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Abstract
Recent results on the non-universality of fault-tolerant gate sets underline the
critical role of resource states, such as magic states, to power scalable, universal
quantum computation. Here we develop a resource theory, analogous to the
theory of entanglement, that is relevant for fault-tolerant stabilizer computa-
tion. We introduce two quantitative measures—monotones—for the amount
of non-stabilizer resource. As an application we give absolute bounds on the
efficiency of magic state distillation. One of these monotones is the sum of the
negative entries of the discrete Wigner representation of a quantum state, thereby
resolving a long-standing open question of whether the degree of negativity in
a quasi-probability representation is an operationally meaningful indicator of
quantum behavior.
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1. Introduction

It is a major open problem in quantum information to determine the origins of quantum
computational speedup. In particular, it is highly desirable to characterize exactly what resources
are required for quantum computation. Beyond the obvious theoretical significance, a resolution
to this problem is important because actual physical systems almost never afford us access to
arbitrary quantum operations. For instance, a physical implementation of a many-qubit system
may suffer from low purity, small coherence times or the inability to create a large amount of
entanglement. The problem is to determine how best to perform quantum computation in the
face of the operational restrictions dictated by physical considerations.

Broadly speaking, operational restrictions divide any set of operations into two classes: the
subset of operations that are easy to implement and the remainder that are not. For example,
a common paradigm in quantum communication is two or more spatially separated parties
communicating using classical communication and local quantum operations, considered
‘cheap’ resources, supplemented by ‘expensive’ resources that require global manipulation
of quantum states, such as entanglement or quantum communication. This division of
quantum operations into cheap and expensive parts motivates the development of a resource
theory [27]. In the sense just explained, entanglement theory is the resource theory of quantum
communication [2, 3, 29]. In this paper we develop a resource theory of quantum computation.

The major obstacle to physical realizations of quantum computation is that real world
devices suffer random noise when they execute quantum algorithms. Fault-tolerant quantum
computation offers a framework to overcome this problem. Starting from a given error rate for
the physical computation, logical encodings can be applied to create arbitrarily small effective
error rates for the logically encoded computation. Transversal unitary gates, i.e. gates that do not
spread errors within each code block, play a critical role in fault-tolerant quantum computation.
Recent theoretical work has shown that a fault-tolerant scheme with a set of quantum gates that
is both universal and transversal does not exist [11].

Many—though not all—of the known fault-tolerant schemes are built around the stabilizer
formalism. Stabilizer codes pick out a distinguished set of preparations, measurements and
unitary transformations that have a fault-tolerant implementation; these are sometimes called
‘stabilizer operations’. In this case the fault-tolerant operations are not only sub-universal but
also actually efficiently classically simulable by the Gottesman–Knill theorem [17]. Thus to
achieve universal quantum computation the stabilizer operations must be supplemented with
some other fault-tolerant non-stabilizer resource.

A celebrated scheme for overcoming this limitation is the magic state model of quantum
computation [19, 42] where the additional resource is a set of ancilla systems prepared in
some (generally noisy) non-stabilizer quantum state. The idea is to consume non-stabilizer
resource states using only stabilizer operations in order to implement non-stabilizer unitary
gates, thereby promoting stabilizer computation to universal quantum computation. Typically
the ancilla preparation process will be subject to the physical error rates as, by necessity, this
process is outside the realm of the stabilizer formalism. Thus we expect the raw resource states
to be highly mixed, but such states are not directly useful for the implementation of non-
stabilizer gates. The resolution is to perform ‘magic state distillation’ [6], wherein stabilizer
operations are used to distill a large number of these highly mixed resource states into a small
number of very pure resource states. In this context the power of universal quantum computation
reduces to a characterization of the usefulness of the resource states.
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We will divide the set of quantum states into those that can be prepared using the
stabilizer formalism, the stabilizer states, and those that cannot, the magic states5. The goal
is to characterize the optimal use of stabilizer operations to transform resource magic states ρres

into the target magic states σtarget required for implementing non-stabilizer gates. This is best
considered as two distinct problems:

1. Starting from any number of copies of a particular resource state ρres, is it possible to
produce even a single copy of a target state σtarget using only stabilizer operations?

2. Assuming this process is possible, how efficiently can it be done? That is, how many copies
of ρres are required to produce m copies of σtarget using only stabilizer resources?

The known protocols are able to distill some, but not all, resource magic states ρres to
target states useful for quantum computation. Until very recently it was not even known whether
some distillation protocol could be found to take any magic state to a nearly pure magic state.
Astonishingly, the answer to the first question (at least in odd dimensions) is no: it was shown
in [45] that there is a large class of bound magic states that are not distillable to pure magic states
using any protocol. (There has also been some interesting progress on this problem in the qubit
case [9, 40, 41].) The second question is the primary focus of this work. We devise quantitative
measures of how magic a quantum state is, allowing us to upper bound the distillation efficiency.
For example, suppose the target state is five times as magical as the resource state according to
such a measure. Then we can immediately infer that at least five resource states will be required
for each copy of the target state.

Finding distillation protocols to minimize the amount of resources required is an
extremely important problem. Currently stabilizer codes provide the best hope for practical
quantum computation, but the physical resource requirement for known distillation protocols is
enormous. For example, Fowler et al [14] analyzes the requirements for using Shor’s algorithm
to factor a 2000 bit number using physical qubits with realistic error rates6. A surface code
construction is used to achieve fault tolerance, from which it is found that roughly a billion
physical qubits are required. About 94% of these physical qubits are used in the distillation
of the ancilla states required to perform the non-stabilizer gates. More efficient distillation
protocols are critical for the realization of quantum computation, and there has been a recent
flurry of effort on this front e.g. [5, 10, 14, 32, 36]. Of particular interest is [8] showing how
magic state distillation can be extended from qubits to systems of arbitrary prime dimension
(qudits) and giving evidence that distillation efficiencies may be significantly improved using
odd-prime dimensional qudits. Unfortunately, although these innovations offer improvement
over the original magic state distillation protocols, the physical requirements remain daunting.
Moreover, it is unclear whether these protocols are near optimal or if dramatic improvements
might still be made. The current work partially addresses this problem by developing a theory
for the characterization of resources for stabilizer computation.

To quantify the amount of magic resource in a quantum state we introduce the notion
of a magic monotone. This is any function mapping quantum states to real numbers that is
non-increasing under stabilizer operations. This is just the common sense requirement that the

5 This somewhat whimsical name stems from two sources. Firstly, the use of the magic moniker in the original
Bravyi and Kitaev paper to describe states that are, apparently magically, both distillable and useful for state
injection. Secondly, the long held desire by one of the present authors to refer to himself as a mathemagician.
6 Physical qubit error rate 0.1%, ancilla preparation error rate 0.5%.
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amount of non-stabilizer resource available cannot be increased using only stabilizer operations.
Magic monotones are valid measures of the magic of a quantum state in exactly the same way
entanglement monotones are valid measures of the entanglement of a quantum state. The main
contribution of this paper is the identification and study of two magic monotones: the relative
entropy of magic and the mana.

The relative entropy of magic is the analogue of the relative entropy of entanglement.
Both magic theory and entanglement theory belong to a broader set of resource theories [27].
In the general setting the quantum states are divided into the free states that can be created using
the restricted operations and the resource states that cannot. The study of resource theories has
primarily focused on the question of the reversible asymptotic inconvertibility of resource states,
i.e. transformations among many copies of these states in the limit that an infinite number of
copies are available. General resource theories quantify the usefulness of a quantum state via
monotones that are non-increasing under the restricted class of operations.

In general there can be many valid choices of monotone. In the context of reversible
asymptotic interconversion, one standard choice is the asymptotic regularization of the relative
entropy distance7 to the set of free states. The relative entropy distance between two states
is S (ρ‖σ)= Tr (ρ log ρ)− Tr (ρ log σ). In the present context the relative entropy monotone
is the relative entropy of magic rM (ρ)≡ minσ∈STAB(Hd ) S (ρ‖σ), the minimum relative entropy
distance between the resource state and any stabilizer state. We show that this monotone is
strictly subadditive for some states in the sense rM

(
ρ⊗2

)
< 2rM (ρ); because of this, in the

asymptotic regime this measure should be regularized as r∞

M (ρ)= limn→∞ rM
(
ρ⊗n

)
/n. This

monotone is the regularized relative entropy of magic. Section 3 is devoted to proving that
this monotone has the property that if it is possible to reversibly asymptotically interconvert
states ρ and σ using stabilizer protocols then the rate at which this can be done is given by
r∞

M (ρ)/r
∞

M (σ ). Along the way we also use the relative entropy of magic to find some interesting
features of magic theory. In particular, we establish that if we wish to create many copies
of any magic state (including a bound magic state) starting with pure magic states, the ratio
of the number of starting pure states to the number of final magic states is non-zero, even
asymptotically.

The generality of the relative entropy distance is both a strength and a weakness. It
offers powerful insight into the similarities between magic theory and other resource theories.
However, by the same token it can tell us little about the unique features of magic theory.
Moreover, the practical relevance of this monotone is specific to the context of reversible
interconversion of magic states in the asymptotic regime of infinite resources. In the context
of magic state computation, we are most interested in the one-way distillation of magic
states using finite resources. Indeed, no known magic state distillation protocol achieves a
non-zero asymptotic rate. This leads us to expect that the relative entropy of magic and its
regularization may offer limited practical insight for the problem of magic state distillation.
There is an even more discouraging problem with this measure: like the relative entropy of
entanglement, it appears to be prohibitively difficult to compute the relative entropy of magic.
Moreover, we do not even have a guaranteed algorithm to find the value of the regularized
relative entropy of magic. Thus this monotone is useful for the holistic study of the resource
theory of magic but is of little direct use for giving concrete bounds on achievable rates of
distillation.
7 The relative entropy is not symmetric in its arguments and thus not a proper distance measure, but behaves like
a distance in other respects.
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In section 4 we introduce a computable measure of the magic of a quantum state: the
mana. This monotone is inspired by the usefulness of the discrete Wigner function [22, 23, 50]
in previous work showing the existence of bound magic states [45]. We will restrict attention
to qudits of odd prime dimension, as in the previous work. There it was shown that negative
Wigner representation is a necessary condition for a magic state to be useful for distillation
protocols. It is natural to wonder if this purely binary negative versus positive condition could
be extended to a quantitative measure of magic. We show that this is possible by proving that
the sum of the negative entries of the Wigner representation of a state is a magic monotone,
sn (ρ). This monotone is intuitively appealing, but it still has a non-additive composition law.
To recover additivity we define a closely related quantity, the mana M (ρ)= log (2sn (ρ)+ 1),
for which it follows that M (ρ⊗ σ)= M (ρ)+ M (σ ). Since it is easy to explicitly find the
Wigner representation of an arbitrary quantum state it is also easy to compute the mana and find
explicit bounds on the efficiency of magic state distillation; to distill m copies of a target state
σ from n copies of a resource state ρ at least n > m M (σ )

M (ρ)
copies are required on average. As an

application we compute the mana efficiencies of the distillation protocols studied in [1, 9]. Our
monotone suggests the possibility of protocols offering dramatic improvements in efficiency.
Additionally, we provide a detailed characterization of the mana for the qutrit state space, which
includes identifying two distinct states with maximal mana.

2. Background and definitions

2.1. Stabilizer formalism

The stabilizer formalism is critical for the results of the present paper. Here we will give a
very brief overview of the elements of the theory we require. For an overview of the stabilizer
formalism in the context of fault tolerance see [16, 18]. For an overview of the phase space
techniques for the stabilizer formalism see [22, 24]. Veitch et al [45] gives an overview of the
particular mathematical elements that will be important for this paper.

We begin by defining the generalized Pauli operators for prime dimension and we will build
up the formalism from these. Let d be a prime number and define the boost and shift operators

X | j〉 = | j + 1 mod d〉 , (1)

Z | j〉 = ω j
| j〉 , ω = exp

(
2π ı

d

)
. (2)

From these we can define the generalized Pauli (Heisenberg–Weyl) operators in prime
dimension

T(a1,a2) =

{
ıa1a2 Z a1 Xa2, (a1, a2) ∈ Z2 ×Z2, d = 2,

ω−
a1a2

2 Z a1 Xa2, (a1, a2) ∈ Zd ×Zd, d 6= 2,
(3)

where Zd are the integers modulo d. Note that a slightly different definition is required for
qubits. For a system with composite Hilbert space Ha ⊗ Hb ⊗ · · · ⊗ Hu , the Heisenberg–Weyl
operators may be written as

T(a1,a2)⊕(b1,b2)···⊕(u1,u2) ≡ T(a1,a2) ⊗ T(b1,b2) · · · ⊗ T(u1,u2).
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The Clifford operators Cd are the unitaries that, up to a phase, take the Heisenberg–Weyl
operators to themselves, i.e.

U ∈ Cd ⇐⇒ ∀u∃φ, u′ : U TuU †
= exp (iφ) Tu′ . (4)

The set of such operators form a group—this is the Clifford group for dimension d. The pure
stabilizer states for dimension d are defined as

{Si} = {U |0〉 : U ∈ Cd} , (5)

and we take the full set of stabilizer states to be the convex hull of this set

STAB (Hd)=

{
σ ∈ L (Hd) : σ =

∑
i

pi Si

}
, (6)

where pi is some probability distribution.
We define stabilizer operations to be any combination of computational basis preparation,

computational basis measurement, and Clifford rotations. In particular, this includes all
stabilizer state preparations and measurements. This set of operations defines the ‘stabilizer
subtheory’, which is a convex subtheory of the full set of allowed quantum operations on a finite-
dimensional system. The only stabilizer measurement we consider directly is measurement in
the computational basis. The other measurements in the stabilizer subtheory can be generated,
in the usual Heisenberg picture, by conjugation under Clifford rotations.

2.2. Wigner functions

In section 4, we will need the discrete Wigner function [22, 50], which is defined for quantum
systems with finite, odd Hilbert space dimension. The discrete Wigner function is a direct
analogue of the usual infinite-dimensional Wigner function [49]. The idea of such representation
is to attempt to map quantum theory (states, transformations and measurements) onto a classical
probability theory over a phase space, which can be any continuous or discrete set. In any such
representation some quantum states and measurements must be mapped to distributions with
negative entries [12, 13], i.e. negative ‘quasi-probabilities’ are unavoidable. The discrete Wigner
representation for odd dimensions enjoys the special property that all stabilizer operations can
be represented non-negatively, so the Wigner representation gives a classical probability model
for the full stabilizer subtheory.

The discrete Wigner representation of a state ρ ∈ L(Cdn
) is a quasi-probability distribution

over (Zd ×Zd)
n, which can be thought of as a dn by dn grid (see figure 4 in section 4). The

mapping assigning quantum states ρ to Wigner functions
{
Wρ (u)

}
is given by

Wρ(u)=
1

dn
Tr(Auρ), (7)

where {Au} are the phase space point operators. These are defined in terms of the
Heisenberg–Weyl operators as

A0 =
1

dn

∑
u

Tu, Au = Tu A0T †
u . (8)
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These operators are Hermitian so the discrete Wigner representation is real-valued. There are
(dn)2 such operators for dn-dimensional Hilbert space, corresponding to the (dn)2 points of
discrete phase space.

A quantum measurement with positive operator valued measure (POVM) {Ek} is
represented by assigning conditional (quasi-) probability functions over the phase space to each
measurement outcome

WEk (u)= Tr(Au Ek). (9)

In the case where WEk (u)> 0 ∀u, this can be interpreted classically as an indicator function
or ‘fuzzy measurement’ associated with the probability of getting outcome k given that the
‘physical state’ of the system is at phase space point u, WEk (u)= Pr(outcome k|location u).

We say a state ρ has positive representation if Wρ(u)> 0 ∀u ∈ Zn
d ×Zn

d and negative
representation otherwise. We will say a measurement with POVM M = {Ek} has positive
representation if WEk (u)> 0 ∀u ∈ Zn

p ×Zn
p, ∀Ek ∈ M and negative representation otherwise.

We are now ready to state a few salient facts about the discrete Wigner representation [15, 22]:

1. (Discrete Hudson’s theorem) A pure state |S〉 has positive representation if and only if it
is a stabilizer state. Since convex combinations of positively represented states also have
positive representation this means, in particular, for any stabilizer state S it holds that
Tr(AuS)> 0 ∀u.

2. Clifford unitaries act as permutations of phase space. This means that if U is a Clifford
then

WUρU †(v)= Wρ(v
′), (10)

for each point v. Only a small subset of the possible permutations of phase space correspond
to Clifford operations (namely, the symplectic ones [22]).

3. The trace inner product is given as Tr(ρσ)= dn
∑

u Wρ (u)Wσ (u).
4. The phase space point operators in dimension dn are tensor products of n copies of the d

dimension phase space point operators, e.g. A(0,0)⊕(0,0) = A(0,0) ⊗ A(0,0).

5. The phase point operators satisfy Tr (Au)= 1. This implies Tr (B)=
∑

u WB (u) for a
Hermitian operator B.

6. ρ =
∑

u Wρ(u)Au.

This is all we need to know about the discrete Wigner function for the present work. For a much
more detailed overview see [22, 23] or for a moderately more detailed overview see [45].

2.3. Magic monotones

In this paper we are concerned with the transformation of non-stabilizer states using stabilizer
operations. In the same way that a state is defined to be entangled if it is not separable
we define:

Definition 1. A state is magic if it is not a stabilizer state.

The most general kind of stabilizer operation possible is of the following type:

7
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Definition 2. A stabilizer protocol is any map from ρ ∈ S(Hdn) to σ ∈ S(Hdm ) composed from
the following operations:

1. Clifford unitaries, ρ → UρU †.
2. Composition with stabilizer states, ρ → ρ⊗ S where S is a stabilizer state.
3. Computational basis measurement on the final qudit. ρ → (I⊗ |i〉〈i |) ρ (I⊗ |i〉〈i |) /

Tr (ρI⊗ |i〉〈i |) with probability Tr (ρI⊗ |i〉〈i |).
4. Partial trace of the final qudit, ρ → Trn (ρ).
5. The above quantum operations conditioned on the outcomes of measurements or classical

randomness.

Stabilizer protocols encompass magic state distillation protocols as an important special
case. For a function to be a valid measure of magic, i.e. a monotone, it must be non-increasing
under stabilizer operations, a requirement that can be formalized as:

Definition 3. For each d, letMd : S (Hd)→ R be a mapping from the set of density operators
on Hd

∼= Cd to the real numbers. Define M (ρ)≡Md (ρ) ∀ρ ∈ S (Hd) (for the appropriate
d) so that M (·) is defined for all finite-dimensional Hilbert spaces. If M (S)= 0 for all
stabilizer states S and it also holds that for all quantum states ρ that 3(ρ)=

∑
piσi

implies M (ρ)>
∑

i piM (σi) for any stabilizer protocol 3 then we say M (·) is a magic
monotone.

There are two important points to notice here. The first is that one need only require
operations to not increase magic on average; if 3(ρ)= σi with probability pi then we only
require M (ρ)>

∑
i piM (σi). In particular this means that post selected measurement can

increase magic in the sense that we allowM ((I⊗ |i〉〈i |) ρ (I⊗ |i〉〈i |) /Tr (ρI⊗ |i〉〈i |))>M (ρ)

as long as measurement outcome i is obtained with sufficiently small probability. This allows
us to analyze non-deterministic protocols. The second point is that we do not require convexity,
i.e. it can happen thatM (pρ + (1 − p) σ )> pM (ρ)+ (1 − p)M (σ ). Although convexity is a
desirable feature it is possible to have interesting and useful monotones that are not convex (e.g.
the logarithmic entanglement negativity [39]).

Convexity constrains the behavior of the monotone on all mixtures of density matrices. The
definition of a magic monotone only requires that the measure be non-increasing on mixtures
which are formed via stabilizer operations, and only non-increasing relative to the starting states.
For instance, we might form a mixture ρ = pρ0 + (1 − p)ρ1 by beginning with the state ρ0 ⊗ ρ1

and discarding the second state with probability p and the first state with probability 1 − p. A
magic monotone must have the property that

M(ρ0 ⊗ ρ1)>M(ρ), (11)

whereas convexity requires that

pM(ρ0)+ (1 − p)M(ρ1)>M(ρ). (12)

Even if M is additive (i.e. M(ρ0 ⊗ ρ1)=M(ρ0)+M(ρ1)), the latter equation is a stronger
constraint.

Notice also that because Clifford gates and composition with stabilizer states are reversible
within the stabilizer formalism (by the inverse gate and the partial trace respectively) any
monotone must actually be invariant under these operations, as opposed to merely non-
increasing.

8
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3. Relative entropy of magic

Generic resource theories can, and usually do, admit more than one valid choice of monotone.
Requiring a function to be non-increasing under stabilizer operations is the minimal imposition
for it to be a sensible measure of magic. However, there is no guarantee that all monotones will
be equally interesting or useful. This leads us to wonder if some further natural conditions
could be imposed to eliminate some of these measures and pick out especially interesting
monotones. Resource theories are concerned with the problem of using restricted operations
to convert between different types of resource states, for example distilling pure magic states
from mixed ones or changing one type of pure magic state to another type of pure magic state.
Most often this conversion is studied in the asymptotic regime (e.g. [20, 21, 26–28]) where
an infinite number of resource states are assumed to be available to conversion protocols and
the task is to determine the rate at which one type of resource can be converted into another.
In this regime it turns out that for many resource theories the monotone zoo can be cut down
in a rather spectacular fashion: there is a monotone that uniquely specifies the rate at which
the asymptotic interconversion of resource states can take place. Because of the importance of
asymptotic interconversion of resource states this measure is often called the unique measure
of the resource [27]. For magic theory the analogous quantity is the regularized relative entropy
of magic. The purpose of this section is to introduce this quantity.

The relative entropy distance between quantum states is S (ρ‖σ)≡ Tr (ρ log ρ)−
Tr (ρ log σ). This is a measure of how distinguishable ρ is from σ . Qualitatively, we might
expect a measure of how distinguishable ρ is from all stabilizer states to be a good measure of
magic. This inspires the definition:

Definition 4. Let ρ ∈ S (Hd). Then the relative entropy of magic is rM (ρ)≡ minσ∈STAB(Hd )

S (ρ‖σ).

The intuition that this should be a magic measure is immediately validated:

Theorem 1. The relative entropy of magic is a magic monotone.

Proof. This is essentially a consequence of the nice properties of the relative entropy and holds
for the same reasons that the relative entropy is a monotone for other resources theories. See
appendix A.2 for details. ut

The main importance of the relative entropy of magic is in the asymptotic regime. This is
because the relative entropy of magic is strictly subadditive in the sense rM(ρ⊗n) < nrM (ρ).
This follows from the fact that in general there can be some entangled stabilizer state σAB ∈

S (Hd ⊗Hd) such that S (ρ⊗ ρ‖σAB) <minσA,σB∈STAB(Hd ) S (ρ⊗ ρ‖σA ⊗ σB). In particular this
means that the amount of magic added from adding an extra copy of ρ depends on how many
copies of ρ we already have. In the asymptotic limit an appropriate measure should give the
amount of magic in ρ when an infinite number of copies of ρ are available. This prompts us to
introduce the asymptotic variant of the relative entropy measure.

9
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Definition 5. Let ρ ∈ S(Hd). Then the regularized relative entropy of magic is r∞

M (ρ)≡

limn→∞
1
n rM(ρ⊗n).

We do not have an analytic expression for the relative entropy of magic and thus we do not
have an analytic expression for the asymptotic version. Moreover, because of the infinite limit in
the definition we do not even know how to numerically approximate r∞

M (ρ) in general. This is
the same as the situation in entanglement theory where it remains a famous open problem to find
a ‘single letter’ expression for the regularized relative entropy of entanglement. Nevertheless,
the (regularized) relative entropy of magic is useful for the study of magic theory. For instance,
we will use it as a tool to show that an asymptotically non-zero amount of pure magic resource
states is always required to produce bound magic states via stabilizer protocols, even though no
pure magic can be extracted from the states that are produced.

3.1. Relative entropy of magic

One of the major difficulties with the study of resource monotones is that the actual computation
of the value of the monotone for a particular state is often an intractable problem. Although we
do not know a simple analytic expression for the relative entropy of magic, it can be computed
numerically. For systems with low Hilbert space dimension this is reasonably straightforward.
The relative entropy is a convex function in its second argument and we want to perform
minimization over the convex set of stabilizer states. This means that a simple numerical
gradient search will succeed in finding minσ∈STAB(Hd ) S (ρ‖σ). Each qudit stabilizer state can
be written as a convex combination of the N pure qudit stabilizer states. A simple strategy for
finding the relative entropy of magic is to do a numerical search over the N − 1 values that
define the probability distribution over the stabilizer states. Unfortunately, for a system of n
qudits the number of pure stabilizer states is [22]

N = dn
n∏

i=1

(
d i + 1

)
, (13)

and this grows too quickly for a numerical search to be viable in general. For example, the
original H -type magic state distillation protocol [6] consumes 15 resource states ρinput to
produce a more pure magic state ρoutput. In principal we can bound the quantity of the resource
required via,

rM
(
ρ⊗15

input

)
> pirM

(
ρoutput

)
, (14)

where pi is the success probability of the protocol, but this would require a numerical
optimization over more than 2136 parameters using the approach just outlined, which is not
viable.

For arbitrary resource states it is not clear how to avoid the numerical optimization.
However, the states typically used in magic state distillation protocols have a great deal of
additional structure that can be exploited. In particular, many protocols have a ‘twirling’ step
where a random Clifford unitary is applied to the resource state to ensure it has the form

ρε = (1 − ε) |M〉〈M | + ε
I
d
, (15)

10
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where |M〉〈M | is invariant under the twirling. If the twirling map is T : ρresource →∑
i piUiρresourceU

†
i for some subset {Ui} of the Clifford operators, then

min
σ∈STAB

S

([
(1 − ε) |M〉〈M | + ε

I
d

] ∥∥∥σ)> min
σ∈STAB

S

(
T
(
(1 − ε) |M〉〈M | + ε

I
d

)∥∥∥T (σ )) (16)

= min
p6pT

S

([
(1 − ε) |M〉〈M | + ε

I
d

] ∥∥∥ [p|M〉〈M | + (1 − p)
I
d

])
(17)

= S

([
(1 − ε) |M〉〈M | + ε

I
d

] ∥∥∥ [pT |M〉〈M | + (1 − pT )
I
d

])
, (18)

where pT is the largest value such that pT |M〉〈M | + (1 − pT )
I
d is a stabilizer state. The reverse

inequality is obvious since we are minimizing over a subset of all stabilizer states. This means
that the relative entropy of magic can be computed exactly for states of this form by finding pT .
Unfortunately the twirling is only applied to individual qudits so this does not by itself resolve
the numerical problems.

Nevertheless, it is possible to give weak bounds according the following observation:

rM
(
ρoutput

)
6 rM

(
ρ⊗n

input

)
(19)

6 nrM
(
ρinput

)
, (20)

where we have used the obvious fact that the relative entropy of magic is subadditive. This
bound might not seem weak at all. One might suspect that the relative entropy of magic is

genuinely additive so rM
(
ρ⊗n

input

) ?
= nrM

(
ρinput

)
. This seems like a very desirable feature for a

monotone to have: n copies of a resource state should contain n times as much resource as
a single copy. The relative entropy of magic does not have this feature—it can be the case
that rM

(
ρ⊗2

)
< rM (ρ). To establish this we consider the qutrit Strange state |S〉〈S| defined

as the pure qutrit state invariant under the symplectic component of the Clifford group (see
section 4.4). Twirling by the symplectic subgroup Sp (2, 3) of the Clifford group8 has the effect

∑
F

1

|Sp (2, 3)|
UFρU †

F =
(
1 − ερ

)
|S〉〈S| + ερ

I3
3
, (21)

so we can use our twirling argument to find rM(|S〉〈S|) exactly. A numerical search over the two
qutrit stabilizer states turns up a state σ ∈ STAB (H9) such that S

(
|S〉〈S|⊗2

‖σ
)
< 2rM (|S〉〈S|).

Note that the relative entropy of entanglement is also strictly subadditive for some states.
However, there is a very important difference between the entanglement and magic relative
entropy measures: for pure states the relative entropy of entanglement is an additive measure.
This fact is at the heart of the importance of the relative entropy distance for the theory of
entanglement. As we have just seen this is not true for the relative entropy of magic.

8 This is the Clifford group modulo the Heisenberg–Weyl (Pauli) group.
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3.2. The (regularized) relative entropy of magic is faithful

The relative entropy S (ρ‖σ) is 0 if and only if ρ = σ . It is easy to see that this implies that
rM (ρ) is faithful in the sense that rM (ρ) > 0 if and only if ρ is magic. Since rM (·) is a magic
monotone, if it is possible to create a magic state σ from a (pure) resource state |ψ〉〈ψ | using
a stabilizer protocol it must be the case that rM (|ψ〉〈ψ |)> rM (σ ). Previous work established
the existence of a large class of ‘bound magic states’9 that cannot be distilled to pure magic
states [45]. Together these facts imply that to create any magic state, including bound magic
states, a non-zero amount of magic is required. This means, in general, that the amount of magic
that can be distilled from a resource state is not equal to the amount of magic required to create
it; this is analogous to the well-known result in entanglement theory that the entanglement of
formation is not equal to the entanglement of distillation.

Because the relative entropy of magic is subadditive it could be that r∞

M (ρ)=

limn→∞
1
n rM(ρ⊗n)= 0 for some magic state ρ, i.e. it is not automatic that the regularized

relative entropy of magic is faithful. For example, in the resource theory of asymmetry [20],
the regularized relative entropy measure is 0 for all states. Happily, for magic theory the relative
entropy is well behaved in the asymptotic regime.

Lemma 1. The regularized relative entropy of magic is faithful in the sense that r∞

M (ρ)= 0 if
and only if ρ is a stabilizer state.

Proof. The proof of this fact is a straightforward application of a theorem of Piani [38]
showing that the regularized relative entropy measure is faithful for all resource theories
where the set of restricted operations includes tomographically complete measurements and
the partial trace. The idea is to define a variant of the relative entropy distance that quantifies
the distinguishability of states using only stabilizer measurements. This quantity lower bounds
the usual relative entropy of magic. Thus by showing that its regularization is faithful we get the
claimed result. See appendix A.2 for details. ut

We will need this result for the proof of corollary 1 showing that the regularized relative
entropy gives the optimal rate of asymptotic interconversion. It also represents a strengthening
of our earlier claim that a non-zero amount of pure state magic is required to create any magic
state. For finite size protocols this followed from the faithfulness of the relative entropy of
magic, as just explained. The faithfulness of the regularized relative entropy implies that the
creation of magic states by an asymptotic stabilizer protocol requires resource magic states to
be consumed at a non-zero rate. The analogous problem in entanglement theory was the main
motivation for proving that the regularized relative entropy of entanglement is faithful [4, 38].

3.3. Asymptotic interconversion and the regularized relative entropy

In the scenario of asymptotic state conversion, it is useful to consider an additional property
that a magic measure may possess beyond those required to make it a magic monotone.
To understand the additional property, it is simplest to first consider the case of finite state
interconversion. Suppose there is some stabilizer protocol 3 that maps n copies of resource
state ρ to m copies of a target magic state σ . Then it must be the case thatM(ρ⊗n)>M(σ⊗m)

9 Called bound universal states in the original paper.
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for any magic monotone M(·). If there is also some other stabilizer protocol that maps σ⊗m

to ρ⊗n then it must be the case that M(ρ⊗n)=M(σ⊗m), which conceptually just means that
if ρ and σ are equivalent resources then they have the same magic according to any magic
measure. It is rarely possible to exactly interconvert between resource states with only a finite
number of copies available. However, it is often the case that we can get close to a reversible
interconversion; that is, that conversion from copies of σ to approximate copies of ρ and then
back to approximate copies of σ loses only an asymptotically negligible number of copies of
the state. Thus, we wish to study measures that satisfy the requirement that asymptotically
reversibly interconvertible states have the same resource value.

Typically if we try to convert ρ⊗n into m copies of σ , the stabilizer protocol (3n :Hdn →

Hdm ) we use will depend on the number n of input states. When converting ρ to σ it is thus
necessary to consider a family of stabilizer protocols 3n taking ρ⊗n as input and producing
m(n) approximate copies of σ with an error ‖3n(ρ

⊗n)− σ⊗m(n)
‖1 = εn. In the case that

the approximation becomes arbitrarily good in the asymptotic limit (i.e. limn→∞ ‖3n(ρ
⊗n)−

σ⊗m(n)‖1 → 0) we say ρ is asymptotically convertible to σ at a rate R (ρ → σ)= limn→∞
m(n)

n .
We wish to consider magic monotones that are compatible with asymptotic convertibility. In
particular, the additional constraint that we will impose is that if ρ is asymptotically convertible
to σ then

lim
n→∞

1

n

[
M
(
ρ⊗n

)
−M

(
σ⊗m(n)

)]
> 0. (22)

That is, if asymptotic conversion is possible then on average we must put in at least as much
magic as we get out, up to some o(n) discrepancy.

If it is possible to interconvert between σ and ρ at rates R (σ → ρ)= R (ρ → σ)−1 then
we say the two resources are asymptotically reversibly interconvertible. Any magic monotone
satisfying the additional condition (22) gives the rate of asymptotic interconversion according
to the following theorem.

Theorem 2. Let M (·) be a magic monotone satisfying the condition given by equation (22)
and define its asymptotic variant M∞ (ρ)= limn→∞M(ρ⊗n)/n. Then if it is possible to
asymptotically reversibly interconvert between magic states ρ and σ andM∞ (σ ) is non-zero
the rate of conversion is given by R (ρ → σ)=M∞ (ρ)/M∞ (σ ).

Proof. This is a special case of a broader theorem that says this result holds in any resource
theory. The result was first proved in [28]. That paper dealt primarily with entanglement and
missed the requirement that the regularization of the monotone needs to be non-zero. This was
pointed out in [20], and the theorem we state here is essentially the application of their theorem
4 to magic theory. The only subtlety is that instead of the condition in equation (22) they require
the monotone to be asymptotically continuous, which means limn→∞ ‖3n(ρ

⊗n)− σ⊗m(n)‖1 → 0
implies

lim
n→∞

M
(
3n

(
ρ⊗n

))
−M

(
σ⊗m(n)

)
1 + n

→ 0. (23)

The first step of their proof is to show that this condition implies equation (22) so we prefer to
start with the weaker requirement directly. ut
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Corollary 1. If it is possible to asymptotically reversibly interconvert between magic states ρ
and σ , the rate at which this can be done is R (ρ → σ)= r∞

M (σ )/r
∞

M (ρ), where r∞

M (σ ) is the
regularized relative entropy.

Proof. In [43] it is shown that the relative entropy distance to any convex set of quantum states is
asymptotically continuous. Since asymptotic continuity implies equation (22) and the stabilizer
states are a convex set, the relative entropy of magic is a magic monotone satisfying condition
equation (22). Moreover, we showed in lemma 1 that the regularized relative entropy is non-zero
for all magic states. ut

Notice that the relative entropy is only one example of a monotone satisfying the conditions
of theorem 2. There could be other monotones for which this result holds. In fact it is
conceivable that this result holds for every magic monotone. For any magic monotone with
this property, if it possible to asymptotically interconvert between ρ and σ , it must be the case
that M∞ (ρ)= Cr∞

M (ρ)H⇒M∞ (σ )= Cr∞

M (σ ) so r∞

M (σ )/r
∞

M (ρ)=M∞ (σ )/M∞ (ρ), i.e.
the regularization of such magic measures can differ only up to a multiplicative factor that can
vary between sets of quantum states where asymptotic interconversion is possible.

If we have a resource measure M (·) that is additive then it will be equal to its own
regularization, M (·)=M∞ (·). If this measure also satisfies equation (22) then it will tell us
how to compute the asymptotic interconversion rate whenever asymptotic interconversion is
possible. In the particular case that we have a resource theory where asymptotic interconversion
is possible between any two resource states then it is easy to see that up to a constant factor
there really is a single unique measure of the resource. For instance, this is true of bipartite
pure entangled states, and the entanglement entropy [2] is an additive measure that satisfies
our condition. Thus the entanglement entropy is the genuinely unique measure of pure state
bipartite entanglement. One of the special features of the relative entropy of entanglement is
that it reduces to the entanglement entropy on pure states. It is this feature which is ultimately
responsible for the privileged status of the relative entropy of entanglement. In the case of magic
theory the relative entropy of magic does not reduce to an additive measure on pure states so
there is no apparent reason to prefer the relative entropy of magic over any other monotone
satisfying the conditions of theorem 2. This stands in contrast to the claim that the relative
entropy distance to the set of free states is the unique measure of the resource (e.g. [27]).

3.4. Discussion

The privileged status of the relative entropy magic comes from its role in the asymptotic regime.
Since the assumption of infinite state preparations is unreasonable for an actual physical system
one might expect that the measure would be of limited practical value. This suspicion is lent
additional weight by the fact that, like the regularized relative entropy distance in other resource
theories, it is not known how to compute r∞

M (ρ) in general. The regularized relative entropy
distance is essentially useless for analyzing the performance of particular distillation protocols.
Nevertheless, the monotone is a useful tool for the study of the resource theory of magic. This
is the role of the regularized relative entropy distance in the theory of entanglement, where it
is a well studied object. We had a taste of this already in our demonstration that the amount of
pure state magic required to create a magic state does not equal the amount of pure state magic
that can be distilled from that state. It is an exciting direction for future work to see what other
insights can be gleaned from the relative entropy of magic and its asymptotic variant.
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It is also important to understand exactly what corollary 1 says. The statement is that if
asymptotic interconversion is possible then the rate is given by r∞

M (ρ)/r
∞

M (σ ). This ‘if clause’
is a deceptively strong requirement: it is not guaranteed that asymptotic interconversion will
always be possible, or even that it will ever be possible. In particular, every currently known
magic state distillation protocol has rate 0 and it is an important open problem to determine if a
positive rate distillation protocol exists.

4. A computable measure of magic

The results of the previous section deal primarily with reversible conversion of magic states in
the limit where infinite copies are available, but for magic state distillation we are interested
in the one way distillation of resource magic states to pure target magic states in the regime
where only a finite number of resource states are available. Because of this, there is no reason
to prefer the (regularized) relative entropy of magic over any other monotone. Nevertheless, the
relative entropy, like any monotone, gives non-trivial bounds on distillation efficiency. But there
is a more fundamental problem: it is generally computationally hard to compute the relative
entropy, and we have no idea how to compute the regularized relative entropy so we are unable
to find explicit upper bounds to distillation. In this section we address this issue by introducing
a computable measure of magic.

4.1. Sum negativity and mana

Previous work establishing the existence of bound magic states [45] provides a starting place in
the search for a computable monotone. The fundamental tool in that construction is the discrete
Wigner function. There it was found that a necessary condition for a magic state to be distillable
is that it has negative Wigner representation. However, that work is purely binary in the sense
that it does not distinguish degrees of negative representation. It is natural to suspect that a state
that is ‘nearly’ positively represented is less magic than a state with a large amount of negativity
in its representation. Here we formalize this intuition by showing that the absolute value of the
sum of the negative entries of the discrete Wigner representation of a quantum state is a magic
monotone.

Definition 6. The sum negativity of a state ρ is the sum of the negative elements of the Wigner
function, sn (ρ)≡

∑
u:Wρ(u)<0 |Wρ (u) | ≡

1
2(
∑

u |Wρ(u)| − 1).

The right hand side of this expression follows because the normalization of quantum states
(Tr ρ = 1) implies

∑
u Wρ (u)= 1. The advantage of writing the expression in this form is that

‖ρ‖W ≡
∑

u |Wρ(u)| is a multiplicative norm and is thus very nice to work with. By this we
mean that the composition law is given as

‖ρ⊗ σ‖W =

∑
u,v

∣∣Wρ⊗σ (u ⊕ v)
∣∣

=

∑
u,v

∣∣Wρ (u)Wσ (v)
∣∣

=

(∑
u

∣∣Wρ (u)
∣∣)(∑

v

∣∣Wρ (v)
∣∣) . (24)
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Since the sum negativity is a linear function of this quantity we can establish that the former
is a magic monotone by showing this for the latter.

Theorem 3. The sum negativity is a magic monotone.

Proof. Since sum negativity is clearly 0 for all stabilizer states it suffices to show
∑

u |Wρ (u) |
is non-increasing under stabilizer operations by verifying the required properties. The main
components are the use of ρ =

∑
u Wρ(u)Au and the composition identity equation (24), which

is the main motivation for working with this quantity rather than with the sum negativity directly.
See appendix B.2 for details. ut

The sum negativity is an intuitively appealing way of using the Wigner function to define a
magic monotone, but it has some irritating features. The worst of these is the composition law

sn
(
ρ⊗n

)
=

1
2

[
(2sn (ρ)+ 1)n − 1

]
, (25)

which has the troubling feature that a linear increase in the number of resource states
implies an exponential increase the amount of resource according to the measure.
Happily there is a simple resolution to this problem suggested by the composition
law, equation (24). We define a new monotone by a particular function of the sum
negativity.

Definition 7. The mana of a quantum state ρ is M (ρ)≡ log(
∑

u |Wρ(u)|)= log (2sn (ρ)+ 1).

Theorem 4. The mana is a magic monotone.

Proof. It is clear that the mana is 0 for all stabilizer states. Most of the other monotone
requirements follow because log is a monotonic function, but there is a small subtlety
here. Consider a stabilizer protocol that sends ρ → σi with probability pi (e.g. post-selected
computational basis measurement). Then we require log (‖ρ‖W )>

∑
i pi log (‖σi‖W ). This

need not be true for arbitrary monotonic functions of ‖ρ ‖W but it is easy to see that it follows
from the concavity of log and ‖ρ‖W >

∑
i pi‖σi‖W . ut

From equation (24) this monotone is additive in the sense

M (ρ⊗ σ)= M (ρ)+ M (σ ). (26)

Beyond its intuitive appeal, additivity is a nice feature for a monotone to have because it makes
the bound on distillation efficiency take an especially nice form. How many copies n of a
resource magic state ρ are required to distill m copies of a resource magic state σ? Suppose
we have a stabilizer protocol 3(ρ⊗n)→ σi with probability pi , then the monotone condition
combined with additivity shows∑

i

piM (σi)6 nM (ρ). (27)

Taking σ0 = σ and p0 = p, the above discussion lets us see:

Theorem 5. Suppose 3 is a stabilizer protocol that consumes resource states ρ to produce
m copies of target state σ , succeeding probabilistically. Any such protocol requires at least
E [n]> m M (σ )

M (ρ)
copies of ρ on average.
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Proof. Suppose 3(ρ⊗k)= σ⊗m with probability p. The fact that the mana is an additive magic
monotone implies

kM (ρ)> p m M (σ )H⇒
k

p
> m

M (σ )

M (ρ)
. (28)

Letting l be the number of times we must run the protocol to get a success we have n = kl and

E [l] =
1

p
, (29)

from which it follows that E [n] =
k
p > m M (σ )

M (ρ)
. ut

We can only bound the average number of copies required because the monotone is only
non-increasing on average under stabilizer operations—it might increase conditionally on a
specific measurement outcome.

The most common case for magic state distillation is nested distillation protocols, which a
little thought will show are covered by the bound as a special case. Indeed, this bound covers
a broader set of protocols than it might first appear. One might have expected to do better by
‘recycling’ the output states of the failed protocols. For instance, if

3
(
ρ⊗k

)
=

{
σ⊗m with probability p,

τ with probability 1 − p,
(30)

then one expects to reduce the overhead of the total number of copies ρ required by introducing
a second stabilizer protocol

E
(
τ ⊗ ρ⊗k′

)
= σ⊗m with probability q. (31)

However, by just combining the two steps we have a new protocol 3̃(ρ⊗(k+k′))=

σ⊗m with probability p̃ = p + (1 − p) q and our theorem applies.
Computing the mana of a quantum state is straightforward: we find the Wigner function

by taking the trace of ρ with the d2 phase space point operators and compute the mana directly.
This means that the mana provides a simple way to numerically upper bound the efficiency of
distillation protocols, fulfilling the major promise of this section.

4.2. Uniqueness of sum negativity

Quantifying the magic of a state by the negativity in its Wigner representation is an intuitively
appealing idea, but it is not clear that the sum of the negative elements is the best way to do this.
For example, we might have instead looked at the maximally negative element of the Wigner
function, maxneg (ρ)= − minu Wρ (u). It is not immediately obvious that the sum negativity is
a better way to quantify the magic of a quantum state than the maximal negativity just defined.
However, it turns out that the maximal negativity is not a magic monotone, so it is not a useful
measure of resources for stabilizer computation. In fact, we will now show that any magic
monotone that is determined solely by the values of the negative entries of the Wigner function
(and in particular not by the positions in phase space of the negative entries) can be written as a
function of only the sum negativity.
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The reason that the maximally negative entry is not a magic monotone is that it is not
invariant under composition with stabilizer states. Suppose we have some resource state ρ and
we compose it with the maximally mixed state on a qudit Id/d . Then maxneg (ρ⊗ Id/d)=

− minu,v Wρ (u) · WI/d(v)= − minu,v Wρ (u) · 1
d2 = maxneg (ρ) /d2. Therefore, this function

can decrease under composition with stabilizer states, and thus can increase under partial
trace: it is a poor measure of the amount of resource in ρ. The natural requirement that magic
monotones must be invariant under composition with arbitrary stabilizer states is an extremely
strong one; it forms the backbone of our proof of the uniqueness of the sum negativity.

Theorem 6. Assume M (ρ) is a function on quantum states that satisfies the following
conditions: (i)M (ρ) is a magic monotone, (ii)M (ρ) is determined only by the negative values
of the Wigner function, and (iii) M (ρ) is invariant under arbitrary permutations of discrete
phase space (i.e. even under permutations that do not correspond to quantum transformations).
ThenM (ρ) may be written as a function of only sn (ρ).

Proof. Consider two quantum states ρ and ρ ′ that have Wigner representations with different
negative entries but sn (ρ)= sn (ρ ′). The idea is to construct stabilizer ancilla states A and
A′ such that ρ⊗ A and ρ ′

⊗ A′ have the same negative Wigner function entries. In this
case conditions (ii) and (iii) implyM (ρ⊗ A)=M (ρ ′

⊗ A′) and since magic monotones are
invariant under composition with stabilizer states this means M (ρ)=M (ρ ′), i.e. M (ρ) is
entirely determined by the sum negativity. For details see appendix B.2. ut

For our proof of theorem 6 to succeed it is critical that the value of the monotone does
not depend on the locations of the negative entries. All magic monotones must be invariant
under Clifford unitaries, M(UρU †)=M (ρ)∀U ∈ Cn, and these operations correspond to
permutations of the phase space. Thus the monotone condition already implies invariance under
a subset of possible permutations (namely those that preserve the symplectic inner product).
However, we require invariance under arbitrary permutations and there is no compelling reason
to expect magic monotones to have this feature in general. It is not clear whether this additional
assumption was really necessary; it was introduced because actually working with only the
symplectic transformations is extremely challenging. It remains an interesting open problem to
either prove uniqueness without this assumption or else give a counterexample in the form of
a magic monotone that is determined by just the negative entries of the Wigner representation
and does depend on their position. Even if the latter resolution is the case, theorem 6 is useful
because it at least shows that sum negativity is the unique ‘simple’ monotone, in the sense
that computing its magnitude does not depend on the detailed symplectic structure of phase
space. As simplicity of computation is our primary motivation for the study of Wigner function
monotones, this is a significant advantage.

In section 3 we showed that (the regularization of) any monotone satisfying a certain natural
asymptotic condition uniquely specifies the rate at which asymptotic interconversion of resource
states is possible. Since the mana is additive, it is clearly equal to its own regularization. Thus
if it satisfied the condition given by equation (22) we would be able to compute the conversion
rates explicitly. Typically it is usually a stronger property that is demanded: asymptotic
continuity of the monotone. In appendix B.3 we show that the mana is not asymptotically
continuous. However, our counterexample leaves open the possibility that the weaker condition
actually required by the theorem holds. It would be very exciting to either prove or disprove
this.
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Figure 1. Efficiency of the [[5, 1, 3]]3 qutrit code of [1]. We generate 50 000 inputs
of the form ρin = (1 − p1 − p2) |H+〉〈H+| + p1|H−〉〈H−| + p2|Hi 〉〈Hi |, which is the form
ρin takes after the twirling step of the protocol. The mana of the five input states is
computed and plotted against the effective mana output following one round of the
protocol, E [M (ρout)] = Pr (protocol succeeds) · M (ρout).We used p1 ∈R [0, 0.4] and
p2 ∈R [0, 0.3], and the twirling basis states are the eigenstates of the qutrit Hadamard
operator [1], with eigenvalues {1,−1, ı}.

Figure 2. Efficiency of the [[8, 1, 3]]3 qutrit code of [8]. We generate 50 000 inputs
of the form ρin = (1 − p1 − p2) |M0〉〈M0| + p1|M1〉〈M1| + p2|M2〉〈M2|, which is the
form ρin takes after the twirling step of the protocol. The mana of the eight input
states is computed and plotted against the effective mana output following one
round of the protocol, E [M (ρout)] = Pr (protocol succeeds) · M (ρout).We used p1 ∈R

[0, 0.3], p2 ∈R [0, 0.3], and the twirling basis states are |M0〉 =
1

√
3
(e

4
9π i |0〉 + e

2
9π i |1〉 +

|2〉), |M1〉 =
1

√
3
(e

16
9 π i |0〉 + e

8
9π i |1〉 + |2〉), |M2〉 =

1
√

3
(e

10
9 π i |0〉 + e

14
9 π i |1〉 + |2〉).

4.3. Numerical analysis of magic state distillation protocols

To illustrate the use of mana in the evaluation of magic state distillation protocols we have
computed the input and output mana of single steps of several (qudit) magic distillation
protocols from the literature over a large parameter range. Figures 1 and 2 present qutrit codes
from [1, 8] respectively. Figure 3 presents a ququint (d = 5) code from [8]. Notice that none
of the protocols come close to meeting the mana bound, which is illustrated as a red line in all
three figures.
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Figure 3. Efficiency of the [[4, 1, 2]]5 ququint code of [8]. We generate 50 000 inputs of
the form ρin = (1 − p1 − p2 − p3 − p4) |M0〉〈M0| +

∑4
i=1 pi |Mi 〉〈Mi |, which this is the

form ρin takes after the twirling step of the protocol. The mana of the four input states
is computed and plotted against the effective mana output following one round of the
protocol, E [M (ρout)] = Pr (protocol succeeds) · M (ρout).We used pi ∈R [0, 0.2], and
the twirling basis states are the eigenstates of the C M ququint operator defined in [8].

4.4. The qutrit case

It’s interesting to compute the qutrit states with maximal sum negativity. Since

sn (ρ)= −

∑
u:Tr(ρAu)<0

Tr (ρAu) (32)

= −Tr

ρ ∑
u:Tr(ρAu)<0

Au

 , (33)

it is easy to see that the states with maximal sum negativity must be eigenstates of operators∑
u∈S Au where S is some subset of the discrete phase space. An exhaustive search over such

subsets reveals two classes of maximally sum negative states.

1. The strange states defined to be those with 1 negative Wigner function entry equal to −1/3.
There are

(9
1

)
= 9 such states, e.g.

|S〉 =
1

√
2

 0
1

−1

 . (34)

2. The Norrell states defined to be those with two negative Wigner function entries equal to
−1/6. There are

(9
2

)
= 36 such states, e.g.

|N〉 =
1

√
6

−1
2

−1

 . (35)

The maximum value is sn (|S〉〈S|)= sn (|N〉〈N|)= +1/3. An example of each type of state is
given in figure 4.
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Figure 4. The Wigner representations of two qutrit states, |S〉 =
1

√
2
(|1〉 − |2〉) (left) and

|N〉 =
1

√
6
(− |0〉 + 2 |1〉 − |2〉) (right). |S〉 has sum negativity

∣∣− 1
3

∣∣ and the |N〉 has sum

negativity
∣∣− 1

6 −
1
6

∣∣= 1
3 .

Figure 5. The plane (1 − x − y) I3 + x |S〉〈S| + y|N〉〈N|. The heat map shows the value
of the mana. The light gray (0 mana) region is the set of states in the Wigner simplex,
i.e. states with positive Wigner representation. The stabilizer polytope is delineated by
a dashed line.

Geometrically each Strange state lies outside a single face of the Wigner simplex and each
Norrell state lies outside the intersection of two faces, analogous to the qubit T-type (outside a
face) and H-type (outside an edge) states. This analogy is further strengthened since the Norrell
states are also the generalized H-type states of [1, 30].

Note that the states with maximal resource value do not need to agree between monotones.
In particular,

rM (|S〉〈S|)
rM (|N〉〈N|)

≈ 1.71. (36)

Of course this still leaves open the possibility that r∞

M (|S〉〈S|)= r∞

M (|N〉〈N|).
See figure 5 for a plot of the mana values of states in a plane of qutrit state space.

4.5. Wherefore the discrete Wigner function?

Our main motivation for studying the mana is that it can be computed explicitly to give concrete
bounds on the rate at which magic states can be converted. However, one might suspect that
this bound, although non-trivial, is rather arbitrary. For example, it is not clear a priori if the
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bound given by theorem 5 can ever be saturated, or under what circumstances this might occur.
The mana arose very naturally from the negativity of the discrete Wigner function, but it is
not immediately clear that the Wigner negativity is the relevant tool for the study of magic
theory. However, a number of recent results show that the negativity of the discrete Wigner
representation is extremely well motivated in this context. For example, could we have started
with some other notion of quasi-probability representation [12] and defined a monotone from
that? Recent work [31] has shown (at least for small prime dimension) that this is not the case
by connecting the onset of negativity in the discrete Wigner function with the onset of a non-
contextuality violation. This means that the subtheory of quantum theory consisting of elements
with positive discrete Wigner representation is a maximal classical subtheory in the sense of
non-classicality given by contextuality. That is, the set of states with positive discrete Wigner
representation is the largest possible subtheory of quantum theory that includes the stabilizer
measurements and admits a non-contextual hidden variable theory. In particular this means that
any other choice of quasi-probability representation (that represents the stabilizer subtheory
non-negatively) would have a positively represented region that is strictly contained within the
discrete Wigner function we use here.

For the purposes of magic state distillation we are more interested in the notion of non-
classicality given by universal quantum computation. The results of [35, 45] show that there
is an intimate connection: the hidden variable model afforded by the discrete Wigner function
leads naturally to an efficient classical simulation scheme for quantum circuits with positive
Wigner representation. It is not known if access to any negatively represented state suffices to
promote stabilizer computation to universal quantum computation, but it is at least apparent
that the known classical simulation protocols cannot be extended to deal with this case. In the
context of magic state computation it is desirable for the magic measures to give an indication
of how useful a state is for quantum computation. In this sense, the fact that the mana is not a
faithful monotone is a feature rather than a bug—it picks specifically the set of quantum states
that do not admit an efficient simulation scheme under stabilizer operations.

Although the mana is essentially the unique symmetric monotone arising from the
negativity of the Wigner function, it is not the only choice of monotone arising from the Wigner
function. In particular, one very natural choice is the relative entropy distance to the set of states
with positive Wigner representation, rW (ρ)= minσ :Wσ (u)>0 ∀u S (ρ‖σ). It is easy to check that
all of the results of section 3 go through for this new monotone, subject to obvious modifications
in the statement of the theorems.

4.6. Discussion

The major inspiration for the monotones of this section was earlier work showing that states
with positive Wigner representation cannot be distilled by stabilizer protocols. In the theory of
entanglement it is known that states with positive partial transpose (ppt) cannot be distilled
by local operations and classical communication (LOCC) protocols [25], and this inspired
the introduction of the entanglement negativity N (ρ), a measure of the violation of the
ppt condition, as a measure of entanglement [47]. As with the sum negativity, the major
advantage of this measure is that it is computable, allowing for explicit upper bounds on
the efficiency of entanglement distillation. The entanglement negativity grows exponentially
in the number of resource states, prompting the definition of an additive variant LN (ρ)≡

log (2N (ρ)+ 1)—exactly as in the present case. Like the mana this measure has the strange
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features that it is neither convex nor asymptotically continuous10. The close analogy we have
uncovered suggests that it may be possible to adapt much of the work on entanglement negativity
to the magic case: this is an interesting direction for future work.

There is at least one way in which the sum negativity is better behaved than the
entanglement negativity. All separable states are local, but this does not mean that all entangled
states are non-local in the sense that they enable violation of a Bell inequality. In [37] Peres
conjectured that any ppt state should admit a local hidden variable model; proving or disproving
this conjecture is one of the major outstanding problems in the study of entanglement. In our
case the equivalent conjecture would be that any state with positive Wigner representation
admits a non-contextual hidden variable model. But in our case the answer is obvious: the
Wigner representation itself is this non-contextual hidden variable theory! Moreover, as noted
above, recent work [31] has shown (at least for small prime dimension) that magic states admit
such a model only if they have positive Wigner representation. The direct resolution of this
question (which has proven difficult to solve for other resource theories) is a consequence of
our use of the Wigner function (quasi-probability) technology. However, the quasi-probability
techniques used in this section have no known analogue in other resource theories. The
possibility of exporting this technology to the study of other resource theories, in particular
entanglement theory, is a fascinating and promising direction for future work.

A closely related problem is to determine a qubit analogue for the mana. Because it is
possible to violate a contextuality inequality (e.g. a GHZ inequality) using qubit stabilizers,
there can be no qubit analogue for the discrete Wigner function (see also [48]). This is because
the discrete Wigner function is a non-contextual hidden variable theory. Nevertheless, it may be
possible to find a computable monotone of a similar flavor.

5. Discussion

In this paper we have introduced the resource theory of magic, showing how the tools of
resource theories can be applied to study the extra resources required to promote stabilizer
computation to universal quantum computation. In particular, we have introduced the concept
of magic monotone and given two examples: the relative entropy of magic and the mana.

The relative entropy of magic and its asymptotic variant are useful tools for the holistic
study of magic theory. In particular, we saw that (even asymptotically) to create any magic
state by consuming pure magic states via stabilizer operations a non-zero amount of pure magic
states are required. This established, in conjunction with the results of [45], that generally the
amount of magic that can be extracted from a magic state is not equal to the amount required to
create it: the magic of creation does not equal the magic of distillation. The main motivation
for studying the relative entropy of magic was that its asymptotic regularization gives the
correct rate for asymptotic interconversion of magic states. However, as we saw, this is not
a special feature of the relative entropy of magic but a (potentially) common feature among
magic monotones. This is promising because the relative entropy of magic has some serious
drawbacks. Foremost among these are the lack of a closed form expression and the fact that it
is a subadditive monotone, even for pure magic states. The combination of these two irritants
implies that computing the relative entropy of magic generally requires a numerical search that
is computationally infeasible.

10 In fact it is now known that these two features are closely related [39].
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To address this shortcoming we introduced the mana, a computable monotone. We have
shown this monotone has the appealing feature that it is additive, M (ρ⊗ σ)= M (ρ)+ M (σ ).
As a consequence, we may give explicit lower bounds on the number of resource states
ρ required to produce m copies of a resource state σ . This is an explicit, absolute upper
bound on the efficiency of magic state distillation protocols. Moreover, the mana gives a
direct operational meaning to the negativity of the Wigner function, thereby resolving the long
standing open question of whether this quantity has any operational significance. This monotone
is in some sense the unique measure of magic arising from the negativity of the discrete Wigner
function. Since the discrete Wigner function itself is essentially the unique maximal classical
representation for the stabilizer formalism [31], there is some reason to believe that the mana
has some privileged status among all possible monotones. Determining if and how this intuition
can be formalized is a very important open problem.

There are a number of directions for future work, many of which have already been
discussed in the main body of the text. Other resource theories admit a wealth of monotones.
This is especially true in the theory of entanglement where a large number of entanglement
measures have been developed to solve specialized problems. One obvious direction for future
work is the creation of additional magic monotones to address particular problems in magic
resource theory. It is also important to develop the parts of the resource theory that are not
encapsulated by magic monotones. For example, analogues of entanglement catalysis and
activation are discussed in [7]. The most urgent outstanding problem of this type is to find
a criterion for determining if it is possible to (asymptotically) reversibly convert between
particular resource states using stabilizer operations. Concretely, it is always possible to use
LOCC to reversibly convert pure bipartite entangled states but this is not true for tripartite
entanglement; we would like to know which situation holds for magic theory. Even a partial
result of this type would be very powerful, offering deep insight into the structure of stabilizer
protocols.

Much of this paper has been dedicated to showing that much of the technology from other
resource theories can be imported to the resource theory of magic. It is very interesting to
ask if we can go in the other direction and export the insights of magic theory to the study
of generic resource theories and quantum theory broadly. One obvious extension of this type
is to the setting of linear optics, which is the infinite dimensional analogue of the stabilizer
formalism. Some progress on this front has already been made: it has been shown that linear
optics operations acting on states with positive Wigner function, which includes non-Gaussian
states, is efficiently classically simulable [35, 46]. We should also mention [33] which examined
the volume of the negative region of the infinite-dimensional Wigner function as a measure of
non-classicality but did not explore the resource theory implications.

The study of entanglement theory offers powerful insights into the power of quantum
communication protocols. This is because of the close relationship between LOCC and quantum
communication. Similarly, there is a close relationship between stabilizers and quantum
computation beyond the application of stabilizer codes to fault-tolerant quantum computation.
The stabilizer operations are a maximal subset of efficiently simulable quantum operations in
the sense that the addition of any pure non-stabilizer resource promotes stabilizer computation
to universal quantum computation [8]. This suggests that the usefulness of the tools developed
here may extend beyond the study of magic state computation to give insights into the origins
of quantum computational speedup.
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Appendix A. Proofs on the relative entropy of magic

We begin by showing that the relative entropy is a valid measure of magic.

A.1. Relative entropy of magic is a monotone

Theorem 7. The relative entropy of magic is a magic monotone.

Proof. We need to verify that this function is non-increasing under stabilizer operations.

1. Invariance under Clifford unitaries. For any unitary, S(UρU †
‖UσU †)= S(ρ‖σ). If U

is a Clifford and σ is a stabilizer state then UσU † will also be a stabilizer state, ergo
rM(UρU †)= minσ S(UρU †

‖σ)= minσ S(UρU †
‖UσU †)= minσ S(ρ‖σ)= rM (ρ).

2. Non-increasing on average under stabilizer measurement. Without loss of generality, we
consider computational basis measurement on the final qudit. Let {Vi} = {I⊗ |i〉〈i |} be the
measurement POVM and label outcome probabilities pi = Tr (Viρ), qi = Tr (Viσ) as well
as post-measurement states ρi = ViρV †

i and σi = ViσV †
i . In [44] it is shown that

∑
i

pi S

(
ρi

pi

∥∥∥σi

qi

)
6 S (ρ‖σ) . (A.1)

Since σi/qi is a stabilizer state whenever σ is a stabilizer state this implies measurement
does not increase the relative entropy of magic on average.

3. Non-increasing under partial trace. From the strong subadditivity property of the von
Neumann entropy [34] we have S (TrB (ρ) ‖TrB (σ ))≤ S (ρ‖σ) from which the result
follows immediately.

4. Invariance under composition with stabilizer states. S (ρ⊗ A‖σ ⊗ A)= S (ρ‖σ) for any
quantum state A, from which it follows rM (ρ⊗ A)≤ rM (ρ). Equality follows because
the relative entropy of magic is non-increasing under the partial trace, i.e. rM (ρ)≤

rM (ρ⊗ A). ut

We now turn to the asymptotic variant of the relative entropy of magic, r∞

M(ρ)=

limn→∞ rM(ρ⊗n)/n. We show that this quantity is non-zero if and only if ρ is a magic state,
which in particular implies that magic must be consumed at a non-zero rate to create magic
states. We will also need this result for theorem 2.
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A.2. Regularized relative entropy of magic is faithful

Theorem 8. The regularized relative entropy of magic is faithful in the sense that r∞

M (ρ)= 0 if
and only if ρ may be written as a convex combination of stabilizer states.

Proof. We recover this result as a special case of the main theorem of [38]. That paper introduces
a variant of the relative entropy measure that quantifies the distinguishability of a quantum state
from the set of free states using a restricted set of measurements. Let {Mi} be a measurement
POVM and define the map

M (ρ)=

∑
i

pi (ρ) |i〉〈i |, pi (ρ)= Tr (ρMi) , (A.2)

where {|i〉} is any orthonormal set andM is a map associated to measurement {Mi}. LettingM
be the set of restricted measurements we can define

MS (ρ‖σ)≡ max
M∈M

S (M (ρ) ‖M (σ )) . (A.3)

The significance of this quantity is from [38, theorem 1]: ut

Theorem 9. Consider a restricted set of operations inducing a resource theory. Let M be the
restricted set of measurements (here the stabilizer measurements) and P the set of free states
(here the stabilizer states). If the set of free states is closed under restricted measurement and
the partial trace then it holds that the regularization of the relative entropy distance to the set
of free states r∞

P (ρ) satisfies

r∞

P (ρ)>min
σ∈P
MS (ρ‖σ) . (A.4)

The stabilizer formalism satisfies the conditions of the theorem. Moreover, since the
stabilizer measurements contain an informationally complete measurement it holds that
MS (ρ‖σ) > 0 whenever ρ is a magic state. This implies r∞

M (ρ) > 0 whenever ρ is a magic
state. r∞

M (ρ)= 0 for all stabilizer states ρ, so the claimed result follows.

Appendix B. Proofs on sum negativity and mana

B.1. Odd dimensions

The main ingredient in establishing both the sum negativity sn (ρ) and the mana M (ρ) as magic
monotones is to show that ‖ρ‖W =

∑
u

∣∣Wρ (u)
∣∣ is non-increasing under stabilizer operations.

B.2. Wigner function one-norm is non-increasing under stabilizer operations

Theorem 10. ‖ρ‖W =
∑

u

∣∣Wρ (u)
∣∣ is a convex and non-increasing under stabilizer operations.

Proof. We need to verify that this function is non-increasing under stabilizer operations:

1. Invariance under Clifford unitaries. The action of Clifford unitaries on the phase space
of the Wigner function is a permutation, u → Fu. Thus, ‖UρU †

‖W =
∑

u

∣∣WUρU † (u)
∣∣=∑

u

∣∣Wρ (Fu)
∣∣=∑

u

∣∣Wρ (u)
∣∣= ‖ρ‖W .
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2. Non-increasing on average under stabilizer measurement. We consider computational basis
measurement on the final qudit. The expected value of ‖ρ̃‖W for the post measurement state
ρ̃ is

E
[
‖ρ̃‖W

]
=

∑
i

Tr (ρI⊗ |i〉〈i |) ‖ (I⊗ |i〉〈i |) ρ (I⊗ |i〉〈i |) /Tr (ρI⊗ |i〉〈i |) ‖W (B.1)

=

∑
i

‖ (I⊗ |i〉〈i |) ρ (I⊗ |i〉〈i |) ‖W (B.2)

and by writing (I⊗ |i〉〈i |) ρ (I⊗ |i〉〈i |) as

(I⊗ |i〉〈i |) ρ (I⊗ |i〉〈i |)=

∑
u,v

Wρ (u ⊕ v) 〈i | Av |i〉 · Au ⊗ |i〉〈i | (B.3)

=

∑
u

(∑
v

Wρ (u ⊕ v) 〈i | Av |i〉

)
Au ⊗

∑
w

(
1

d
〈i | Aw |i〉

)
Aw (B.4)

we find

E
[
‖ρ̃‖W

]
=

∑
i

∑
u,w

∣∣∣∣∣
(∑

v

Wρ (u ⊕ v) 〈i | Av |i〉

)(
1

d
〈i | Aw |i〉

)∣∣∣∣∣ (B.5)

=

∑
i

∑
u

(∑
w

1

d
〈i | Aw |i〉

) ∣∣∣∣∣
(∑

v

Wρ (u ⊕ v) 〈i | Av |i〉

)∣∣∣∣∣ ( ∵ 〈i | Aw |i〉> 0)

(B.6)

6
∑

i

∑
u

∑
v

∣∣Wρ (u ⊕ v) 〈i | Av |i〉
∣∣

(
∵triangle inequality and

∑
w

1

d
〈i | Aw |i〉 = 1

)
(B.7)

=

∑
u,v

(∑
i

〈i | Av |i〉

) ∣∣Wρ (u ⊕ v)
∣∣ ( ∵ 〈i | Aw |i〉> 0) (B.8)

= ‖ρ‖W

(
∵
∑

i

〈i | Av |i〉 = 1

)
. (B.9)

3. Invariance under composition with stabilizer states. Let σ be any state with positive Wigner
representation. Then

‖ρ⊗ σ‖W = ‖ρ‖W ‖σ‖W (B.10)

= ‖ρ‖W , (B.11)

since ‖σ‖W =
∑

u |Wσ (u)| =
∑

u Wσ (u)= 1 for positively represented states. All
stabilizer states are positively represented so they are included as a special case.
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4 Non-increasing under partial trace. We trace out the final qudit B of the system. If
ρ =

∑
u,v Wρ (u ⊕ v) Au ⊗ Av then TrB (ρ)=

∑
u

(∑
v Wρ (u ⊕ v)

)
Au, so

‖TrB (ρ) ‖W =

∑
u

∣∣∣∣∣∑
v

Wρ (u ⊕ v)

∣∣∣∣∣ (B.12)

6 ‖ρ‖W , (B.13)

by the triangle inequality.

5. Convexity.

‖pρ + (1 − p) σ‖W =

∑
u

∣∣pWρ (u)+ (1 − p)Wσ (u)
∣∣ (B.14)

6 p‖ρ‖W + (1 − p) ‖σ‖W (B.15)

by the triangle inequality. ut

We next establish that this was essentially the only choice we could have made to (simply)
quantify the magic of a quantum state via its Wigner representation.

Sum negativity is the unique phase space measure of magic.

Theorem 11. Assume M (ρ) is a function on quantum states that satisfies the following
conditions: (i)M (ρ) is a magic monotone; (ii)M (ρ) is determined only by the negative values
of the Wigner function; and (iii) M (ρ) is invariant under arbitrary permutations of discrete
phase space (i.e., even under permutations that do not correspond to quantum transformations).
ThenM (ρ) may be written as a function of only sn (ρ).

Proof. Let ρ have negative entries −N1,−N2, . . . ,−Nk and ρ ′ have negative entries
−N ′

1,−N ′

2, . . . ,−N ′

k′ , with

N ≡ sn (ρ)=

∑
Ni =

∑
N ′

i = sn
(
ρ ′
)
. (B.16)

A and A′ will be ancilla states acting on m qudits, with m = max
{
dlogd ke, dlogd k ′

e
}
; d is the

size of each qudit.

A =

k′∑
i=1

(N ′

i/N )|i〉〈i |, (B.17)

A′
=

k∑
i=1

(Ni/N )|i〉〈i |. (B.18)

These are valid states since the sum of the Ni and N ′

i is the same. The Wigner function of A
consists of columns labeled by i with entries N ′

i /r N , with r = dm; each column contains r such
elements. It also has dm

− k ′ columns filled with zeros. Similarly for A′, except it has dm
− k

zero columns and the non-zero columns have r copies of Ni/r N instead.
The negative Wigner function entries for the state ρ⊗ A are of the form −Ni N ′

j/r N , for
all i and j . Each of these appears r times. The negative Wigner function entries for ρ ′

⊗ A′ are
of the form −N ′

j Ni/r N , for all i and j . Again, each appears r times. These entries could be
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in different locations, but since the function we are calculating does not depend on location of
negative entries, only their values, it follows that

M (ρ)=M (ρ⊗ A)=M
(
ρ ′

⊗ A′
)
=M

(
ρ ′
)
. (B.19)

Therefore,M (ρ) is a function only of sn (ρ). ut

B.3. Continuity and asymptotic continuity

In practice a perfect conversion is generally not possible, ‖3(ρ⊗m)− σ⊗n
‖1 > 0 for even the

best choice of stabilizer protocol 3. A state σ̃n that is close enough to σ⊗n can be used in place
of σ⊗n in information theoretic tasks so a better notion of conversion would be: how many
copies of ρ are required to produce a state3(ρ⊗m)= σ̃n that is ‘close enough’ to σ⊗n. A natural
notion of closeness is ‖σ̃n − σ⊗n

‖1 < ε for some operationally relevant ε. It is conceivable that
there is some choice of σ̃n in the epsilon ball around σ⊗n such that M (σ̃n)� M

(
σ⊗n

)
, in

which case M (σ ) would have little operational significance. Happily, it is not difficult to show
that M (ρ) is continuous with respect to the 1-norm in the sense that for a sequence of states
ρk, σk ∈ S (Hd) {‖ρk − σk‖}k → 0 H⇒ {|M (ρk)− M (σk)|}k → 0, so for a target state of fixed
dimension there is some well-defined sense in which closeness in the 1-norm implies that the
mana of two states is close.

In the case of asymptotic conversion of states this notion needs some massaging. Formally,
let 3n : S (Hdm(n))→ S (Hdn) be stabilizer protocols satisfying

lim
n→∞

‖3n

(
ρ⊗m(n)

)
− σ⊗n

‖ → 0. (B.20)

In particular we would like to avoid a situation where limn→∞ M (3n(ρ
⊗m(n)))� M (σ⊗n). One

way that this requirement can be formalized is the property of asymptotic continuity. A function
is said to be asymptotically continuous if for sequences ρn, σn on Hn, limn→∞ ‖ ρn − σn ‖→ 0
implies

lim
n→∞

f (ρn)− f (σn)

1 + log(dimHn)
→ 0. (B.21)

This notion is the commonly accepted generalization of continuity to the asymptotic regime and
is of particular importance because if the mana could be shown to be asymptotically continuous
it would give the asymptotic conversion rate, as in theorem 2. Unhappily, it is very difficult to
show this. This is mostly because it is false.

Theorem 12. M (σ )is not asymptotically continuous.

Proof. Define σ̃n = (1 − δn) σ
⊗n + δnηn, with limn→∞δn → 0. Asymptotic continuity would

imply

lim
n→∞

M (σ̃n)− M
(
σ⊗n

)
n

→ 0, (B.22)
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but we will show this need not be the case. Suppose σ is negative on points N =

{u : Wσ (u) < 0}. Let η be the state with maximal sum negativity satisfying Wη(u) < 0 ⇐⇒

u ∈N (ie. η is negative on the same points as σ ). Then,

‖σ̃‖W =

∑
u

| (1 − δn)Wσ⊗n(u)+ δnWη⊗n(u)| (B.23)

=

∑
u

(
(1 − δn) |Wσ⊗n(u)| + δn|Wη⊗n(u)|

)
(B.24)

= (1 − δn) ‖σ
⊗n

‖W + δn‖η
⊗n

‖W (B.25)

= (1 − δn) ‖σ‖
n
W + δn‖η‖

n
W . (B.26)

Here we have exploited that the sign of Wη⊗n(u) and the sign of Wσ⊗n(u) are always the same.
Subbing this in

M (σ̃n)− M
(
σ⊗n

)
n

=
1

n
log

(
(1 − δn)+ δn

(
‖η‖W

‖σ‖W

)n)
, (B.27)

but by assumption ‖η ‖W> ‖σ ‖W unless ‖σ ‖W is maximal for all states that are negative on
N , so the limit need not go to 0. Thus asymptotic continuity cannot hold generally. ut

This result is not actually terribly surprising. Suppose we have a preparation apparatus
that always prepares σ⊗n. Now further suppose that we rebuild our apparatus so that with
probability δn it will instead produce η⊗n with a far greater amount of negativity. Then it is
intuitively obvious that we should be able to extract more negativity from the new apparatus
just by sacrificing a few copies of the output state to determine whether we have produced σ or
η. Of course as n goes to infinity this will only work if δn goes to zero slowly enough, but this
argument does clarify the irrelevance of asymptotic continuity.

Essentially asymptotic continuity fails because it is possible that access to a very large
amount of resource, even with small probability, can dramatically improve our preparation
procedure. Notice that the opposite is not (obviously) true: if our machine fails with a very
small probability this does not make it useless. Indeed, if we had a promise of the form
σ̃n = (1 − δ) σ⊗n + δη⊗n then we could just sacrifice some small number of registers to check
that the output state was in fact σ⊗n.
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