minor or negligible differences in stiffness between cellular subregions
(over nucleus versus over cytoplasm). To further explore this point, we used a confocal
microscope to determine the thickness of the cytoplasmic region above and below the
nucleus. It ranged from 2–4 μm and was, therefore, larger than the indentation depth
(1500 nm). Thus, when taking measurements over the nucleus, it is likely that the elastic
properties of the cytoplasm surrounding the nucleus are determined (assuming the nucleus
is stiffer than the cytoplasm), rather than the elastic properties of the nucleus. This feature
of cells (that the cytoplasm surrounding the nucleus is a few micrometers thick) can be
beneficial if the AFM is to be used as a diagnostic tool in cell mechanics. It means that the
placement of the probe on a cell (over or next to the nucleus) does not affect the cell
mechanics measurement. On the other hand, it also means that it is very difficult to
determine the elastic modulus of the actual nucleus with AFM indentation experiments,
since the nucleus is deeply embedded in the cytoplasm.

(3) Monolayer microenvironment strongly affects normal cells; stiffness decreases as we go
from the center of a monolayer to the periphery with isolated cells being the softest.
Monolayer microenvironment has little or no effect on immortal or metastatic cells, and it
has the opposite effect on tumorigenic cells. This result is novel, and points to the
importance of cell microenvironment when defining physical properties of cells.

(4) Certain combinations of microenvironment and cell type result in nearly identical stiffness
values; for example, isolated normal epithelial cells (healthy cells) have the same stiffness
as isolated or peripheral metastatic cells. This result is novel and again points to the
importance of the microenvironment of cells—different cell types might be indistinguish-
able in some microenvironments and distinguishable in others. This is critical when
physical properties, such as stiffness, are considered as diagnostic markers.

2. Materials and methods

2.1. Cell growth and maintenance

Normal—meaning non-immortal, non-tumorigenic and non-metastatic—HMECs were pur-
chased from Lonza (Lonza Group, Walkersville, MD). The immortal and non-tumorigenic
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(Imm) and tumorigenic (Tum) cells were from a modified HMEC line developed by the
Weinberg group [31]. The metastatic cells (MDA-MB-231 or Met) were obtained from the
ATCC (Manassas, VA, USA). A summary of the cell types and their designations is given in
table 1.

The immortal cells (Imm) are derivatives of HMECs that were transfected with hTERT,
providing replicative immortality. The immortal cells were also transfected with small and large
T-antigen, which disables the pRB and p53 proteins, affecting essential signaling pathways, as
well as protein phosphatase 2A. These cells are immortal, but exhibit no tumorigenicity [31].
The tumorigenic cells (Tum) express high levels of mutated H-ras, a protein that regulates cell
division. The normal cells (HMEC) were used within 15 passages from their original state from
Lonza. Normal cells were cultured in mammary epithelial cell growth medium (MEGM; Lonza)
with 0.4% bovine pituitary extract (BPE) (Lonza), according to the distributor’s recommenda-
tions. The immortal cells were cultured in MEGM (Lonza) with 0.4% BPE (Lonza) and 0.1%
hygromycin (Sigma-Aldrich, cat # H3274), while the growth medium for tumorigenic cells was
MEGM (Lonza) with 0.4% BPE (Lonza) and 0.1% puromycin (Sigma-Aldrich, cat #P8833-
10mg). The growth medium for the metastatic cells was the same as that for the HMECs.

Glass bottom dishes (Willcowells) of size 35mm×10mm were purchased and assembled
in the lab. We mixed 150 μl Poly-D-Lysine (Sigma-Aldrich P6407) solution (100 μgml−1) with
343 μl autoclaved phosphate-buffered saline (PBS; 0.01M Na2HPO4, 0.154M NaCl, pH 7.4;
the pH was verified weekly), and then 150 μl of the mixed solution was placed into each dish for
it to absorb for 90min. After this step, the dish was rinsed with sterile deionized water three
times and dried in a sterile hood for 40min.

Cells were cultured and maintained in a culture incubator at 37 °C with 5% CO2 and
seeded onto the glass dishes with Poly-D-Lysine coating for 24 h before measurements. Images
showing the morphologies of the four different types of cells are given in figure 1.

The underlying substrate on which cells are grown can affect the elastic modulus
significantly [32]. For example, both metastatic and non-metastatic melanoma cells produced
much higher moduli (by a factor of 3) when grown on glass surfaces coated with poly-L-lysine
compared to plain glass surfaces [32]. In addition, the loading rate can also significantly affect
the elastic moduli measurement results [20]. Indentation depth also affects the elastic modulus
values measured using AFM cantilevers [32, 33]. Despite these limitations, relative
comparisons can be made between data sets that differ in these experimental parameters

Table 1. A summary of the human mammary epithelial cell types used here.

Cell type
Label in
this paper Source label Immortal Tumorigenic Metastatic

Non-
cancerous

HMEC HMEC1 No No No

Immortal Imm HMEC+LT,
hTERT2

Yes No No

Tumorigenic Tum HMLER2 Yes Yes No
Metastatic Met MDA-MB-2313 Yes Yes Yes
1

Lonza, Williamsport, PA (USA).
2

Weinberg cell line ([31]).
3

ATCC.
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(surface treatment, loading rate, and indentation depth). All our data were collected on the same
surface, with the same loading rate and same indentation depth.

2.2. Height determination of cells and nucleus, confocal microscopy

The height of the cells and the height of their nuclei were determined by taking z-stacks of cells
on a Zeiss LSM 710 confocal microscope (Zeiss, Thornwood, NY, USA) with a 40X lens
(NA=0.5). To distinguish the location of each nucleus within a cell, as well as the boundary of
each cell, we added DAPI (Life Technologies, cat # D1306), a fluorescent dye that strongly
binds to A–T rich regions of DNA within the nucleus of cells and we also added DiI (Life
Technologies, cat #D282), a fluorescent tag that preferentially binds to lipids and highlights the
membranes of our cells. 1 μl of 5mgml−1 DAPI in deionized water was added into each cell
culture dish to reach a final concentration of 5 μgml−1. The DiI was prepared in
dimethylsulfoxide with a concentration of 1mgml−1, and 2 μl of DiI solution was put into
10ml growth medium. The cells were then incubated at 37 °C with 5% CO2 for 15min after
DAPI was added. Then cell growth medium was changed into the growth medium with DiI and
the dish was incubated for 20min. For each type of cell, we collected a vertical stack of images

Figure 1. Brightfield micrographs of the four different cell types. (A) A small colony or
monolayer of normal cells. (B) Several individual immortal cells. (C) Tumorigenic
cells. (D) Metastatic cells. The arrows indicate a cell on the inside (1), and the periphery
(2) of a monolayer of cells, as well as an isolated cell (3).
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(z-stack) consisting of 40–60 images, with the first image starting below the surface of the dish
bottom and with the last image ending well above the top membrane of each cell. A
representative image is shown in the supplementary data. The separation between adjacent
images in the vertical stack was 0.39 μm. From this information we determined the cell and
nucleus heights, and the thickness of the cytoplasmic layer around the nucleus (above and
below the nucleus)—see figure 2.

Although confocal optical microscopy is currently among the best methods to determine
cellular features and cell height [34], fundamental instrumentation limitations, such as
fluorescence bleed-through between the images in a z-stack and diffraction-limited resolution,
result in large uncertainties when determining cell and nucleus heights. To alleviate these
problems, two experienced microscopists independently analyzed confocal microscopy images
of 8–14 cells in each category to obtain the height information. In figure 2 we plotted the
average cell height and nucleus height for each category. The data are presented as rectangular
boxes; the top and bottom line of each rectangle represent the higher and the lower values
determined by each microscopist; the middle line is the average of the two values. The higher
and lower values determined by each microscopist are shown in table 2.

2.3. Theoretical model

The stiffness (Young’s modulus) of a cell region was acquired by indenting the cell with a
spherical probe and recording the applied force. The Hertz model was used to analyze the data
[30, 35]. It describes the Young’s modulus, E, of a homogeneous, infinite, flat, elastic material
that is stressed by a spherical indenter of radius, R, with a force, F (figures 3(A) and (B)).
Although the cells do not behave exactly like an ideal, elastic material, the Hertz model is useful
and widely accepted in characterizing and comparing mechanical properties of different cells.
Viscous contributions to the mechanical response can be reduced by slowing down the
indenting speed. Under such a condition (of slow indentation rates), the measurements are
dominated by elastic behavior [36, 37]. The relationship between the force, F, applied by the
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Figure 3. Experimental set-up (adopted from [30]). (A, B) Schematic of experimental
set-up (not to scale). An AFM cantilever with an attached spherical probe is pressed
onto a cell. As the cell is moved up by a distance, z, the cantilever bends by a distance,
d, and the cell is indented by a distance, δ. (C) Top-view of an AFM probe using a
fluorescence microscope showing the fluorescent melamine bead. (D) Top- and side-
view SEM micrographs of a used AFM probe (a similar, but not the same actual probe
as in (C)). The cantilever is 225 μm long and 43 μm wide; the (fluorescent melamine
bead) probe is 5.3 μm in diameter.

Table 2. Cell height and cytoplasm thickness around the nucleus versus cell category.
The higher and lower values determined by each of two microscopists are shown (see
text for details). Values are in units of μm.

Cell monolayer microenvironment

Isolated Periphery Center

Cell subregion Cell subregion Cell subregion

Cell type Cell Cytoplasm Cell Cytoplasm Cell Cytoplasm

HMEC 7.13–11.56
(N= 12)

2.34–3.87
(N= 12)

6.81–11.25
(N= 13)

2.55–3.72
(N= 13)

6.04–11.56
(N= 14)

2.49–4.37
(N= 14)

Immortal 8.26–16.95
(N= 11)

3.06–3.29
(N= 11)

7.4–14.46
(N= 14)

3.06–3.29
(N= 14)

6.62–14.20
(N= 10)

2.96–3.21
(N= 10)

Tumorigenic 11.30–19.50
(N= 9)

1.62–5.55
(N= 9)

11.30–19.5
(N= 8)

3.72–5.07
(N= 8)

NA NA

Metastatic 14.02–19.05
(N= 12)

4.52–5.94
(N= 12)

14.02–19.05
(N= 13)

4.16–4.97
(N= 13)

NA NA
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sphere on the surface, and the indentation distance of the surface, δ, is then given by:

ν
δ=

−( )
F

E R4

3 1
( ) . (1)

2
3 2

Here ν is the Poisson ratio of the surface and its value for cells is assumed to be 0.5 [38].

2.4. AFM and epifluorescence microscopy

2.4.1. Instrumentation. All indentation experiments were carried out with a combined atomic
force microscope (AFM)/inverted optical microscope [39–41]. The AFM (Topometrix
Explorer, Veeco Instruments, Woodbury, NY, USA) was situated above the sample and fit
on a custom-designed stage of the inverted optical microscope (Axiovert 200, Zeiss,
Thornwood, NY, USA). The optical microscope was equipped with a high sensitivity CCD
camera (EM-CCD C9100-02, Hamamatsu Photonics KK, Japan) and IP Lab software
(Scanalytics, Fairfax, VA). The stage was designed so that the sample can be moved in the x-
and y-directions independently from the AFM when the AFM is sitting on the stage.

2.4.2. AFM probes. We attached a 5.3 μm diameter fluorescent melamine bead (Microspheres-
Nanospheres, Cold Spring, NY) to each tip-less AFM silicon probe (Applied Nano Structures,
USA), as described previously [30]. The AFM probes had a reflective aluminum coating,
length, L = 225 μm, width, w= 43 μm, and a nominal spring constant, k= 0.1–0.6Nm−1. A more
accurate spring constant was calculated from the frequency and dimensions of the cantilever
using the Sader method [42, 43]. Fluorescence and scanning electron microscopy (SEM)
images of the AFM probes clearly show a single melamine sphere attached to the end of the
cantilever (figures 3(C) and (D)). The SEM image shows a used probe—a small amount of ‘dirt’
can be seen, but otherwise the probe is not compromised.

To estimate the accuracy of our AFM methods, some AFM probes were calibrated against
agarose gels (SeaKem, cat #50152, Lonza Group, Walkersville, MD) of known modulus
(figure 4). The determined agarose stiffness values agreed, to within 20%, with commonly
accepted literature values [44–46]. More details of the bead attachment protocol and the
calibration procedure can be found in a previous paper [30].

2.4.3. AFM measurements. Cell samples were measured within 2 h after being removed from
the incubator. The AFM measurements were done at room temperature. For each sample, 30–40
indentation measurements were collected over a period of 2 h. All measurements were carried
out in sterile growth medium (see, section 2.1). Different cell culture conditions, such as
different culture media, in which the growth factors may change, can affect cell mechanical
behavior. For example, Nikkhah et al found that increasing the amount of serum in growth
medium would cause softening of non-malignant MCF10A and malignant MDA-MB-231
breast cells [47]. The Young’s moduli of stained cells were also reported to be higher than those
without stain [17]. We have, therefore, performed all our measurements under the same buffer
and staining conditions, i.e., no staining.

An individual measurement took 17–22 s to complete; i.e. a typical cycle occurred at
approximately 0.05Hz. For each measurement, loading curves were obtained at a speed of
0.1 μms−1. We chose this speed for several reasons. It is fast compared to cell migration, so
cells can be considered stationary objects during a measurement. It is slow enough for the
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viscous drag on the cantilever to be negligible, as estimated from Fdrag = bvtip = 2 pN, with
b= 20 pN s μm−1 [48], whereas the typical force exerted on the cantilever by a cell is in the
1–100 nN range over the indentations used here. Moreover, we found this speed to give
reproducible, low-noise force curves that fit well to the Hertz model.

The indentation depth for all cells was approximately 1500 nm. We say ‘approximately’,
because for cell indentations, the exact contact point is notoriously difficult to pinpoint, for at
least two reasons. First, the initial slope of the curve is shallow, and it is thus difficult to
precisely locate the exact contact point. Second, epithelial cells are surrounded by soft brushes
consisting of the glycocalyx and membrane protrusions such as microvilli, cilia, filopodia and
microridges [49, 50]. These soft brushes can be on the order of several hundred nanometers and
they obscure the exact contact point of the AFM probe with the cell membrane in force curves.
Nevertheless, we indicated the estimated contact point in the force curve in figure 5. The contact
point is easier to identify in the force curve on an agarose gel, which is stiffer and does not have
brushes (figure 4). It is important to note that knowing the exact contact point is actually not
required to obtain good fits.

We chose an indentation depth of 1500 nm for the following reasons. As described
above, for cell indentations, it is difficult to identify the exact contact point of the probe with
the cell. Thus, for smaller indentations, on the order of a few hundred nanometers, this
uncertainty can result in large uncertainties in the modulus determination. Using somewhat
larger indentations, on the order of 1500 nm, this uncertainty has less of an effect and the
obtained curves can be fit well with the Hertz model. On the other hand, we avoided
significantly deeper indentations, on the order of a few thousand nanometers, because for
such deep indentations the probe likely senses the modulus of the substrate, particularly for
the case of the cytoplasm. The cell also might get damaged for very deep (several thousand
nanometers) indentations.

We only performed one or a few spatially separated measurement per cell, since cells may
respond to being poked by stiffening or softening [32]. We used the loading part of the curve
for our data analysis (figure 5).
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different concentrations as determined by AFM indentation. The values agree with
values reported in the literature, as determined by microscopic methods (AFM
indentation) and macroscopic methods (indenter).
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The quantities measured by the AFM are the cantilever deflection, d, and the movement of
the piezo, z. The applied force, F, can be directly calculated from the cantilever deflection via
Hooke’s law, F = k d. The indentation, δ, cannot be directly measured. From figure 3, it can be
seen that z= d+ δ. Plugging this relationship into equation (1), we get

ν
=

−
−

( )
F

E R
z d

4

3 1
( ) , (2)

2
3 2

and using Hooke’s law we obtain

ν
=

−
−⎜ ⎟

⎛
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3 1
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All curves were fit with a slightly modified version of equation (3) to accommodate the
uncertainty in the exact height (z-value) when the spherical probe first made contact with each
cell. As a result we added an additional fitting parameter z0 (in addition to the modulus E) that
corresponds to the vertical height where the tip first contacts the cell. So the expression for the
fitting function is given by

ν
=

−
− −⎜ ⎟

⎛
⎝

⎞
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z z
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k

4

3 1
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The AFM data (F and z) were imported into Matlab (Matlab 2012, The MathWorks, MA
01760, USA). A typical data curve fitted with equation (4) is shown in figure 5. The data was
exported from Matlab and put into Origin (Origin 8.0, OriginLab, MA 01060, USA) to plot
the data.
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Figure 5. An example of cell indentation data and a fitting curve from immortal cells.
The black squares are the AFM data. The red line is a Hertz model fitting curve (A)
Force, F, versus piezo movement, z, where z= d+ δ, with d being the cantilever
deflection and δ being the actual cell indentation. The quantities z and d can be
measured directly; F is calculated from Hooke’s law via d as explained in the text. (B)
Force, F, versus cell indentation, δ. The blue triangle indicates the estimated contact
point between the AFM probe and the cell membrane.
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3. Results and discussion

The Hertz model fit well to the loading curves of all the cell types to give the Young’s modulus,
E, for each cell indentation. The moduli, E, of the various cell types (HMEC, Imm, Tum, and
Met), cell subregions (over nuclear and over cytoplasmic regions), and monolayer
microenvironments (isolated, periphery of monolayer, and inside of a monolayer) are given
in table 3 and plotted in figure 6. We took between 21 and 39 individual measurements for each
cell type and parameter (see table 3 for specific numbers). Our measurements were calibrated
using agarose gels of known concentration. Our results show that the tumorigenic cells (Tum)
are softer than normal cells (HMEC) in each category. Immortal cells (Imm) exhibit the same
stiffness as normal cells. We were not able to collect data for tumorigenic or metastatic cells
growing inside a monolayer, since neither of these cell types could form a monolayer like the
normal and immortal cells. Instead, the tumorigenic and metastatic cells tended to form clumps
as the confluence increased.

3.1. Stiffness versus cell type

From figure 6, it is clear that there are differences in stiffness among the cell types. To further
evaluate these differences we combined all the data for each different cell type (regardless of
monolayer microenvironment or cellular subregion) into a single averaged value for each cell
type (figure 7), as might be done in a quick diagnostic test. When we performed a t-test analysis
of these data (table 4), the normal and immortal cells did not have stiffness values that differed
significantly. However, all other pairs in the table exhibited significant statistical differences
(p< 0.05). So, we can safely conclude that the tumorigenic cells are significantly softer than the
normal and immortal cells, while the metastatic cells are significantly stiffer than the
tumorigenic cells and significantly softer than the normal and immortal cells.

These overall results, averaged over microenvironment and cellular regions, are largely in
agreement with findings reported in the literature, as it has generally been observed that

Table 3. Young’s modulus measurements (± standard error of the mean) for all the
different cell types, monolayer microenvironments, and cellular subregions (units of
Pa). The number of independent cells, N, contributing to each value is given in the
second line of each table cell.

Cell monolayer microenvironment

Isolated Periphery Center

Cell subregion Cell subregion Cell subregion

Cell type Cytoplasm Nucleus Cytoplasm Nucleus Cytoplasm Nucleus

HMEC 600 ± 50
(N= 21)

680 ± 40
(N= 24)

800 ± 80
(N= 21)

950 ± 90
(N= 25)

1130 ± 60
(N= 29)

1020 ± 80
(N= 22)

Immortal 840 ± 60
(N= 33)

910 ± 70
(N= 31)

810 ± 70
(N= 27)

960 ± 90
(N= 33)

720 ± 30
(N= 26)

940 ± 100
(N= 27)

Tumorigenic 590 ± 40
(N= 23)

580 ± 30
(N= 26)

380 ± 30
(N= 24)

410 ± 30
(N= 28)

NA NA

Metastatic 550 ± 30
(N= 34)

580 ± 40
(N= 32)

550 ± 30
(N= 39)

660 ± 30
(N= 38)

NA NA
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Figure 6. Stiffness comparison of normal (HMEC), immortal, tumorigenic, and
metastatic cells. Normal and immortal cells are generally stiffer than both tumorigenic
and metastatic cells. The tumorigenic cells are the softest among the four types of cells.
The difference between measurements over the nucleus and the cytoplasm are typically
small. Normal cells show a strong dependence on the monolayer microenvironment.
The distributions of moduli for each category are shown in the supplementary data.
Abbreviations on x-axis: first letter: I-isolated; P-periphery of monolayer; C-inside
(center) of monolayer; second letter: C-cytoplasm; N-nucleus.

Figure 7. Stiffness comparison of normal (HMEC), immortal, tumorigenic, and
metastatic cells. Here, all categories (monolayer microenvironments and cellular
subregions) are combined into one average value for each cell type. Normal and
immortal cells are generally stiffer than both tumorigenic and metastatic cells. The
tumorigenic cells are the softest of the four cell types. Error bars correspond to standard
errors of the mean (sem).
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malignant cells are softer than normal epithelial cells across a range of different cancers.
Tumorigenic cells are sometimes softer than normal cells, sometimes not. For example,
malignant cancer cells derived from the bladder and ureter (BC372629, T24, Hu456) are softer
than non-malignant cancer cells (HCV29) or normal bladder cells (Hu609) [32]. In prostate,
malignant cancer cells (LNCaP, PC-3, Du 145) were softer than regular, epithelial, human
papillomavirus 18-transformed cells (PZHPV-7) [32]. In breast, metastatic cells (MCF-7) are
softer than regular epithelial mammary gland cells (MCF-10, and 184A1) [20, 51]. When
examining breast tissue biopsies, Plodinec et al found that the softer subpopulation of cells
likely correspond to malignant cells [21].

Similar, though less clear results were obtained for melanoma, where some malignant
melanoma cells (1205Lu, WM266-4, A375) were softer than non-malignant melanoma cells
(WM793, WM115). However, malignant melanoma cells WM35 were as stiff as the non-
malignant melanoma cells [32]; thus, the rule that malignant cells are always softer may not be
universally applicable. In esophagus, epithelial cells immortalized with hTERT (metaplastic
cells, CP-A), and pre-malignant, epithelial-like cancer cells (dysplastic cells, CP-D, Barrett’s
esophagus), were softer than a normal squamous cell line [17]. These cells are similar to our
immortal cells (also immortalized with hTERT), tumorigenic cells (also pre-malignant) and
normal cells. These esophagus results agree with our (breast cancer) results in that the
tumorigenic (pre-malignant) cells are softer than normal cells. They disagree in that the CP-A
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Figure 8. Stiffness of cells as a function of different monolayer microenvironments. (A)
Iso—isolated cells outside of monolayer, Periph—cells on the periphery of monolayer;
Cen–cells in the center (on the inside) of a monolayer. (B) HMEC cells become stiffer
as the microenvironment changes from isolated to the center of a monolayer of cells.
The stiffness of immortal and metastatic cells is not affected by microenvironment;
tumorigenic cells become slightly softer.

Table 4. T-test results for a comparison of stiffnesses of different cell types.

Comparison pair p-value
HMEC versus immortal 0.4545
HMEC versus tumorigenic <0.0001
HMEC versus metastatic <0.0001
Immortal versus tumorigenic <0.0001
Immortal versus metastatic <0.0001
Tumorigenic versus metastatic 0.0015
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immortalized cells are softer than normal cells (same modulus for us). In kidney, it was found
that metastatic (malignant) adenocarcinoma cells (ACHN), were softer than tumorigenic
carcinoma cells (A-498), which were softer than normal kidney epithelial cells (RC-124) [22].
These kidney results agree with our (breast) results in that the tumorigenic (pre-malignant) and
metastatic cells are softer than normal cells. They disagree in that the metastatic cells are softer
than tumorigenic cells (similar or slightly stiffer for us).

One simple reason for some of the differences between our results and those obtained on
other systems, of course, could be that we are comparing different cancer and cell systems. Only
comparing normal, immortal, tumorigenic and metastatic across different cancer types might be
an oversimplification. Additional parameters, such as the different microenvironments, may
also need to be considered. We used the Weinberg cell line, which has not been investigated
before. It could be that the tumorigenic cells from the Weinberg cell line might be slightly softer
than metastatic cells, while tumorigenic cells in other systems are stiffer than metastatic cells.

Some other studies seem to indicate that there is no clear correlation between cell stiffness
and metastasis. Using magnetic twisting cytometry (not AFM indentation), Coughlin et al
investigated the cytoskeletal stiffness, friction and fluidity of a number of cell lines with
different metastatic potential from different cancers (breast, skin, kidney, prostate, and bladder)
[54]. These authors found that acquisition of tumorigenicity or enhanced metastatic ability did
not induce large or systematic changes in cytoskeletal stiffness. The data do suggest that cells
with enhanced cancer cell motility and invasion have a more fluid-like state. However, strongly
metastatic skin cells (A375SM) and kidney cancer cells (SN12PM6) that disseminate by
lodging in the microcirculation of peripheral organs are more solid-like (rather than fluid-like)
[54]. In a related study, the strongly metastatic kidney cancer cells exhibited both increased
cytoskeletal dynamics and stiffness, which are thought to facilitate the process of vascular
invasion [55].

In summary, when tested by AFM indentation, it appears that most, if not all, metastatic
cells across all cancers are typically softer than normal cells. Tumorigenic cells are usually, but
not always, softer than normal cells. When tested by other techniques, such as magnetic twisting
cytometry, no set of biophysical parameters changed systematically with metastatic ability
across all cell lines.

These observations imply that softness may favor, or even be necessary for metastasis in
some cancers; however, it is not a feature that is necessarily found in all metastatic cancer cells.

Other than direct spread into surrounding tissue, cancer metastasizes mainly via three
mechanisms [52, 53]. (1) Hematogenous spread, in which cancer cells intravasate into blood
vessels, mostly though venous capillaries, then spread through the vasculature, extravasate and
repopulate distal sites in the body. Hematogenous spread is typical of sarcomas and some
carcinomas. (2) Lymphatic spread, in which cancer cells first invade the lymphatic system and
subsequently other parts of the body. Since the lymphatic system drains into blood, this route
can also lead to venous circulation. Lymphatic spread is the most common route for
carcinomas, including most breast cancers. (3) Transcoelomic spread, in which cancer cells
spread across a body cavity, such as the peritoneal cavity.

Given the complexity and heterogeneity of cancer and the different paths of metastasis, it
is unlikely that there is one typical biophysical or mechanical phenotype for a prototypical
metastatic cancer cell. Different cancer types with different metastatic paths likely have
different mechanical phenotypes. Nevertheless, by examining and cataloging the mechanical
phenotypes of different cancer cells, it might be possible to build up a mechanical phenotype
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library that could be used for diagnosis across different cancer types, as it was used for breast
cancer [21].

3.2. Stiffness versus cellular subregion

The nucleus is the largest cellular organelle, and can be easily discerned in our microscopic
images, as the typical diameter of a nucleus is several micrometers. To analyze if there is a
difference between the moduli of the cytoplasmic region and nuclear region, we ran a t-test
analysis on the two pairs of stiffness values (Ecyto and Enucl) for each cell type and
microenvironment. This analysis showed that there is no statistically meaningful difference
(p< 0.05) between the cytoplasmic and nuclear stiffness values for any cell type/subregion
except for the immortal cells found at the inside of a monolayer, where the nucleus was slightly
stiffer than the cytoplasm. Thus, for simplicity we will combine the stiffness values of
cytoplasmic and nuclear regions in subsequent analyses, which will introduce no significant
error, except for immortal cells in the monolayer center, where we get a small error. Using
confocal microscopy, we determined the height of the nucleus and the height of entire cell for
all the different cell types in their various microenvironments (figure 2). From these data, we
could also approximately determine the thickness of the cytoplasm between the nucleus and the
cell membrane. The cytoplasmic region surrounding the nucleus (above and below the nucleus)
is larger than the indentation depth for all measurements. Therefore, it is likely that in our
measurements over the nuclear region, we determined the modulus of the cytoplasm
surrounding the nucleus, and not the nucleus. This is the likely reason why the measurements
over the nuclear region and the cytoplasmic region give similar modulus values (another reason
could be that the nucleus and cytoplasm have similar moduli).

The finding that the modulus over the nucleus and next to the nucleus is the same is
beneficial to researchers who want to use AFM as a diagnostic tool to determine the stiffness of
cells. It simplifies such measurements, since it does not matter if the measurement is taken over
the nucleus or next to the nucleus.

Other researchers have found a difference in stiffness values for the nuclear and
cytoplasmic regions, sometimes with the cytoplasmic regions being softer, other times being
stiffer. Guilak et al and Pajerowski et al [56, 57] used a micropipette aspiration method to
determine the potential for deformation. Both groups found that the cytoplasm tends to be softer
than nuclear regions based on a viscoelastic fluid model. The likely reason why these findings
differ from ours is because different techniques were used. In our AFM nanoindentation
experiments we likely did not reach the nucleus, whereas micropipette aspiration probes the
nucleus. Lee et al [58] used AFM nanoindentation with a sharp tip on three HMEC types: non-
transformed cells (MCF10A), similar to our HMEC cells; transformed, non-metastatic human
breast carcinoma cells (MCF7), similar to our tumorigenic (Tum) cells; and metastatic cells
(MDA-MB-231), identical to our metastatic (Met) cells. Their cells were in mixed confluent
monolayers. For the MCF10A cells the nuclear region was slightly stiffer (∼1.3x) than the
cytoplasmic region, while for the MCF7 and MDA-MB-231 the nuclear region was slightly
softer (0.6x and 0.8x, respectively) than the cytoplasmic region. The absolute values were in a
similar range as our measurements (for details, see table 6) with the MCF10A cells being
stiffest, the MCF7 being softer by a factor of 2 (nuclear region) and the MDA-MB-231 cells
being softest (factor of 4 over MCF10, nuclear region). We believe the discrepancy between
their results (difference between nuclear and cytoplasm region) and our results (no/little
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difference between nuclear and cytoplasmic region) could be attributed to the different probes
that were used in the indentation experiments. We used a spherical probe (5.3 μm diameter),
which provides average stiffness values from a micrometer sized area, whereas the sharp probe
(order of nanometer) used by Lee et al provides values from nanometer sized areas, and also
may have penetrated deeper. Both approaches are valuable and useful. If one is interested in an
overview value for a given cell type, a larger, spherical probe is a better choice. However, if one
is interested in a detailed mapping of narrow cellular subregions a nanometer-sized probe is
better. The overall trend that metastatic and tumorigenic cells are softer than normal HME cells
is the same in Lee et al and our experiments.

Our height measurements (figure 2) indicate that if one is interested in determining the
mechanical properties of the nucleus by AFM, deep indentations, on the order of a few
thousand nanometers, should be performed, because the nucleus is embedded in a thick layer of
cytoplasm. Such deep indentations, however, may harm the cell.

3.3. Stiffness versus monolayer microenvironment

To analyze the effect of monolayer microenvironment, we combined the nuclear and
cytoplasmic stiffness values and compared the effect of cell type and microenvironment status
(isolated versus periphery versus monolayer center—see figure 8). We ran a t-test analysis on
the different pairwise combinations as summarized in table 5. Since the tumorigenic and
metastatic cells did not form confluent colonies, but rather clumps of cells, we could not
compare that monolayer microenvironment to others for those two cell types.

A remarkable aspect of this analysis is that the stiffness of normal cells is strongly
affected by the monolayer microenvironment, whereas monolayer microenvironment has
little or no statistically significant effect on metastatic and immortal cells and a slightly
opposite effect on tumorigenic cells. In other words, the various cell types respond in
distinctly different ways to their cellular microenvironment. This has some important
implications. First, when taking cell stiffness measurements, it is important to pay attention to
the microenvironment in which the measurements were taken. Leaving out this variable may
result in data misinterpretations. For example, isolated normal HME cells have the same
stiffness as isolated metastatic cells; while normal HME cells inside a monolayer are stiffer.
Second, while it is well-known that cells sense their environment and that they respond to
environmental cues, we discovered that cell stiffness is yet another parameter that is affected
by the cellular environment. One interpretation could be that in their natural environment,
HME cells form a tightly packed cellular monolayer, and due to this tight packing they are

Table 5. Summary of t-test results on cell stiffness as a function of microenvironment
status.

Cell monolayer microenvironment

Cell type Isolated/Periphery Isolated/Center Periphery/Center

HMEC 0.0009 <0.0001 0.005
Immortal 0.3766 0.2917 0.2196
Tumorigenic <0.0001 NA NA
Metastatic 0.3934 NA NA
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stiffer. This may be their normal, default stiffness, which will allow them to perform their
natural function, which is the creation of a protective and interacting lining in ducts. Once
taken out of that environment they lose the stiffness associated with the tight packing.
Tumorigenic and metastatic cells don’t pack so tightly and don’t interact closely with each
other, and thus do not have this tight-packing associated stiffness. In this context, it is
interesting to note that genotypic tumor cells can phenotypically behave like normal cells,
when they were surrounded and packed in by normal cells [7]. These observations are in line
with the notion that a cell’s microenvironment can have a strong influence on its morphology
[7], inter-cellular signaling [8], and differentiation [9]. Thus, environment and genetics
influence a cell’s behavior and fate.

3.4. Comparison with literature

It is difficult to make direct quantitative comparisons between measurements done on cells or
tissue at different loading rates since the modulus results depend on the rate [32].
Nonetheless, comparisons that are made with loading rates that are within roughly an order of
magnitude have merit. In addition, the differences in tip size and shape could give rise to

Table 6(A). Stiffness (Elastic Modulus) for Human Mammary Epithelial Cells using
AFM (or an indenter).

Enormal

(kPa) Ecancer (kPa) Method Comments References

0.87 ± 0.39 0.41 ± 0.19 (tumori-
genic) 0.57 ± 0.19
(metastatic)

AFM—spherical
probe
(5.3 μm dia.)

loading rate = 0.1 Hz—
average over three
microenvironments and
two subregions

This work

0.51 ± 0.22 0.38 ± 0.15 AFM—spherical
probe
(4.5 μm dia.)

Single cells MCF-7; load-
ing rate = 0.1 Hz

Li
et al [20]

2.0 (nucl.)
1.8 (cyto.)

0.9 (nucl.) 1.3
(cyto.) (tumori-
genic) 0.5 (nucl.)
0.7 (cyto.)
(metastatic)

AFM—sharp probe MCF10A (HMEC) MCF7
(tumorigenic) MDA-
MA-231 (metastatic)

Lee
et al [58]

0.17 ± 0.01 0.58 ± 0.13 premalig
1.8 ± 0.4 tumor

Electromechanical
indenter

mammary gland tissue;
load rate not reported

Levental
et al [59]

1.13 ± 0.78 0.57 ± 0.16
1.99 ± 0.75
5.75 ± 1.62

AFM—sharp probe Peak values for breast
cancer tumor tissue

Plodinec
et al [21]

1.93 ± 0.50 0.50 ± 0.08 AFM—sharp probe Pleural fluid cells; breast
ductal Adenocarcinoma;
load rate = 1 Hz

Cross
et al [16]

2.26 ± 0.56
184A;

1.20 ± 0.28 -T47D;
1.24 ± 0.46
—MCF7;

AFM—sharp probe Mammary cells; loading
rate = 1 Hz

Lekka
et al [51]
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differences that would disappear if the cells were measured with identical tips. The first row
in table 6A provides results from our work that lists a normal cell (HMEC, averaged over all
microenvironments and subregions) and the two most compromised versions of cancer cells
(tumorigenic and metastatic). The second row in table 6A shows a previous measurement by
a different group [20] that used an experimental setup close to ours (similar cell line, same
loading rate, over the cell center (probably nucleus), and very close to the same AFM tip).
Our normal HMEC cells were stiffer by about a factor of 1.7, and the absolute magnitude of
the measurements were quite similar, in the range of 0.5–0.8 kPa. The cancer cells measured
by Li, et al were in agreement with our tumorigenic cells. The mammary gland tissue
measurements by Levental et al using an electromechanical indenter [59]—see the third row
in table 6—showed a systematic increase in the stiffness of mammary tissue as it went from
normal to pre-malignant to tumor. This would appear to disagree with single cell
measurements presented here and by others [20]. However, recent mammary tissue
measurements [21]—see the fourth row in table 6—performed with an AFM that has better
spatial resolution than the indenter, showed that mammary cancer tissue had a stiffness
distribution with three maxima. The distribution showed three maxima—at stiffness values
that are (1) about the same as normal tissue; (2) stiffer than normal tissue; and (3)
significantly softer than normal tissue. It has been hypothesized that malignant cancers
contain cells that could metastasize by moving nimbly around the circulatory or lymphatic
system, arguing for the circulating tumor cells to be softer than other cells. The observation
of tumor tissue being stiffer than normal tissue, yet allowing for a population of softer CTCs,
is consistent with a model in which the ECM surrounding the cancer cells gives rise to the
perceived stiffening. Meanwhile a certain subset of cells is much softer, allowing them to
more easily leave the tumor and enter the circulatory system. This model is supported by the
recent work on breast biopsies by Plodinec et al [21]. In fact, the body has normal cells
whose natural job is to move around the body, viz. leukocytes, so we could expect leukocytes
to also exhibit a softening relative to red blood cells. Data on the stiffness of leukocytes using
micropipette aspiration [60] suggests that these cells have moduli (130 Pa—for slow
aspiration rates) that are somewhat lower than those measured here for the worst cancer cells.
At fast aspiration rates, the leukocytes demonstrate significantly higher shear modulus
(500 Pa), indicating that leukocytic motion through tissue in the body occurs most effectively
at low velocities.

It is also noteworthy that the stiffness values of our normal HME cells agree with the
normal tissue measurements of Plodinec et al and the stiffness values of our metastatic cells
agree with the stiffness of the softest cells/tissue they measure. The fact that their measurements
are nearly in vivo (breast biopsies) while ours are in vitro may indicate that the in vitro cell
conditions in our experiments do not introduce gross differences in cell stiffness compared to
cells/tissue in vivo.

Some important reports about stiffnesses of non-mammary cells are listed in table 6(B).
Cell results in this table were obtained using AFM techniques. Most groups used sharp

tips, except for one group who used spherical probes on normal foreskin epithelial cells [27],
and another who used spherical probes on breast cancer cells (in table 6(A)). Berdyyeva et al
[27] reported a difference in stiffness between the cytoplasmic and nuclear subregions, with the
cytoplasmic subregions exhibiting greater stiffness values than the nuclear subregions. For the
entries in the non-mammary results table, all groups found that the cancer cells were softer than
comparison non-cancerous cells.
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4. Conclusion

It has long been known that genetic mutations can alter proteins and filaments that support the
morphology of cells. For instance, the change caused by genetic mutations in keratin proteins,

Table 6(B). Stiffness (Elastic Modulus) for non-mammary human cells using AFM.

Enormal (kPa) Ecancer (kPa) Method Comments References

7.7 ± 3.6 3.1 ± 2.8 (metaplas-
tic) 2.6 ± 2.7
(dysplastic)

AFM—

sharp
probe

Esophageal;
loading
rate = 1 μm s−1

Fuhrmann
et al [17]

9.4 + 21/−7
(RC-124:
non-
tumorigenic)

7.4 + 21.5/−4.5
(A498:carcinoma)
2.5 + 4.5/−1.8
(ACHN:
adenocarcinoma)

AFM—

sharp
probe

Kidney; vertical
scan rate
of f = 1Hz

Rebelo
et al [22]

80–110 AFM—

sharp
probe

Single cell—
keratinocytes
HaCaT cells

Zhou
et al [61]

14-nuclear 37-
cytoplasm

AFM—

spherical
probe
(5 μm
dia.)

Single cells—
epithelial
(foreskin)

Berdyyeva
et al [27]

2.10 ± 0.79
lung
2.05 ± 0.87
lung
0.54 ± 0.12
pancreas

0.56 ± 0.09 lung
0.52 ± 0.12 lung
0.54 ± 0.08
pancreas

AFM—

sharp
probe

Pleural fluid
cells; load
rate = 1 Hz

Cross
et al [16]

2.8 ± 0.5
benign

0.287 ± 0.052 malig.
1.40 ± 0.16 malig

AFM—

sharp
probe

Prostate cancer
cells; load
rate = 0.28 Hz

Faria
et al [24]

3.09 ± 0.84
PZHPV-7

0.45 ± 0.21 LNCaP;
1.36 ± 0.42 Du145;
1.95 ± 0.47 PC-3

AFM—

sharp
probe

Prostate cancer
cells; load
rate = 1 Hz

Lekka
et al [51]

4.85 ± 2.03
(200 nm
indent);
1.66 ± 0.86
(1400 nm
indent)—
human skin
fibroblasts
CCL110

3.07 ± 0.56 -WM35
(melanoma);
0.76 ± 0.37–A375
(metastatic mela-
noma); both at
1400 nm indent

AFM—

sharp
probe

Melanoma
cells; load rate
not reported

Pagoda
et al [62]

9.7 ± 3.6—
Hu609;
7.5 ± 3.6—
HCV29;

0.3 ± 0.2—Hu456;
0.8 ± 0.4 T24;
1.0 ± 0.6 BC3726

AFM—

sharp
probe

Bladder cells;
load rate
∼0.12 Hz

Lekka M.
et al [18]
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which are the main component of intermediate filaments, results in a softer cellular cytoplasm
[58, 63, 64]. Swaminathan et al reported that the concentration of actin in normal cells was
higher than that in cancer cells, which led to the conclusion that the normal cells are stiffer [65].
Application of more sophisticated models to quantify scale-free cell mechanics will provide
further insight into the relationship between neoplastic processes and stiffness changes in cells
and cell structures. This is particularly relevant for metastasis, as metastatic cells have to
penetrate the basal membranes, travel through the vasculature or lymphatic system, and then
penetrate the membrane again to form another tumor elsewhere.

The behavior of cells under strain is a complex combination of cell crowding, protein
signaling, filament (polymer) changes under stress, the breaking and reforming of weak
polymer bonds, and straining of stretched cellular fibers. Our work shows that cell type (specific
mutations) and microenvironment (cell location outside, on periphery, or inside of a monolayer)
play important roles in determining cell stiffness. Significantly more work needs to be done to
fully understand and describe the importance of the various mechanisms that contribute to cell
mechanical response to strain. It is hoped that the reward of this work may be an entirely new
approach to cancer treatment.
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