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1 Department of Physics, Bilkent University, Bilkent, 06800 Ankara, Turkey
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Abstract. We investigate the synthesis of a hyperfine spin lattice in an atomic
Bose–Einstein condensate, with two hyperfine spin components, inside a one-
dimensional high-finesse optical cavity, using off-resonant superradiant Raman
scattering. Spatio-temporal evolution of the relative population of the hyperfine
spin modes is examined numerically by solving the coupled cavity–condensate
mean-field equations in the dispersive regime. We find, analytically and
numerically, that beyond a certain threshold of the transverse laser pump, Raman
superradiance and self-organization of the hyperfine spin components occur
simultaneously and as a result a magnetic lattice is formed. The effects of an
extra laser pump parallel to the cavity axis and the time dependence of the pump
strength on the synthesis of a sharper lattice are also addressed.
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1. Introduction

An atomic gas inside a high-finesse optical cavity [1, 2] may exhibit self-organization when
it is subjected to a transverse laser pump [3–7]. In matter–cavity quantum electrodynamic
(QED) systems, the mechanical effect of the electromagnetic fields on the motional states of
atoms and the phase shift effect of atomic motion on the fields induce each other mutually
in a self-consistent loop. The idea of trapping atomic Bose–Einstein condensates (BECs) in
high-finesse optical cavities [8] has been experimentally realized and developed [9–12] to allow
for sufficiently strong cavity–condensate coupling in order to realize nonlinear effects, such as
bistability, even with the cavity photon number below unity [13–16] and to probe quantum
phases of the condensate by cavity photons [17]. Quite recently, the Dicke superradiance
quantum phase transition [18–20] in a BEC–cavity system [21] has been demonstrated [22, 23]
and the nonequilibrium dynamics of such systems have been studied [24, 25] taking into account
the finite size effects [26, 27] and examining the nonequilibrium effects at the critical point
[27, 28].

The Dicke quantum phase transition for the single-mode BEC inside a high-finesse
cavity [22] is characterized by an abrupt increase in the number of cavity photons, after a
certain threshold of the pump intensity, which is accompanied by broken translational symmetry
of the condensate with the formation of an optical lattice [29]. Pump–cavity photon scattering
couples the initial zero-momentum state of BEC to a superposition of higher recoil momentum
states [24]. A quite different scenario happens if a condensate of atoms with two different
hyperfine states is pumped by a laser field far detuned from the atomic transition [30, 31]; that
is, Raman superradiance [32, 33] may occur during which the hyperfine state of atoms changes.

There has been much interest in multi-mode atom–cavity systems recently, such as bosonic
Josephson junctions inside a single-mode cavity [34] and spin glasses of single-component BEC
in a multi-mode cavity [35]. Optical bistability has been studied in spin-1 [36, 37] and in two-
mode BECs [16, 38]. Multi-species systems provide a very rich platform for the investigation
of phase transitions, in addition to their practical advantages such as faster self-organization
with lower threshold [39], and efficient, easily interpretable imaging of correlations in phase
transitions by the cavity field [27, 40].

In this paper, we examine the idea of the Dicke-like phase transition in a system
of a BEC–cavity with Raman coupling as well as the formation of magnetic lattices in
the condensate. We consider a two-mode BEC, where the two modes correspond to two
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Figure 1. Left: schematic drawing of a BEC in a one-dimensional optical cavity
subject to parallel and transverse laser fields. The cavity has a decay rate of κ .
Right: the doublet of lower levels (b and c) of the BEC atoms is coupled by a
cavity field and a laser field via the atomic excited state e in Raman scattering
scheme. Both the laser field and the cavity field are far detuned from the atomic
transition frequencies.

hyperfine states of the atoms, inside a one-dimensional optical cavity pumped by a laser field
perpendicular to the cavity axis. The two modes of the condensate are coupled in a Raman
scheme through a cavity mode and a laser field. The laser field and the cavity mode are
far detuned from the atomic transition and therefore the system is in the dispersive regime.
Moreover, the laser field is slightly detuned from the cavity resonance. Numerically solving the
coupled nonlinear dynamical equations of the system, we show that beyond a certain value
of the transverse pump strength, atoms scatter the laser field into the cavity mode and, in
return, themselves move to the higher hyperfine state. As a result, Raman superradiance and
translational symmetry breaking of the condensate take place simultaneously. The latter, which
is a result of self-organization of atoms in the higher hyperfine state, leads to the formation of a
ferromagnetic or ferrimagnetic lattice, depending on the rate of Raman transition. In this work,
we have also addressed the effect of an extra parallel pump and the time dependence of the
transverse pump on the synthesis of a well-defined magnetic lattice.

The rest of this paper is organized as follows. In section 2, we introduce our BEC–cavity
model and derive the mean-field equations that govern the dynamics of the cavity–matter
system. In section 3.1, we calculate the critical value of transverse pump strength after which
Raman superradiance takes place using the first-order perturbation approach. The results of
the numerical solution of the dynamical equations are presented in section 3.2. In section 4, we
discuss and address the effect of an extra parallel pump and a time-dependent pump for practical
synthesis of a sharp and stable magnetic lattice. We summarize our results in section 5.

2. Model

We consider a condensate of N atoms with two non-degenerate hyperfine states, |b〉 and |c〉, in a
one-dimensional single-mode cavity of frequency ωc as shown in figure 1. With an appropriate
design of a trap, one can isolate two desired hyperfine states (|m F = −1〉 and |m F = 1〉) from
the rest. In such a case, since other hyperfine states will be expelled from the trap, any inelastic
atomic collision resulting in transition of atoms to other hyperfine states would lead to particle
loss from the trap. At low temperatures, the rate of particle loss is very small in cold atomic
gases and specifically in the condensates [41–43]. We, thus, omit particle loss in the present
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calculations. The hyperfine states are coupled to an excited state |e〉 (with m F = 0) by a
transverse pump of frequency ω0 and the cavity field in the Raman scheme where coupling
of each field to the other transition as well as coupling of the other cavity mode with the same
frequency but opposite polarization are forbidden due to conservation of angular momentum
(a system in which both polarizations of the cavity field are coupled to several hyperfine states
is studied in [44]). The cavity is driven by another laser with the same frequency ω0. In the
dispersive regime where the fields are far detuned from the atomic transitions, the Hamiltonian
of the system [32, 33] can be written as

H =

∑
j=b,c

∫
dx ψ†

j

(
−

h̄2

2m

∂2

∂x2
+ V j(x)+ h̄ωbcδ j,c

)
ψ j + HRaman

+
∑

i, j=b,c

∫
dx

ui j

2
ψ

†
i ψ

†
jψ jψi + h̄ωca

†a − i h̄η||(aeiω0t
− a†e−iω0t), (1)

where ψ j(x, t) (ψ†
j (x, t)) is the annihilation (creation) operator for a bosonic atom at the

space–time point (x, t). V j(x) is the external trap potential for the state j = b, c and ωbc is
the frequency of the b ↔ c transition. {ui j} are the interaction strengths of atoms in states i
and j and are related to s-wave scattering lengths {ai j} through ui j = 4π h̄2ai j/(mw2), where
m is the mass of atoms and w is the transverse size of the condensate. The parallel laser field
strength is denoted by η|| and the annihilation (creation) operator of the cavity mode is a (a†).
For a cavity mode with wave number k, the Raman scattering Hamiltonian (HRaman) has the
form

HRaman = −ih̄
∫

dx ψ†
e h0(e

−iω0t + eiω0t)ψb + h.c.− ih̄
∫

dx ψ†
e g0 cos(kx)(a + a†)ψc + h.c., (2)

where h0 and g0 are the atom–pump and atom–cavity dipole interaction strengths, respectively.
The transverse pump profile is assumed to be wide enough to take h0 uniform. Dipole
approximation is used for the transverse direction. After adiabatically eliminating ψe, under
the condition of 10 = ω0 −ωbe being larger than the excited state linewidth, the Hamiltonian
reduces to

H =

∑
j=b,c

∫
dx ψ†

jHψ j +
∑

i, j=b,c

∫
dx

ui j

2
ψ

†
i ψ

†
jψ jψi − h̄δca

†a − ih̄η||(a − a†), (3)

where, in a rotating frame defined by the unitary operator U = exp(−iω0ta†a),

H= −
h̄2

2m

∂2

∂x2
+

(
2h̄h2

0

10
+ Vb(x)

)
σ−σ + +

(
h̄U0 cos2(kx)(aa† + a†a)+ Vc(x)+ h̄ωbc

)
σ +σ−

+h̄η(a + a†) cos(kx)(σ− + σ +). (4)

Here U0 = g2
0/10, η = h0g0/10, δc = ω0 −ωc [9], σ +

= |c〉〈b| and σ−
= |b〉〈c|.

The early stages of the dynamics are strongly influenced by quantum fluctuations that
trigger the superradiance. We consider the late time dynamics in which the condensate and
field variables are assumed to be classical [33]. The effect of quantum fluctuations is introduced
by seeding the cavity field in numerical simulations. In our case seeding is performed either
by adding very small fluctuations proportional to cos(kx) to ψc (cf section 3) when there
is no parallel pump, or physically by the parallel pump that drives the cavity (cf section 4).
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The Heisenberg equations of motion in this mean-field regime take the following form:

ψ̇b = −
i

h̄

(
−

h̄2

2m

∂2

∂x2
+ Vb(x)+

2h̄h2
0

10
+ ubb|ψb|

2 + ubc|ψc|
2

)
ψb −

i

h̄
V1ψc, (5)

ψ̇c = −
i

h̄

(
−

h̄2

2m

∂2

∂x2
+ Vc(x)+ h̄ωbc + V2 + ucc|ψc|

2 + ubc|ψb|
2

)
ψc −

i

h̄
V1ψb, (6)

α̇ = i

(
iκ + δc − 2U0

∫
dx |ψc|

2 cos2(kx)

)
α− iη

∫
dx cos(kx)(ψ∗

cψb +ψ∗

bψc)+ η||, (7)

where αr is the real part of the cavity field α and κ is the phenomenological decay rate of the
cavity [33]. Here V1 = 2h̄η cos(kx)αr is the spatially modulated rate of the Raman transition.
V2 = 2h̄U0 cos2(kx)|α|

2 is a standing wave trapping potential for atoms in state |c〉 which has
been built by the cavity mode. The minima of V2 trap the atoms in |c〉 at x j = jλ/2, where j is
an integer and λ is the wavelength of the cavity mode. In return, atoms in state |c〉 cause a shift
in the cavity resonance due to their spatial overlap with the cavity mode by −2U0

∫
dx |ψc|

2

cos2(kx).
Up to this point we have included the effect of an extra parallel pump in the dynamics of

the system. However, in section 3 we study the phase transition without this parallel laser pump
and later in section 4, where we consider practical ways of synthesizing a sharper and robust
lattice, we will address its effect.

3. Phase transition and formation of a spin lattice

In an optical cavity, superradiance is identified by an abrupt increase in the number of
cavity photons n = |α|

2 and Raman transition is monitored with the total magnetization
Z =

∫
dx Z(x, t), where Z(x, t)= (|ψb(x, t)|2 − |ψc(x, t)|2)/N is the magnetization density

that is normalized by the total number of atoms N =
∫

dx(|ψb(x, t)|2 + |ψc(x, t)|2). The total
magnetization can have extremum values 1 and −1 when all atoms are in mode |b〉 or |c〉,
respectively. Therefore, if initially all atoms are in hyperfine state |b〉, the Raman superradiance
is identified by a sudden increase in the number of cavity photons accompanied by an abrupt
decrease in the value of total magnetization Z .

The Dicke phase transition, in single-mode condensates, takes place between two different
momentum states of the condensate atoms which leads to density grating and is identified by an
order parameter which measures the overlap of density distribution and cavity mode profile. In
our system though, we will show that the density grating happens only for the atoms in hyperfine
state |c〉 and therefore a polarization (magnetization) grating will occur. This translational
symmetry breaking in magnetization density Z(x, t) is also identified by an order parameter,
which we will introduce later in section 3.1.

Since the potential V1 defines the rate of Raman scattering and transition of atoms between
the two hyperfine states, the atoms on the antinodes of cos(kx) are highly affected by Raman
scattering (figure 2) while those that are on the nodes are protected. On the other hand if we
choose 10 (and consequently U0) to be negative, then the minima of the trapping potential V2

will coincide with the antinodes of V1. In this way, overlap of different hyperfine spin states,
which act as an atomic polarization grating, is enhanced around the antinodes and stimulates
even more Raman scattering, which completes a self-consistency loop for a self-organization
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Figure 2. Left: schematic drawing of potentials V1 and V2 as functions of x when
10, and consequently U0 and η are chosen to be negative. x is scaled by the
wavelength of the cavity mode λ. V1 defines the rate of Raman transition and
V2 is a trapping potential for atoms in the hyperfine state |c〉. Right: while the
atoms on the nodes of cos(kx) are protected from Raman scattering, depending
on the rate of transition V1 on the antinodes, formation of ferromagnetic or
ferrimagnetic lattices is possible. Blue circles with upward arrows represent
positive magnetization and red circles with downward arrows show negative
magnetization. Lighter (darker) colors and shorter (longer) arrows represent
smaller (larger) magnetization.

process. Accumulation of the atoms in |c〉 around the antinodes and protection of atoms in
|b〉 from Raman scattering around the nodes of the cavity mode result in a spatial distillation
of magnetization, manifested as a self-organized magnetic lattice with a lattice constant λ/2.
In other words, the magnetization on the nodes of the cavity mode will always be positive,
while, depending on the rate of Raman transition, antinodes can have positive, zero or negative
magnetization (figure 2) and therefore synthesis of a ferromagnetic or ferrimagnetic lattice
would be possible.

On the right side of figure 2, the first row from top, with dark blue circles, represents the
uniform condensate of atoms all in state |b〉 which is the initial setup of the system. Assuming
that all atoms are initially in state |b〉 practically means that the condensate is kept at such a low
temperature that transition to higher state |c〉 due to inelastic atomic collisions is energetically
forbidden. As an example, the 87Rb condensate can have a typical temperature of the order of
200 nK or less [42, 45]. Therefore, in such a condensate, transition between hyperfine states
due to inelastic atomic collisions is highly suppressed if those states are energetically apart by
13 kHz or more. The second row in figure 2 shows the case where less than half of the atoms on
the antinodes are Raman scattered from |b〉 to |c〉, giving rise to a smaller, but still positive, value
of magnetization. If 50% or more of the atoms are scattered from |b〉 to |c〉, then magnetization
on the antinodes would become zero (third row) or negative (last row), resulting in the formation
of ferromagnetic or ferrimagnetic lattices.
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3.1. Critical value of pump strength for the phase transition

In order to analytically calculate the critical strength of transverse pump ηc, for which the
system undergoes superradiance and self-organization, we first study the steady-state properties
of the system. We assume that in the steady state α̇ = 0 and therefore, by introducing θ =∫

dx ψ∗

c (x, t) cos(kx)ψb(x, t), β =
∫

dx ψ∗

c (x, t) cos2(kx)ψc(x, t) and δ̄c = δc − 2U0β, the
steady cavity field can be expressed as

α =
2θrη

iκ + δ̄c

(8)

with θr being the real part of θ . As mentioned earlier, −2U0β is the shift in the cavity mode
frequency caused by atoms in state |c〉 while β measures the bunching of atoms in state |c〉
inside the minima of the trapping potential V2. The parameter θ shows the overlap of the cavity
mode function cos(kx) with the spin polarization grating and can be considered as an order
parameter for self-organization of magnetization. We emphasize that, in contrast to the case of
single-component BEC in an optical cavity [5], V1 here is the Raman transition rate and not a
trapping potential. In a single-component BEC system, different signs of the order parameter
lead to two different lattice structures after translational symmetry breaking, when atoms are
localized around the even (kx = 2nπ ) or odd (kx = (2n + 1)π ) antinodes of the field. In our
system, breaking of the Z2 symmetry also happens but it is not manifested by the appearance of
different lattice structures. Both even and odd antinode locations are sites for Raman interactions
that lead to the same lattice but with different magnetic character depending on the strength of
the Raman coupling. Therefore, different signs of θr or αr do not correspond to different (even
and odd) lattice structures and a nonzero value of order parameter θ is sufficient to indicate the
phase transition.

Regarding the wavefunctions of the condensate, in steady state, we assume that they can be
written in the formψb(x, t)= ψb(x) exp(−iµbt/h̄) andψc(x, t)= ψc(x) exp(−iµct/h̄), with µ
being the chemical potential; then the dynamical equations (5) and (6) in the absence of external
trap potentials will become

µbψb(x)=

(
−

h̄2

2m

∂2

∂x2
+

2h̄h2
0

10
+ ubb|ψb|

2 + ubc|ψc|
2

)
ψb(x)+ V1ψc(x)e

−
i
h̄1µt , (9)

µcψc(x)=

(
−

h̄2

2m

∂2

∂x2
+ h̄ωbc + V2 + ucc|ψc|

2 + ubc|ψb|
2

)
ψc(x)+ V1ψb(x)e

i
h̄1µt , (10)

where 1µ= µc −µb.
For a system in which all atoms are initially in state |b〉 and are homogeneously

distributed, the initial wavefunctions are ψb(x)=
√

N/L and ψc(x)= 0. Substituting
these initial conditions into (8)–(10) results in α = 0, µb = 2h̄h2

0/10 + ubb N/L and
2
√

N/Lαrη cos(kx) exp(i1µt/h̄)= 0. The latter is satisfied because with the choice of initial
conditions, θ and consequently α are zero, and this means that ψc = 0 is a stable solution of
equations of motion as long as the cavity field is zero. Therefore to destabilize ψc, one needs to
have a nonzero cavity field that, in the simplest case, can be achieved by adding a perturbation
term with cos(kx) modulation to the stable ψc(x, 0). Therefore, the perturbed system will
be defined with ψb(x, t)=

√
N/L , ψc(x, t)=

√
N/Lε cos(kx) and α = Nεη/(iκ + δc). If this

fluctuation in ψc survives and grows, as a consequence, the order parameter θ and cavity
field α will grow as well. A larger cavity field, in return, will advance the rate of Raman
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transition and will deepen the trapping potential for atoms in |c〉. These will lead to an even
larger order parameter and, as a result of this positive feedback loop, superradiance and
phase transition, which are characterized by an abrupt change in cavity photon number and
magnetization, will take place. To calculate the critical value of pump strength for which the
transition occurs, we evolve the system one step of imaginary time, starting from the perturbed
state:

1ψb

1τ
= −

(
2η2

U0
+

Nubb

h̄L

) √
N/L, (11)

1ψc

1τ
= −

(
ωr +ωbc +

Nubc

h̄L
+

2Nη2δc

κ2 + δ2
c

) √
N/Lε cos(kx), (12)

where τ = i t is the imaginary time and we have used h2
0/10 = η2/U0 in the first term on the

right-hand side of (11) in order to show the η-dependence of decay rates more clearly.
According to (11), ψb(x, t) exhibits an expected decay with a rate equal to µb/h̄ =

2h2
0/10 + Nubb/(h̄L). However, the situation for ψc(x, t) depends on the sign of the

perturbation term decay rate (terms inside the parentheses in (12)). With the positive
cavity–pump detuning δc, this decay rate is always positive and perturbation will not survive.
However if δc is negative, then this decay rate would be negative as well if

Nη2 >

(
ωr +ωbc +

Nubc

h̄L

)
(κ2 + δ2

c )

2|δc|
(13)

and therefore we find for critical transverse pump strength ηc

√
N |ηc| =

√(
ωr +ωbc +

Nubc

h̄L

)
(κ2 + δ2

c )

2|δc|
. (14)

One should notice that ηc in (14) does not depend on U0 because in our system, the effective
trapping potential V2 is created only for atoms in mode |c〉 and therefore, in return, the phase
shift of the cavity mode resonance depends on the number of atoms in mode |c〉 which is
initially negligible within the first-order perturbation. For ωbc = ωr, N = 48 × 103, L = 2 λ,
κ = 400ωr and δc = −4800ωr [22], we find |ηc| ≈ 2.16ωr if the atom–atom interaction strength
ubc ≈ 3.8 × 10−3 λωr.

3.2. Numerical results

In this section, the results of the numerical solution of the dynamical equations (5)–(7) will
be presented. Using the second-order split step method, and assuming all atoms are initially
in the hyperfine spin state |b〉, the mean-field equations are solved numerically to monitor the
dynamics of the system.

Figure 3 demonstrates the dynamics of the cavity photon number n, total magnetization
Z , the order parameter θr (all on the left panels) as well as the spatio-temporal behavior
of magnetization density Z(x, t) (on the right) when the transverse pump has the strength
η = −3ωr. We have considered a cavity with wavelength λ= 800 nm [22] which for
rubidium atoms gives a recoil frequency of ωr ∼ 20 kHz. Other parameters used for this
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Figure 3. Left: dynamics of the cavity photon number n, total magnetization Z
and the real part of order parameter θr. Right: spatial and dynamical behavior of
magnetization density Z(x, t) of the same system. Here, the system is subject
to a transverse pump with fixed strength η = −3 ωr and other parameters, in
units of ωr, are ωbc = 1, κ = 400, U0 = −0.5, δc = −4800, 10 = −4 × 106 and
N = 48 × 103.

simulation, in units of ωr, are ωbc = 1, κ = 400, δc = −4800 [22], U0 = −0.5 and 10 =

−4 × 106. We have considered a condensate of N = 48 × 103, atom–atom interaction strengths
ubc = ucb ≈ 3.8 × 10−3 λωr and ubb = ucc ≈ 4.5 × 10−3 λωr. One can see in figure 3 that
superradiance and phase transition take place at t ∼ 0.2ωr after the system is pumped with the
transverse laser with strength η = −3ωr. While cavity photon number, total magnetization and
order parameter reach slowly oscillating steady states, a ferromagnetic lattice of magnetization
is formed. Since atoms initially were in state |b〉, total magnetization Z is equal to one
before the phase transition. On the other hand, atoms are initially distributed in an area with
length L = 2 λ homogeneously which gives rise to magnetization Z(x, t)= 0.5 throughout the
condensate. In this case after the transition less than (but very close to) 50% of atoms on the
antinodes of the potential V1 are scattered to state |c〉, causing a very small positive value of
magnetization around the antinodes. However, the atoms on the nodes are almost untouched as
expected.

Since the scattering rate V1 and cavity field α are proportional to the transverse pump
strength η, one would expect a higher percentage of atoms around the antinodes of V1 being
scattered to |c〉 by simply using a larger η. Figure 4 shows the dynamics of the system with
η = −8ωr where a ferrimagnetic lattice of magnetization is created due to transition of more
than 50% of atoms on antinodes from state |b〉 to |c〉. Apart from η, all the other parameters are
similar to those used in figure 3, and the spatio-temporal behavior of magnetization Z(x, t) is
shown for a longer time in order to present a clearer view of the spin lattice.

Although the perturbation method in section 3.1 predicts a phase transition for the
transverse pump with strength 2.16ωr or above, numerical solution leads to a phase transition
with values of pump strength smaller than the value predicted by the perturbation method. In
the numerical method, no phase transition occurs with η 6 1.85ωr.
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Figure 4. Left: dynamics of the cavity photon number n, total magnetization Z
and the real part of order parameter θr. Left: spatial and dynamical behavior of
magnetization density Z(x, t) of the same system is shown in a wider range of
time to give a better view of the synthesized lattice. In this case, the system
is subject to a transverse pump with fixed strength η = −8ωr and the other
parameters are the same as those in figure 3.

4. Practical synthesis of a robust spin lattice

In this section, we address some practical issues that might be helpful in the implementation of
a sharp and robust spin lattice. First of all, we recall that in the last section the strength of the
transverse pump was assumed to be constant. However, considering a time-dependent pump is
more practical. In the experiments, the power of the pump is usually ramped up in time so that
it is initially zero and increases gradually. In numerics, using a ramped-up pump delays the time
of transition because during the early stages the system is subject to a laser with smaller values
of strength. This would give more control on the system at the time of transition. Moreover,
one would think of having a robust lattice without the need of an all-time-on laser field. In other
words, it would be desirable to turn off the laser pump after synthesis of the spin lattice. We will
show numerically that it is possible to have a robust lattice even when the laser pump is switched
off after the transition. The fact that the atoms on the nodes of V1 remain untouched and therefore
around the nodes there exists a single-component condensate while around the antinodes both
modes are occupied is the reason for this robustness. When the pump is switched off (η = 0),
the Raman coupling terms (last terms) in (5) and (6) vanish and these equations are reduced
to equations of motion of a two-component condensate with atom–atom interaction. Due
to the difference between the chemical potentials of the two components, there will be coherent
oscillations in their wavefunctions [46, 47] and consequently in the magnetization. This is the
case around the antinodes while, around the nodes, the single-component condensate remains
stable.

Another point to be considered is the role of an extra laser pump, parallel to the cavity axis.
A parallel laser pump can contribute to the cavity field as shown in (7) so that the steady cavity
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Figure 5. Left: time dependence of the strength of an effective transverse laser
pump η and dynamics of the real part of order parameter θr, with fixed parallel
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δc. Right: spatial and dynamical behavior of magnetization density Z(x, t) for
the case of positive δc which shows synthesis of a sharp lattice around time
t ≈ 1.4/ωr when η ≈ 1.4ωr. Here, in units of ωr, ωbc = 1, κ = 400, U0 = −0.5,
|δc| = 4800, 10 = −4 × 106 and N = 48 × 103.

field takes the following form:

α =
2θrη + iη‖

iκ + δ̄c

. (15)

In addition to seeding the cavity field instead of relying on fluctuations to trigger the phase
transition, a strong parallel pump can also affect the depth of the trapping potential V2 as well
as the rate of scattering V1 indirectly through the cavity field. These latter facts would allow
the formation of a sharper spin lattice with smaller values of transverse pump strength. More
interestingly, through its effect on V2 and consequently the decay rate of fluctuations in ψc, a
parallel pump can open up the possibility of formation of a spin lattice with both positive and
negative cavity–pump detuning δc.

To bring all the above points together, in figure 5 we show the real part of order parameter
θr as a function of time for the two cases with positive and negative cavity–pump detuning δc,
while parallel pump strength is fixed to η‖ = 1000ωr and transverse pump strength is ramped
up from zero at t = 0 to η = −5ωr at time t = 5/ωr. In the case with positive δc, cavity photon
number n and magnetization Z exhibit oscillatory behavior similar to θr after the transition. For
the case with negative δc, Z saturates to a stationary value while n increases due to the increase
in the pump strength.

In both cases, with positive or negative δc, the order parameter is initially zero as a sign
of a homogeneous condensate. Then, when a critical value of transverse pump strength η is
reached, Raman superradiance takes place and simultaneously a polarization grating happens
due to accumulation of atoms in state |c〉 on the antinodes of the cavity mode function. As a
consequence of the translational symmetry breaking, the value of θr becomes nonzero. Since
any change in the value of the order parameter is a sign of the change in the value or distribution
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Figure 6. Left: time dependence of the strength of an effective transverse
laser pump η (dashed line) and dynamics of the cavity photon number n, total
magnetization Z and real part of order parameter θr. Right: spatial and dynamical
behavior of magnetization density Z(x, t). In this case, parallel pump strength
has been fixed to η‖ = 1000ωr while transverse pump strength has been ramped
up from zero at t = 0 to η = −1.4ωr at t = 1.4/ωr, and then both pumps are
turned off when the spin lattice has taken a well-defined shape. Other parameters
are the same as those in figure 5 with positive δc.

of magnetization around the antinodes of the cavity mode, by looking at the oscillations of θr

in figure 5 for positive δc, one would expect oscillations in the magnetization density around
the antinodes for this case. In the right panel of figure 5, the spatio-temporal behavior of
magnetization density Z(x, t) of the case with positive δc is also shown, which demonstrates
the expected oscillations. The case with negative δc exhibits a stable lattice structure; however,
the lattice is never as well-defined as the one with positive δc at t ∼ 1.4/ωr. The value of the
order parameter in the left side of figure 5 is a clear sign of this fact.

Although magnetization density of the case with positive δc oscillates in time, it clearly
demonstrates synthesis of a very sharp lattice around t ∼ 1.4/ωr when η ∼ −1.4 ωr. From the
right panel of figure 5 one can observe that, as the pump is ramped up, the magnetized domains
are not well isolated from the de-magnetized ones and there is no robust spin lattice structure for
this case. This problem can be avoided by turning both laser pumps off when the lattice has taken
the desired shape. Figure 6 shows the dynamics of cavity photon number n, total magnetization
Z , order parameter θr, as well as magnetization density Z(x, t) for the case with positive δc and
fixed parallel pump η‖ = 1000 ωr, when both pumps are abruptly turned off at time t = 1.4/ωr.
At this point, due to the lack of Raman transition, magnetization Z remains a constant and all
the photons leave the cavity. In the absence of the laser pumps, the regions around the antinodes
of the cavity mode exhibit oscillatory behavior as expected. However, nodes with maximum
positive magnetization remain untouched and are very well separated from each other. Since
there is no laser pumping the system, one would not expect a net change in the order parameter.
In fact, the increase in θr, observed in figure 6, is a part of a very slow oscillatory behavior. In
other words, θr exhibits some fast oscillations as well as slow oscillations.
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5. Conclusion

We conclude that a BEC with two non-degenerate hyperfine spin components in a high-finesse
cavity driven by a transverse pump can exhibit Raman superradiance above a critical value of
the transverse field strength. Simultaneously, the BEC undergoes a phase transition, associated
with both the external and internal degrees of freedom, during which atoms scatter a transverse
laser field into the cavity mode and in return their hyperfine state changes. As a result, the cavity
photon number rises abruptly and at the same time there is a sudden increase in the population
of the higher hyperfine state at periodic positions exhibiting a magnetic lattice configuration. An
extra laser pump parallel to the cavity axis can be used in order to synthesize sharper lattices and
the lattice remains robust after turning both laser pumps off. Even though the present analysis is
in the mean-field regime, we can envision that hyperfine spins at different lattice sites would be
entangled as they interact with the common cavity field, following the resonant entanglement
of atoms in the multitraps scenario [48]. The availability of a large number of spins per site
could make the system advantageous for exploring magnetic supersolid properties. In contrast
to Rayleigh superradiance, Raman superradiance can be used as a source of entangled photon-
spin pairs. The application of cold atoms in optical lattices for quantum information purposes
has been a developing field of theoretical and experimental studies [49–51]. In addition to
optical lattices, spin systems are commonly considered for quantum information bits (qubits)
and associated quantum information processing. Our treatment brings optical lattices and
spin lattices together in a compact and controllable cavity-QED environment. Synthesis and
probing robust spin lattice models with fast superradiance-induced phase transition and self-
organization properties promise unique opportunities for quantum information applications as
well as monitoring phase transitions and spin correlations with the Raman scheme. Long-range
spin–spin interactions induced by the cavity field can be utilized on an optical spin lattice created
in the cavity. Large spin values at the sites together with the coherence from the underlying
condensate can be useful for quantum memory as well as information processing. Moreover,
leaking photons from the cavity and external drives can be used for non-destructive probing and
accessing the system. We hope our work will stimulate further research in this direction.
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