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Abstract. We theoretically propose optical phonon lasing in a double quantum
dot (DQD) fabricated on a semiconductor substrate. No additional cavity or
resonator is required. An electron in the DQD is found to be coupled to only
two longitudinal optical phonon modes that act as a natural cavity. When the
energy level spacing in the DQD is tuned to the phonon energy, the electron
transfer is accompanied by the emission of the phonon modes. The resulting non-
equilibrium motion of electrons and phonons is analyzed by the rate equation
approach based on the Born–Markov–Secular approximation. We show that
lasing occurs for pumping the DQD via electron tunneling at a rate much
larger than the phonon decay rate, whereas phonon antibunching is observed
in the opposite regime of slow tunneling. Both effects disappear by an effective
thermalization induced by the Franck–Condon effect in a DQD fabricated in a
suspended carbon nanotube with strong electron–phonon coupling.
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1. Introduction

In conventional lasers, two-level systems couple to a single mode of photon in a cavity. The
pumping of electrons to the upper level results in light amplification through the stimulated
emission of radiation. Recently, lasing was reported for a single atom in a cavity, which is
called a microlaser [1]. Such a system is being intensively studied in the context of cavity
quantum electrodynamics (QED) [2], which also works as a single-photon source to produce
antibunched photons [3].

Quantum dots are electrically tunable two-level systems. The cavity QED using a quantum
dot has a potential for wider application to quantum information processing [4] as well as
the single-photon source [5]. When the quantum dot is connected to an external circuit, the
electronic state in the quantum dot can be controlled by the electric current. The microlaser
was realized in the so-called circuit QED, in which a superconducting quantum dot in a
circuit is coupled to a microwave resonator [6]. In this case, pumping is realized using the
superconducting circuit. The electric current drives the lasing when level spacing is tuned to the
microwave energy [7–11].

In this work, we theoretically examine the transport through a semiconductor double
quantum dot (DQD) in the presence of electron–optical-phonon coupling and propose phonon
lasing without a cavity or resonator. The electron–phonon interaction in quantum dots reveals
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itself in the transport phenomenon, which was investigated in various contexts until now. For
DQDs fabricated in InAs nanowire and graphene, an interference pattern of electric current
was observed as a function of level spacing in the DQDs, which is ascribable to the emission
of acoustic phonons [12]. It is the Dicke-type interference between two transport processes in
which a longitudinal acoustic (LA) phonon is emitted in one dot or another [13]. In a single
quantum dot fabricated in a suspended carbon nanotube (CNT), the Franck–Condon blockade
was reported [14, 15]. Owing to the strong electron–phonon interaction in the CNT, the electric
transport is accompanied by lattice distortion, which results in the current suppression under
a small bias voltage [16]. This is the manifestation of the Franck–Condon effect in the electric
transport, which was originally known in the optical absorption of molecules [17]. Regarding the
study of optical phonons, Amaha and Ono observed phonon-assisted transport through a DQD.
The current is markedly enhanced when the level spacing in the DQD is tuned to an integer
multiple of the energy of longitudinal optical (LO) phonons in the semiconductor substrate [18].

In this paper, we show LO-phonon lasing in phonon-assisted transport through a DQD.
First, we show that a DQD effectively couples to only two LO phonon modes. The phonon
modes do not diffuse and act as a natural cavity since the optical phonons have a flat dispersion
relation. Thus, our laser does not require a cavity or resonator. The pumping to the upper level
is realized by an electric current through the DQD under a finite bias voltage, in a similar
manner to the microlaser in the circuit QED [6]. Thus, the pumping rate is determined by
the tunneling rate between the DQD and leads, 0L ,R. The amplified LO phonons occasionally
escape from the ‘cavity’ by decaying into the so-called daughter phonons [19] that can be
observed externally (see section 6). When the pumping rate 0L ,R is much larger than the phonon
decay rate 0ph, the stimulated emission of phonons, i.e. phonon lasing, takes place. We proposed
a basic idea of optical phonon lasing in our previous letter [20]. In this paper, we present
further comprehensive discussion on phonon lasing and address the possible experimental
realization.

We also find phonon antibunching in the same system if the pumping rate 0L ,R is smaller
than 0ph. In this situation, the phonon emission is regularized by single-electron transport
through the DQD. We emphasize that the phonon statistics can be changed by electrically tuning
the tunnel coupling between DQD and leads. Note that LO-phonon-assisted transport through a
DQD was theoretically studied by Gnodtke et al [21]. We also note that the lasing of acoustic
phonons was studied in semiconductor superlattices, which work as a cavity to confine acoustic
phonons [22]. The acoustic phonon laser using a single quantum dot was theoretically proposed
by optical pumping [23] and by spin-dependent transport [24].

The electron–phonon coupling in DQDs fabricated in CNTs is much stronger than
the electron–optical-phonon coupling in DQDs made in GaAs substrate, as we discuss in
section 2. Both phonon lasing and antibunching are spoilt by phonon thermalization via the
Franck–Condon effect in the former case. In electric transport, the number of electrons in the
DQD fluctuates, which is accompanied by lattice distortion and thus the creation of bunched
phonons. We show that this effect is negligible in a weak coupling case of semiconductor-based
DQDs but surpasses lasing and antibunching in a strong coupling case of CNTs4. We also show
that the strong electron–phonon coupling brings about Franck–Condon blockade in a DQD with
finite bias voltages, as in the case of single quantum dots [14–16].

4 The coupling to photons in a cavity corresponds to the weak coupling case, with a dimensionless coupling
constant λ∼ 10−4 in [1] and 10−2 in [6], in equation (7).
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(a) (b)

Figure 1. (a) Model for a DQD coupled to LO phonons. The bias voltage V
is applied between external leads. The spacing 1 between the energy levels in
dots L and R is electrically tunable. When 1 matches an integer (ν) multiple of
the phonon energy h̄ωph, the electronic state |L〉e with n phonons is coherently
coupled to |R〉e with (n + ν) phonons. (b) The phonon mode functions uS,A(r)
along a line through the centers of quantum dots located at x = ±R, when
the electron distributions, |ψL(r)|2 and |ψR(r)|2, are spherical with radius
R. The x-component of u(x, 0, 0) is shown for S(A)-phonons which couple
(anti-)symmetrically to the DQD. Note that ux is an odd (even) function of x
for S (A)-phonons since the induced charge is proportional to ∇ · u(r).

This paper is organized as follows. In section 2, we explain our model and calculation
method. Starting from the microscopic electron–optical-phonon interaction, we show that only
two phonon modes, S- and A-phonons, are coupled to an electron in the DQD. The effective
Hamiltonian is then derived in terms of the phonon modes. Based on the Born–Markov–Secular
(BMS) approximation, we obtain the rate equation for the non-equilibrium dynamics of
electrons and phonons in the DQD under a finite bias. In section 3, we take into account
A-phonons and disregard S-phonons. We examine the electron transport accompanied by the
phonon emission. This results in phonon lasing or antibunching in the weak coupling case,
whereas it brings about phonon thermalization in the strong coupling case. These different
situations are elucidated by the analytical solution of the rate equation as well as the numerical
studies. In section 4, S-phonons are examined without A-phonons. S-phonons do not contribute
to the phonon-assisted tunneling in the DQD, in contrast to A-phonons, and hence they are
irrelevant to phonon lasing and antibunching. We examine the Franck–Condon blockade under
a finite bias by coupling to S-phonons as well as A-phonons. Section 5 is devoted to the
investigation of general situations in the presence of both A- and S-phonons. We show that
S-phonons do not disturb the lasing or antibunching of A-phonons. In section 6, we discuss the
validity of our theory and address possible experimental realizations to observe phonon lasing
and antibunching. Finally, we present our conclusions in section 7.

2. Model and calculation method

2.1. Phonon modes coupled to a double quantum dot and effective Hamiltonian

Figure 1(a) depicts our model of a DQD embedded in a semiconductor substrate, in which two
single-level quantum dots, L and R, are connected by tunnel coupling VC. The energy levels,
εL and εR, are electrically tunable. We choose εR = −εL and denote the level spacing εL − εR
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by 1. We assume that the total number of electrons in the DQD is restricted to one or zero due
to Coulomb blockade. The electron couples to LO phonons of energy h̄ωph in the substrate by
the Fröhlich interaction. Our system Hamiltonian is H=He +Hph +Hep,

He =
1

2
(nL − nR)+ VC(d

†
LdR + d†

RdL), (1)

Hph = h̄ωph

∑
q

Nq, (2)

Hep =

∑
α=L ,R

∑
q

Mα,q(aq + a†
−q)nα (3)

using creation (annihilation) operators d†
α (dα) for an electron in dot α and a†

q (aq) for a phonon
with wavevector q. nα = d†

αdα and Nq = a†
qaq are the number operators. The spin index is

omitted for electrons. The coupling constant is given by

Mα,q =

√
e2h̄ωph

2V

[
1

ε(∞)
−

1

ε(0)

]
1

q

∫
dr|ψα(r)|

2eiq·r, (4)

where ε(∞) (ε(0)) is the dielectric constant at high (low) frequency, V is the volume of substrate
and ψα(r) is the electron wavefunction in dot α of radius R. The LO phonons only around
the 0 point, such as |q|.1/R, are coupled to the DQD because of an oscillating factor in
the integral over |ψα(r)|2. This fact justifies the dispersionless phonons in Hph. We assume
equivalent quantum dots L and R, whence MR,q = ML ,q eiq·r L R with r L R being a vector joining
their centers.

In Hep, an electron in dot α couples to a single mode of phonon described by

aα =

∑
q Mα,qaq

(
∑
q |Mα,q|

2)1/2
. (5)

We perform a unitary transformation for phonons from aq to S- and A-phonon modes:

aS =
aL + aR

√
2 + (S +S∗)

, aA =
aL − aR

√
2 − (S +S∗)

(6)

and others orthogonal to aS and aA, where S is the overlap integral between aL and aR phonons
in equation (5).5 Since the phonon modes other than S- and A-phonons are decoupled from the
DQD, they can be safely disregarded in the electron transport through the DQD. Hence, we
obtain the effective Hamiltonian

H =He + h̄ωph

[
NS + λS(aS + a†

S)(nL + nR)
]

+ h̄ωph

[
NA + λA(aA + a†

A)(nL − nR)
]
, (7)

where NS = a†
SaS and NA = a†

AaA, with dimensionless coupling constants

λS/A =
1

2h̄ωph

(∑
q

|ML ,q± MR,q|
2

)1/2

. (8)

The mode functions for S- and A-phonons are shown in figure 1(b) along a line through
the centers of the quantum dots. The definition and calculation of the mode functions are given

5 The overlap integral, S = ph〈L|R〉ph = ph〈0|aLa†
R|0〉ph = [aL , a†

R], is evaluated in appendix A.
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in appendix A. Since the phonons are dispersionless, they do not diffuse and act as a cavity
including the DQD.6 A-phonons play a crucial role in the phonon-assisted tunneling between
the quantum dots and thus in the phonon lasing, as discussed below, whereas S-phonons do not
since it couples to the total number of electrons in the DQD, nL + nR. Both phonons are relevant
to the Franck–Condon effect.

Our Hamiltonian H in equation (7) is applicable to DQDs fabricated in a semiconductor
substrate, where h̄ωph = 36 meV and λS,A = 0.1–0.01 for R= 10–100 nm in GaAs. It also
describes a DQD in a suspended CNT when an electron couples to a vibron, longitudinal
stretching mode with h̄ωph ∼ 1 meV, λA & 1 and λS = 0 in experimental situations [14, 15],
as shown in appendix B.

2.2. Rate equation in energy eigenbasis

The DQD is connected to external leads L and R in series, which enables electronic pumping
by the electric current under a finite bias. The tunnel coupling between lead L and dot L is
denoted by 0L and that between lead R and dot R by 0R. We also introduce the phonon decay
rate 0ph to take into account natural decay of LO phonons into the so-called daughter phonons
due to lattice anharmonicity [19]. We describe the dynamics of the DQD-phonon density matrix
ρ using a Markovian master equation

ρ̇ = −
i

h̄
[H, ρ] +Leρ +Lphρ, (9)

where Le and Lph describe the electron tunneling between the DQD and leads and the phonon
decay, respectively. Le is written as

Leρ =

∑
α=L ,R;i, j

0α

2

[
fα(εi − ε j)

(
|i〉〈i |d†

α| j〉〈 j |ρdα + d†
αρ| j〉〈 j |dα|i〉〈i |

−ρ| j〉〈 j |dα|i〉〈i |d
†
α − dα|i〉〈i |d

†
α| j〉〈 j |ρ

)
+ f̄ α(εi − ε j)

(
| j〉〈 j |dα|i〉〈i |ρd†

α + dαρ|i〉〈i |d†
α| j〉〈 j |

−ρ|i〉〈i |d†
α| j〉〈 j |dα − d†

α| j〉〈 j |dα|i〉〈i |ρ
)]

(10)

with |i〉 and εi being an eigenstate of H and the corresponding energy eigenvalue and fα(ε)
[ f̄ α(ε)= 1 − fα(ε)] being the Fermi distribution function for electrons (holes) in lead α [25].
The Fermi levels in leads L and R are given by µL = eV/2 and µR = −eV/2, respectively, with
bias voltage V between the leads.

In the limit of large bias voltage, Le is reduced to

Leρ = (0LD[d†
L] +0RD[dR])ρ, (11)

where D[A]ρ = AρA†
−

1
2{ρ, A† A} is a Lindblad dissipator. In this case, an electron tunnels

into dot L from lead L with tunneling rate 0L and tunnels out from dot R to lead R with 0R in
one direction. We examine this situation in the main part of this paper. With finite bias voltages,

6 If a weak quadratic dispersion around the 0 point is taken into account, the phonon modes are scattered by the
rate of ∂2ωph/∂q2

|q=0/R2, which is smaller than the decay rate 0ph of LO phonons by two orders of magnitude in
GaAs quantum dots with R= 10–100 nm.
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equation (10) is evaluated in sections 3.3 and 4.2, where electron tunneling takes place in both
directions unless eV is far beyond the temperature T .

The phonon dissipator Lph is given by

Lphρ = 0ph(D[aS] +D[aA])ρ (12)

on the assumption that the temperature T in the substrate is much smaller than h̄ωph, and
daughter phonons immediately escape from the surroundings of DQD.

In the following, we adopt the BMS approximation [26] to equation (9). We diagonalize
the Hamiltonian H in equation (7) and set up the rate equation in the energy eigenbasis,

Ṗi =

∑
j

L i j Pj (13)

for probability Pi to find the system in eigenstate |i〉. Here, L i j = 〈i |[(Le +Lph)| j〉〈 j |]|i〉. The
solution of equation (13) with Ṗi = 0 determines the steady-state properties. The condition to
justify the BMS approximation will be given in section 6.

3. Lasing and antibunching of A-phonons

In this section, we examine A-phonons, disregarding S-phonons, by fixing at λS = 0. The results
in this section are not modified by a finite coupling to S-phonons, as seen in section 5.

3.1. Phonon-assisted transport and phonon lasing

First, we present our numerical results in the case of 0L ,R � 0ph. We consider the limit of large
bias voltage. Figure 2(a) shows the current I through the DQD as a function of level spacing
1, with λA = 0.1 (solid line) and 1 (dotted line). Beside the main peak at 1= 0, we observe
subpeaks at1=1ν ' νh̄ωph (ν = 1, 2, 3, . . .) due to the phonon-assisted tunneling7. At the νth
subpeak, electron transport through DQD is accompanied by the emission of ν phonons. As a
result, the phonon number is markedly enhanced at the subpeaks, as shown in figure 2(b), in
both cases of λA = 0.1 and 1. However, the physics is very different for the two cases, as we
will show below.

For λA = 0.1 and 1=1ν , the electronic state |L〉e with n phonons is coherently coupled
to |R〉e with (n + ν) phonons [27], similarly to cavity QED systems, if the lattice distortion is
neglected. To examine the amplification of A-phonons, we calculate the phonon autocorrelation
function

g(2)A (τ )=
〈: NA(0)NA(τ ) :〉

〈NA〉2
. (14)

The numerator includes the normal product : NA(0)NA(τ ) := a†
A(0)a

†
A(τ )aA(τ )aA(0). g(2)A (τ ) is

proportional to the probability of phonon emission at time τ on the condition that a phonon is
emitted at time 0 [28, 29]. A value of g(2)A (0)= 1 indicates a Poisson distribution of phonons
which is a criterion of phonon lasing, whereas g(2)A (0) < 1 (g(2)A (0) > 1) represents the phonon
antibunching (bunching). We thus find phonon lasing at the current subpeaks in figure 2(c) in
the case of λA = 0.1 (solid line).

7 1ν is not exactly equal to νh̄ωph in the presence of tunnel coupling VC between the quantum dots.
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Figure 2. (a) Electric current through the DQD, (b) A-phonon number 〈NA〉, and
(c) its autocorrelation function g(2)A (0) in the large bias-voltage limit, as a function
of level spacing 1 in the DQD. The dimensionless electron–phonon coupling
constants are λA = 0.1 (solid lines) or 1 (dotted lines), and λS = 0. In (a),
I0 = e0R/(2 +0R/0L) is the current at1= 0 in the absence of electron–phonon
coupling. 0L = 0R = 100 0ph and VC = 0.1h̄ωph.

When λA = 1, the strength of the electron–phonon interaction is comparable with the
phonon energy. In this case, the lattice distortion by the Franck–Condon effect seriously disturbs
the above mentioned coherent coupling between an electron and phonons in the DQD and, as
a result, suppresses the phonon lasing. Indeed, g(2)A (0) > 1 at the current subpeaks, indicating
phonon bunching.

To compare the two situations in detail, we present the number distribution of A-phonons
in figures 3(a) and (b) at the current main peak and subpeaks. In the case of λA = 0.1, a Poisson-
like distribution emerges at the subpeaks, whereas a Bose distribution with effective temperature
T ∗ is seen at the main peak. T ∗ is determined from the number of phonons 〈NA〉 in the stationary
state as 1/[eh̄ωph/(kBT ∗)

− 1] = 〈NA〉. When λA = 1, on the other hand, the distribution shows
an intermediate shape between Poisson and Bose distributions at the subpeaks and the Bose
distribution at the main peak.

In figures 4(a) and (b), we plot the autocorrelation function g(2)A (τ ) as a function of
τ . In the case of λA = 0.1, g(2)A (τ )' 1, regardless of the time delay τ , which supports the
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Figure 3. Number distribution of A-phonons at the current main peak (1= 0)
and subpeaks (1=1ν ' νh̄ωph, ν = 1, 2, 3) in figure 2(a). (a) λA = 0.1 or (b)
1, and λS = 0. The other parameters are the same as in figure 2.

 1

 1.5

 2

 0  2  4  6

 (a)  (b)

 0  2  4  6

main
1st

3rd
2nd

Figure 4. Autocorrelation function of A-phonons, g(2)A (τ ), at the current main
peak (1= 0) and subpeaks (1=1ν ' νh̄ωph, ν = 1, 2, 3) in figure 2(a).
(a) λA = 0.1 or (b) 1, and λS = 0. The other parameters are the same as in
figure 2. Note that the three lines for the current subpeaks are almost overlapped
in (a).

phonon lasing at the current subpeaks. At the main peak, g(2)A (τ )' 1 + e−0phτ . This is a
character of thermal phonons with temperature T ∗. When λA = 1, we find intermediate behavior,
g(2)A (τ )' 1 + δν e−0phτ (0< δν < 1), at the νth subpeak. This indicates that the phonons are
partly thermalized by the Franck–Condon effect. For larger ν, the distribution is closer to the
Poissonian with smaller δν .

3.2. Competition between phonon lasing and Franck–Condon thermalization

To elucidate the competition between phonon lasing and thermalization by the Franck–Condon
effect, we analyze the rate equation in equation (13), focusing on the current peaks in the large
bias-voltage limit. We introduce polaron states |L(R), n〉eA for an electron in dot L (R) and n
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phonons with lattice distortion:

|L , n〉eA = |L〉e ⊗ TA|n〉A, |R, n〉eA = |R〉e ⊗ T †
A |n〉A, (15)

where

TA = e−λA(a
†
A−aA) (16)

and its Hermitian conjugate T †
A describes the shift of equilibrium position of the lattice when an

electron stays in dots L and R. Note that the lattice distortion produces λ2
A extra phonons:

eA〈α, n|NA|α, n〉eA = n + λ2
A. When 1=1ν (' νh̄ωph), the eigenstates of Hamiltonian H

are given by the zero-electron states |0, n〉eA = |0〉e ⊗ |n〉A, bonding and anti-bonding states
between the polarons,

|±, n〉eA =
1

√
2
(|L , n〉eA ± |R, n + ν〉eA) (17)

(n = 0, 1, 2, . . .), and polarons localized in dot R, |R, n〉 (n = 0, 1, 2, . . . , ν− 1). This is a good
approximation provided that VC � h̄ωph. The rate equations for these states are

Ṗ0,n = −0L P0,n +
∞∑

m=0

0R

2
|A〈n|T †

A |m + ν〉A|
2 Pmol,m +

ν−1∑
m=0

0R|A〈n|T †
A |m〉A|

2 PR,m

+0ph

[
(n + 1)P0,n+1 − n P0,n

]
, (18)

Ṗmol,n = −
0R

2
Pmol,n +

∞∑
m=0

0L |A〈n|TA|m〉A|
2 P0,m +0ph

[(
n + 1 +

ν

2

)
Pmol,n+1 −

(
n +

ν

2

)
Pmol,n

]
,

(19)

where Pmol,n = P+,n + P−,n (n = 0, 1, 2, . . .) and

ṖR,n = −0R PR,n +0ph

[
(n + 1)PR,n+1 − n PR,n

]
, (20)

with PR,ν = Pmol,0/2 (n = 0, 1, 2, . . . , ν− 1). As shown in appendix C, these equations yield
the current I and electron number in the DQD, 〈ne〉 = 〈nL + nR〉, in terms of the number of
polarons localized in dot R, 〈ñR〉 =

∑ν−1
n=0 PR,n, as

I = e0R
1 + 〈ñR〉

2 + γ
, 〈ne〉 =

2 − γ 〈ñR〉

2 + γ
(21)

with γ = 0R/0L . The number of A-phonons is given by

〈NA〉 = (ν + 2λ2
A)

I

e0ph
+ λ2

A〈ne〉. (22)

The first two terms in equation (22) indicate the emission of ν phonons by phonon-assisted
tunneling (from dot L to dot R) and creation of 2λ2

A phonons by lattice distortion (with two
tunnelings between the DQD and leads) per transfer of a single electron through the DQD. The
last term describes the average number of polarons 〈ne〉 in the stationary state.

When 0L ,R � 0ph, we obtain

I = I0 +O(0ph/0L ,R), (23)
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where I0 = e0R/(2 + γ ) is the current at the main peak in the absence of electron–phonon
interaction, and

g(2)A (0)=
ν + 4λ2

A

ν + 2λ2
A

+O(0ph/0L ,R). (24)

These explain the numerical results in figure 2 at the current subpeaks. The formula in
equation (24) indicates g(2)A (0)' 1 (phonon lasing) for λ2

A � ν and g(2)A (0)' 2 (thermalized
phonons by the lattice distortion) for λ2

A � ν. In the latter case, the phonons follow Bose
distribution with T ∗ to deduce 〈NA〉 in equation (22).

We comment on the peak width of the electric current in figure 2(a). The electron transfer
around the νth current peak is dominated by the tunneling between polaron states |L , n〉eA and
|R, n + ν〉eA with n ' 〈NA〉. Thus, the peak width is determined by the effective tunnel coupling

Wν = |eA〈R, n + ν|He|L , n〉eA|n'〈NA〉

=

∣∣∣∣ n!

(n + ν)!
(−2λA)

νe−2λ2
A Lνn(4λ

2
A)VC

∣∣∣∣
n'〈NA〉

(25)

(ν = 0, 1, 2, . . .), where Lνn(x) is the Laguerre polynomial8. The factor of e−2λ2
A in equation (25)

stems from the electron localization by dressing the phonons in forming the polarons. This
explains the narrower subpeaks in the case of λA = 1 than that of λA = 0.1.

When λ2
A � 1, equation (25) yields

Wν '
√

〈NA〉 + 1λνAVC. (26)

This is in quantitative accordance with the peak widths in the case of λA = 0.1 (solid line in
figure 2(a)).

3.3. Franck–Condon blockade

So far we have considered the large bias-voltage limit. In this subsection, we examine the case
of finite bias voltages to elucidate the Franck–Condon blockade [14] in our system. Figures 5(a)
and (b) show the electric current as a function of bias voltage V when the level spacing 1 is
tuned to the main and subpeaks in figure 2(a). The electron–phonon coupling is (a) λA = 0.1 and
(b) 1. At the main peak (1= 0) in case (a), the current is almost identical to I0 in the large bias-
voltage limit when µL = eV/2 exceeds the interdot tunnel coupling VC. (The current vanishes
when eV/2. VC, reflecting the formation of bonding and antibonding orbitals at energy level
±VC, from two orbitals at εL = εR = 0 in the DQD.) The influence of electron–phonon coupling
is hardly observable. At the subpeaks (1=1ν ' νh̄ωph, ν = 1, 2, 3) in case (a), on the other
hand, the current is suppressed at small V and it increases stepwise to the value in the large V
limit. This is due to electron–phonon coupling, as explained below. The current suppression is
much more prominent in the case of (b) with larger λA. We observe the suppression even at the
main peak in this case.

The reason for the current suppression is as follows. When an electron tunnels between the
DQD and leads, the equilibrium position of the lattice is suddenly changed to form the polaron,

8 In the absence of electron–phonon interaction, 1-dependence of the current shows a peak at 1= 0. The peak
width is given by the tunnel coupling VC between the quantum dots (see equation (30)). In the presence of
electron–phonon interaction, VC is replaced by Wν for the tunnel coupling between the polarons at the νth subpeak.
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Figure 5. (a), (b) Electric current, (c), (d) A-phonon number 〈NA〉 and (e), (f) its
autocorrelation function g(2)A (0), as a function of bias voltage V , at the current
main peak (1= 0) and subpeaks (1=1ν ' νh̄ωph, ν = 1, 2, 3) in figure 2(a).
λA = 0.1 in panels (a), (c) and (e), whereas λA = 1 in panels (b), (d) and (f).
λS = 0 and T = 0.01h̄ωph. The other parameters are the same as in figure 2.

|L , n〉eA or |R, n〉eA, in equation (15). While all phonon states participate in polaron formation in
the large bias-voltage limit, the phonon states are limited under finite bias voltages due to energy
conservation. This weakens the tunnel coupling between the DQD and leads and also between
the quantum dots, which is known as the Franck–Condon blockade. In figures 5(a) and (b),
the current increases stepwise as µL = eV/2 increases by h̄ωph because higher-energy states
become accessible (Franck–Condon steps) and converges to I = I0 in the large bias-voltage
limit. The larger voltage is required to lift off the Franck–Condon blockade for larger λA [16].

Figures 5(c)–(f) show the phonon number and autocorrelation function g(2)A (0) as a function
of V . The phonon number shows the Franck–Condon steps in both cases of (c) λA = 0.1 and
(d) 1. The autocorrelation function, on the other hand, is qualitatively different for the two
cases. In figure 5(e) with λA = 0.1, g(2)A (0)' 1 even at the first Franck–Condon step except for
anomalous behavior around the beginning of the step. This indicates that phonon lasing is robust
against the current suppression by the Franck–Condon blockade and hence it is observable under
finite bias. In figure 5(f) with λA = 1, g(2)A (0) changes slowly with V , reflecting V -dependence
of the thermalization due to the Franck–Condon effect.

New Journal of Physics 15 (2013) 083032 (http://www.njp.org/)

http://www.njp.org/


13

 10-1

 10-2

 1

 10

 0

 1

 2

 3

 102

 10-3

 (a)

 0.01  0.1  1

 10-1

 10-2

 1

 10

 102

 10-3

 (c)

 0

 1

 2

 3

 0

 1

 0  30

 (b)

 (d)

 0

 1

 0  30

 0.01  0.1  1

Figure 6. (a), (b) Color-scale plot of autocorrelation function of A-phonons,
g(2)A (0), at the current subpeaks (1=1ν ' νh̄ωph, ν = 1, 2) in the large bias-
voltage limit, in a plane of electron–phonon coupling λA and 0L ,R/0ph. 0L =

0R ≡ 0L ,R, λS = 0, and VC = 0.1h̄ωph. (c), (d) g(2)A (τ ) at λA = 0.05 and 0L ,R =

0.1 0ph, as a function of τ (solid line). The autocorrelation function of electric
current, g(2)current(τ ), is also shown by a dotted line. (a) and (b) are for the first
current subpeak (ν = 1), whereas (c) and (d) are for the second current subpeak
(ν = 2).

3.4. Phonon antibunching

In sections 3.1–3.3, we have restricted ourselves to the case of 0L ,R � 0ph to examine
phonon lasing. If tunnel coupling is tuned to be 0L ,R . 0ph, we observe another phenomenon,
antibunching of A-phonons [30]. Figure 6(a) presents a color-scale plot of g(2)A (0) in the
λA–(0L ,R/0ph) plane when 1 is tuned to be at the first current subpeak (1=11 ' h̄ωph).
We assume that 0L = 0R ≡ 0L ,R, λS = 0, and large limit of bias voltage. At λA = 0.05 and
0L ,R/0ph = 0.1, for example, g(2)A (0)� 1, representing a strong antibunching of phonons. This
is because the phonon emission is regularized by the electron transport through the DQD.

New Journal of Physics 15 (2013) 083032 (http://www.njp.org/)

http://www.njp.org/


14

In figure 6(b), we plot the autocorrelation function of the electric current

g(2)current(τ )=
〈: nR(0)nR(τ ) :〉

〈nR〉2
, (27)

where nR is the electron number in dot R. It fulfill g(2)current(0)= 0, indicating the antibunching
of electron transport, since dot R is empty just after the electron tunnels out [29]. Remarkably,
g(2)A (τ ) almost coincides with g(2)current(τ ). When 0L ,R � 0ph, the emitted phonon escapes from the
natural cavity soon after the electron tunneling between the quantum dots. Thus, the stimulated
emission for the lasing does not take place.

At strong couplings of λA & 1, neither phonon antibunching nor phonon lasing can be
observed because of effective phonon thermalization due to the Franck–Condon effect. More
than one phonon is created by the polaron formation, which spoils the regularized phonon
emission by single electron tunneling and results in phonon bunching.

Even with small λA, bunched phonons are emitted if 0L ,R/0ph is too small. Then the
number of phonons created by the tunneling is exceeded by that accompanied by the polaron
staying in dot R (the first two terms are much smaller than the last term in equation (22)), as
discussed in appendix (C.4.). The analytical expression of g(2)A (0) is also given for 0L ,R � 0ph

in the appendix.
Figure 6(c) shows a color-scale plot of g(2)A (0) when 1 is tuned to be at the second current

subpeak (1=12 ' 2h̄ωph). The antibunching does not occur even when 0L ,R � 0ph because
two phonons are emitted simultaneously by electron tunneling, which are bunched to each other.

4. Franck–Condon effect of S-phonons

In this section, we examine S-phonons and disregard A-phonons with λA = 0.

4.1. Franck–Condon thermalization

We begin with the large bias-voltage limit. The electric current has a single-peaked structure
as a function of 1 (Lorentzian with center at 1= 0 and width of VC

√
2 + γ , as will be seen

in equation (30)). We do not observe subpeaks at 1' νh̄ωph since S-phonons are not relevant
to the phonon-assisted tunneling between the quantum dots because they couple to the total
number of electrons, nL + nR in the DQD. The polaron states involving S-phonons are given by

|L , n〉eS = |L〉e ⊗ TS|n〉S, |R, n〉eS = |R〉e ⊗ TS|n〉S (28)

for an electron in dot L or R, with n phonons, where the lattice distortion

TS = e−λS(a
†
S−aS) (29)

is common for |L , n〉eS and |R, n〉eS. S-phonons show neither phonon lasing nor antibunching.
We derive the rate equation for arbitrary level spacing 1 in appendix D. By tracing out

S-phonon degrees of freedom, we obtain the reduced rate equation for electrons, which is the
same as that in the absence of electron–phonon coupling. We obtain the electric current and
electron number in the DQD,

I =
e0R

(1/VC)2 + 2 + γ
, 〈ne〉 =

(1/VC)
2 + 2

(1/VC)2 + 2 + γ
. (30)
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Figure 7. Electric current through the DQD at 1= 0, as a function of bias
voltage V . The dimensionless electron–phonon coupling constants are (a) λS =

0.1 or (b) 1, and λA = 0. 0L = 0R ≡ 0L ,R, VC = 0.1h̄ωph and T = 0.01h̄ωph.
Note that two lines almost overlap in (a).

The number of S-phonons is given by

〈NS〉 = 2λ2
S

I

e0ph
+ λ2

S〈ne〉. (31)

The first term in equation (31) indicates the creation of 2λ2
S phonons by the lattice distortion

with two tunnelings between the DQD and leads per single electron transfer through the DQD.
The second term describes the average number of polarons. In contrast to equation (22) for
A-phonons, S-phonons are not created by the interdot tunneling.

We also examine the autocorrelation function

g(2)S (τ )=
〈: NS(0)NS(τ ) :〉

〈NS〉
2

. (32)

g(2)S (0) is independent of λS, for arbitrary 1. When 0L ,R/0ph � 1, we find

g(2)S (0)= 2 +O(0ph/0L ,R), (33)

which indicates the thermalization induced by the Franck–Condon effect.

4.2. Franck–Condon blockade

Next, we examine the Franck–Condon blockade under finite bias voltages. Figures 7(a) and (b)
show the current as a function of V when 1= 0. The dimensionless coupling constant is (a)
λS = 0.1 and (b) 1. While the Franck–Condon blockade suppresses the current under small bias
voltages in the case of λS = 1, the current suppression is negligible in the case of λS = 0.1.
In the former case, a larger voltage is needed to lift the Franck–Condon blockade for larger
0L ,R/0ph.

When 0L ,R/0ph = 100, the V dependence of the current is almost the same as in figure 5
for A-phonons with 1= 0. The phonon number and its autocorrelation function also change
with the bias voltage V in a similar manner to those at the current main peak for A-phonons.
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5. Coupling with both phonon modes

Now we consider both A- and S-phonons. Here, we examine a DQD fabricated in the
semiconductor substrate where an electron is weakly coupled to both phonons; λS, λA . 0.1.

First, we analytically derive that the coupling to S-phonons does not influence the
calculated results in section 3 for the electron–A-phonon system in the large bias-voltage
limit. Consider the current main peak (1= 0) and subpeaks (1=1ν ' νh̄ωph), assuming that
VC � h̄ωph. The eigenstates of H are given by the zero-electron states |0, n; n′

〉eA;S = |0, n〉eA ⊗

|n′
〉S, bonding and anti-bonding states between the polarons, |±, n; n′

〉eA;S = |±, n〉eA ⊗ TS|n′
〉S

(n, n′
= 0, 1, 2, . . .), and polarons localized in dot R, |R, n; n′

〉eA;S = |R, n〉eA ⊗ TS|n′
〉S (n =

0, 1, 2, . . . , ν; n′
= 0, 1, 2, . . .). The rate equations for these states yield

Ṗ0,n;n′ = −0L P0,n;n′ +
∞∑

m,m′=0

0R

2
|A〈n|T †

A |m + ν〉A|
2
|S〈n

′
|T †

S |m ′
〉S|

2 Pmol,m;m′

+
ν−1∑
m=0

∞∑
m′=0

0R|A〈n|T †
A |m〉A|

2
|S〈n

′
|T †

S |m ′
〉S|

2 PR,m;m′

+0ph

[
(n + 1)P0,n+1;n′ + (n′ + 1)P0,n;n′+1 − (n + n′)P0,n;n′

]
, (34)

Ṗmol,n;n′ = −
0R

2
Pmol,n;n′ +

∞∑
m,m′=0

0L |A〈n|TA|m〉A|
2
|S〈n

′
|TS|m

′
〉S|

2 P0,m;m′

+0ph

[(
n + 1 +

ν

2

)
Pmol,n+1;n′ + (n′ + 1)Pmol,n;n′+1 −

(
n + n′ +

ν

2

)
Pmol,n;n′

]
,

(35)

where Pmol,n;n′ = P+,n;n′ + P−,n;n′ (n, n′
= 0, 1, 2, . . .), and

ṖR,n;n′ = −0R PR,n;n′ +0ph

[
(n + 1)PR,n+1;n′ + (n′ + 1)PR,n;n′+1 − (n + n′)PR,n;n′

]
, (36)

with PR,ν;n′ = Pmol,0;n′/2 (n = 0, 1, 2, . . . , ν− 1; n′
= 0, 1, 2, . . .). We trace out S-phonon

degrees of freedom by summing up both sides of equations (34)–(36) over n′. We then
obtain the reduced rate equations for the electron–A-phonon system, which are just the same
as equations (18)–(20) with P0,n =

∑
∞

n′=0 P0,n;n′ , Pmol,n =
∑

n′ Pmol,n;n′ and PR,n =
∑

n′ PR,n;n′ .
This fact indicates that S-phonons do not affect the dynamics of the electron–A-phonon system
if the bias voltage is sufficiently large.

In figure 8, we plot (a) the electric current, (b) A- and S-phonon numbers and (c) their
autocorrelation function, as a function of 1, in the case of λA = λS = 0.1 and 0L ,R � 0ph.
The current, phonon number and autocorrelation function for A-phonons are the same as in
figure 2 with λA = 0.1 (solid line) where S-phonons are disregarded, in accordance with the
above mentioned consideration. An increase in S-phonon number 〈NS〉 is induced by the current
via the Franck–Condon effect. It is explained by equation (31) using current I and electron
number 〈ne〉. g(2)S (0)' 2 at the current peaks, indicating the thermalization of S-phonons.

When the bias voltage is finite, S-phonon degrees of freedom cannot be traced out
in the rate equation. Therefore, S-phonons can influence the current and distribution of
A-phonons. However, the influence is very small, provided that λS ∼ λA . 0.1, because the
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Figure 8. (a) Electric current through the DQD, (b) phonon numbers 〈NS,A〉

and (c) the autocorrelation function g(2)S,A(0) in the large bias-voltage limit,
as a function of level spacing 1 in the DQD. In (b) and (c), data for
S-phonons (A-phonons) are indicated by solid (dotted) lines. The dimensionless
electron–phonon coupling constants are λA = λS = 0.1. In (a), I0 = e0R/(2 +
0R/0L) is the current at 1= 0 in the absence of electron–phonon coupling.
0L = 0R = 100 0ph and VC = 0.1h̄ωph.

current suppression by the Franck–Condon blockade with S-phonons is negligible, as shown in
figure 7(a).

6. Discussion

In this work, we consider single energy levels in quantum dots, εL and εR (1= εL − εR).
We take into account the optical phonons, but not the acoustic phonons. When 1∼ h̄ωph

(= 36 meV in GaAs), there are several energy levels in dot R between εR and εL . Thus, some
transport processes should exist in which an electron tunnels from εL to excited levels in dot
R with emitting LA phonons. These LA-phonon-assisted tunneling processes, however, can
be neglected around the current subpeaks at 1=1ν (' νh̄ωph) in figure 2(a), where the LO-
phonon-assisted tunneling processes are dominant. The reason is as follows. In quantum dots
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of radius R, electrons are coupled to acoustic phonons with small wavenumbers of |q|. 1/R
only9. When R< 100 nm, the energy of such LA phonons is comparable with or smaller than
the level spacing in the quantum dot. Therefore, the number of relevant excited levels in dot R
is zero or unity. Besides, the coupling to LA phonons is much weaker than that to LO phonons
because of large density of states in the latter. Indeed, the LO-phonon-assisted transport was
clearly observed for level spacings 1 tuned to h̄ωph and 2h̄ωph in recent experiments [18].

Next, we discuss the validity of BMS approximation. BMS approximation is based on the
assumption that the typical time scale described by the Hamiltonian, H in equation (7), is much
larger than 1/0L ,R and 1/0ph [26]. At the νth current subpeak in semiconductor-based DQDs,
the typical time scale is estimated to be h̄/Wν in equation (26). Therefore, our results on the
phonon lasing are justified when VC � h̄(0L ,R0ph)

1/2/λνA, and on the phonon antibunching at
the first subpeak when VC � h̄0ph/λA. We believe that our results are asymptotically applicable
for smaller VC.

Finally, we address the possible experimental realizations to observe LO phonon lasing
and antibunching in semiconductor-based DQDs. In GaAs, an LO phonon around the 0 point
decays into an LO phonon and a TA phonon around the L point, which are not coupled to the
DQD. These daughter phonons can be detected by the transport through another DQD fabricated
nearby [31, 32]. Alternatively, the modulation of the dielectric constant by the phonons could
be observed by near-field spectroscopy [33]. With a decay rate 0ph ∼ 0.1 THz in GaAs [19],
however, the lasing condition 0L ,R � 0ph might be hard to realize. Other materials with longer
lifetime of optical phonons, such as ZnO [34], may be preferable to observe phonon lasing.

7. Conclusions

We have proposed optical phonon lasing in a semiconductor-based DQD under a finite bias
voltage, without any requirement of an additional cavity or resonator. First, we have shown
that only two phonon modes (S- and A-phonons) are coupled to the DQD, which act as a
cavity because of the flat dispersion relation of the optical phonons. The electric transport is
accompanied by A-phonon emission when the energy level spacing in the DQD is tuned to
the phonon energy. This results in phonon lasing when the tunneling rate 0L ,R between the
DQD and leads is much larger than phonon decay rate 0ph. We also find the antibunching of
A-phonons in the same system when 0L ,R . 0ph. Both effects are robust against the finite
coupling to S-phonons.

For a DQD fabricated in a CNT, we have shown that lasing and antibunching are spoilt
by bunched phonons created by the Franck–Condon effect, due to the strong electron–phonon
coupling. The coupling also brings about the suppression of the electric current, called
Franck–Condon blockade, under finite bias voltages.

Our fundamental research of LO phonon statistics is also applicable to a freestanding
semiconductor membrane as a phonon cavity [35, 36], in which a resonating mode plays the
role of LO phonons in our theory. Since our theory gives conditions for lasing or antibunching
on the electron–phonon coupling and tunneling rate, it would be useful to design a cavity to
generate various quantum states. This would lead to new development of nanoelectromechanical
systems.

9 The electron–LA-phonon coupling is described by the piezoelectric or deformation potential. In both cases,
the coupling constant involves the integral,

∫
dr|ψα(r)|2 eiq·r, for an electron in dot α and LA phonon with

wavenumber q, as in the case of electron–LO-phonon coupling in equation (4).
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Appendix A. Phonon mode function and coupling constant

In this appendix, we derive phonon mode functions, uS(r) and uA(r), shown in figure 1(b). We
also estimate the coupling constants λS/A in equation (8).

Using the optical phonon modes aq , the lattice displacement at position r is given by

u(r)= −i

(
h̄

2Nµωph

)1/2∑
q

q

q
eiq·r(aq + a†

q), (A.1)

where µ is the reduced mass for a pair of Ga and As atoms in the case of GaAs and N is
the number of pairs in the substrate. The mode functions are defined as the coefficients of the
S- and A-phonons in the lattice displacement, i.e.

u(r)= uS(r)(aS + a†
S)+uA(r)(aA + a†

A)+ (other modes). (A.2)

From equations (5) and (6), aS and aA are expressed as

aS/A =

∑
q

(
ML ,q± MR,q

)
aq(∑

q |ML ,q± MR,q|
2
)1/2 . (A.3)

Here, we have used

S =

∑
q ML ,qMR,−q(∑

q |ML ,q|
2
)1/2 (∑

q |MR,q|
2
)1/2 .

From equation (A.3), aq is inversely expanded by aS, aA and other modes:

aq =
(ML ,−q + MR,−q)aS(∑
q′ |ML ,q′ + MR,q′|2

)1/2 +
(ML ,−q− MR,−q)aA(∑
q′ |ML ,q′ − MR,q′|2

)1/2 + · · · . (A.4)

By the substitution of this equation into (A.1), we obtain

uS/A(r)= − i

(
h̄

2Nµωph

)1/2
∑
q
q

q eiq·r(ML ,−q± MR,−q)(∑
q |ML ,q± MR,q|

2
)1/2

=

(
h̄V

8πNµωph

)1/2 1

CS/A

∫
dr′

[|ψL(r
′)|2 ± |ψR(r

′)|2](r− r′)

|r− r′|3
(A.5)

with

C2
S/A =

∫
drdr′

[
|ψL(r)|

2
± |ψR(r)|

2
] [

|ψL(r
′)|2 ± |ψR(r

′)|2
]

|r− r′|
. (A.6)
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In the derivation of equations (A.5) and (A.6), we have used∫
dq

(2π)3
1

q2
eiq·r

=
1

4π |r|

and its gradient with respect to r ,

i
∫

dq

(2π)3
q

q2
eiq·r

= −
r

4π |r|3
.

In figure 1(b), we evaluate the mode functions in equation (A.5), assuming spherical Gaussian
functions of radius R for the electron distribution in the quantum dots, |ψL(r)|2 and |ψR(r)|2.

The coupling constants λS/A in equation (8) are written as

λ2
S/A =

e2

32π h̄ωph

[
1

ε(∞)
−

1

ε(0)

]
C2

S/A (A.7)

with CS/A in equation (A.6). Using the spherical Gaussian functions for |ψL(r)|2 and |ψR(r)|2,
we find

λ2
S/A '

1
√

32π 3

[
1

ε(∞)
−

1

ε(0)

](
1 ±

√
π

2

R
d

)
e2

h̄ωphR
, (A.8)

where d = |r L R| is the distance between centers of the two quantum dots. This yields λS/A =

0.01–0.1 for R= 100–10 nm and d & 2R, in the case of GaAs.

Appendix B. Effective Hamiltonian for double quantum dot in carbon nanotube

In this appendix, we derive the effective Hamiltonian for a DQD embedded in a suspended CNT.
An electron in the CNT is strongly coupled to the longitudinal stretching modes of phonons,
known as vibrons, by the deformation potential [37]. We assume that quantum dots L and R are
fabricated around x = xL and xR, respectively, in 0< x < ` along the CNT. The phonon-related
parts of the Hamiltonian are given by

Hph =

∞∑
n=1

h̄ωna†
nan, (B.1)

Hep =

∑
α=L ,R

∞∑
n=1

λα,n h̄ωn(an + a†
n)nα, (B.2)

where an (a†
n) is the annihilation (creation) operator for the phonon with wavenumber qn = nπ/`

(n = 1, 2, 3, . . .). The phonon energy is given by

h̄ωn = h̄vqn = n
π h̄v

`
(B.3)

using sound velocity v, for small n. The dimensionless coupling constants are

λα,n '
3

√
n(`⊥/nm)

cos(qnxα) (B.4)
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with (`⊥/nm) being the circumference of the CNT in units of nanometer [37]. When xL and xR

are symmetric with respect to x = `/2, λL ,1 = −λR,1. Disregarding the higher modes of n > 2,
we obtain the effective Hamiltonian in equation (7) with aA = a1, h̄ωph = h̄ω1, λA = λL ,1 and
λS = 0.

Appendix C. Analytic expression for A-phonon distribution at current peaks

In this appendix, we derive the analytical expressions for the current I , number of phonons 〈NA〉

and autocorrelation function of phonons g(2)A (0) in equations (21)–(24) when the level spacing
1 is tuned to the current subpeaks in figure 2; 1=1ν(' νh̄ωph). We assume that λS = 0 and
consider the large bias-voltage limit. The energy eigenstates are given by the zero-electron
states |0, n〉eA = |0〉e ⊗ |n〉A, bonding and anti-bonding states between the polarons |±, n〉eA =

1
√

2
(|L , n〉eA ± |R, n + ν〉eA) , and polarons localized in dot R, |R, n〉eA (n = 0, 1, 2, . . . , ν− 1),

in a good approximation for VC � h̄ωph, as mentioned in section 3. |L , n〉eA and |R, n〉eA are
given in equation (15). The density matrix is given by

ρeA =

∞∑
n=0

P0,n|0, n〉eA eA〈0, n| +
∑
σ=±

∞∑
n=0

Pσ,n|σ, n〉eA eA〈σ, n| +
ν−1∑
n=0

PR,n|R, n〉eA eA〈R, n|

in the BMS approximation. The occupation numbers for zero-electron states, n0, bonding
or anti-bonding states between the polarons, nmol, and polarons localized in dot R, nR, are
given by

n0 =

∞∑
n=0

|0, n〉eA eA〈0, n| = |0〉e e〈0|,

nmol =

∑
σ=±

∞∑
n=0

|σ, n〉eA eA〈σ, n|,

ñR =

ν−1∑
n=0

|R, n〉eA eA〈R, n|,

respectively. They satisfy the relation of n0 + nmol + ñR = 1. The electron number in the DQD
is given by ne = nmol + ñR = 1 − n0. The expectation values of these occupation numbers are
expressed as

〈n0〉 =

∞∑
n=0

P0,n, 〈nmol〉 =

∞∑
n=0

Pmol,n, 〈ñR〉 =

ν−1∑
n=0

PR,n.

In the stationary state, equations (18)–(20) yield

0 = −0L P0,n +
∞∑

m=0

0R

2
|A〈n|T †

A |m + ν〉A|
2 Pmol,m +

ν−1∑
m=0

0R|A〈n|T †
A |m〉A|

2 PR,m

+0ph

[
(n + 1)P0,n+1 − n P0,n

]
, (C.1)
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0 = −
0R

2
Pmol,n +

∞∑
m=0

0L |A〈n|TA|m〉A|
2 P0,m +0ph

[(
n + 1 +

ν

2

)
Pmol,n+1 −

(
n +

ν

2

)
Pmol,n

]
(C.2)

with Pmol,n = P+,n + P−,n (n = 0, 1, 2, . . .), and

0 = −0R PR,n +0ph

[
(n + 1)PR,n+1 − n PR,n

]
(C.3)

with PR,ν = Pmol,0/2 (n = 0, 1, 2, . . . , ν− 1).

C.1. Current and electron number

First, we calculate the current I = e0L〈n0〉. For the purpose, we sum up both sides of
equation (C.1) over n. Using

∞∑
n=0

|A〈n|T †
A |m〉A|

2
= A〈m|TA

(∑
n

|n〉AA〈n|

)
T †

A |m〉A = 1,

we obtain

0 = −0L〈n0〉 +
0R

2
〈nmol〉 +0R〈ñR〉.

Since 〈n0〉 + 〈nmol〉 + 〈ñR〉 = 1, we obtain

〈n0〉 =
γ

2 + γ
(1 + 〈ñR〉), 〈nmol〉 =

2

2 + γ

[
1 − (1 + γ )〈ñR〉

]
,

where γ = 0R/0L . These equations result in equation (21), i.e.

I = e0R
1 + 〈ñR〉

2 + γ
, 〈ne〉 =

2 − γ 〈ñR〉

2 + γ
.

The summation of equation (C.3) over n yields

〈ñR〉 =
ν0ph

20R
Pmol,0. (C.4)

C.2. Phonon number

Next, we derive the phonon number

〈NA〉=

∞∑
n=0

P0,n eA〈0, n|NA|0, n〉eA+
∑
σ=±

∞∑
n=0

Pσ,n eA〈σ, n|NA|σ, n〉eA+
ν−1∑
n=0

PR,n eA〈R, n|NA|R, n〉eA

=

∞∑
n=0

n P0,n +
∞∑

n=0

(
n +

ν

2
+ λ2

A

)
Pmol,n +

ν−1∑
n=0

(n + λ2
A)PR,n

≡ 〈NAn0〉 + 〈NAnmol〉 + 〈NAñR〉.

We have used the relation, T †
A NATA = (T †

A a†
ATA)(T †

A aATA)= (a†
A − λA)(aA − λA). We multiply

both sides of equations (C.1)–(C.3) by n and sum up over n. Then we find

0 = −(0L +0ph)〈NAn0〉 +
0R

2
〈NAnmol〉 +0R〈NAñR〉 +

ν0R

4
〈nmol〉, (C.5)
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0 = 0L〈NAn0〉 −

(
0R

2
+0ph

)
〈NAnmol〉 + λ2

A0L〈n0〉 +

(
ν + 2λ2

A

4
0R + λ2

A0ph

)
〈nmol〉 +0R〈ñR〉,

(C.6)

0 = −(0R +0ph)〈NAñR〉 +
[
(ν− 1 + λ2

A)0R + λ2
A0ph

]
〈ñR〉. (C.7)

Here, we have used
∞∑

n=0

n|A〈n|T †
A |m〉A|

2
=A 〈m|TA NA

(∑
n

|n〉AA〈n|

)
T †

A |m〉A =

∑
m

A〈m|TA NAT †
A |m〉A. (C.8)

From equations (C.5)–(C.7), we obtain equation (22), i.e.

〈NA〉 = (ν + 2λ2
A)

I

e0ph
+ λ2

A〈ne〉.

C.3. Phonon autocorrelation function

Finally, we derive the phonon autocorrelation function at τ = 0,

g(2)A (0)=
〈: N 2

A :〉

〈NA〉2
=

〈N 2
A〉 − 〈NA〉

〈NA〉2
,

where

〈N 2
A〉=

∞∑
n=0

P0,n eA〈0, n|N 2
A|0, n〉eA +

∑
σ=±

∞∑
n=0

Pσ,n eA〈σ, n|N 2
A|σ, n〉eA+

ν−1∑
n=0

PR,n eA〈R, n|N 2
A|R, n〉eA

=

∞∑
n=0

n2 P0,n +
∞∑

n=0

[
n2 + λ2

A(4n + 1 + λ2
A)+ ν

(
n +

ν

2
+ 2λ2

A

)]
Pmol,n

+
ν−1∑
n=0

[
n2 + λ2

A(4n + 1 + λ2
A)
]

PR,n

≡ 〈N 2
An0〉 + 〈N 2

Anmol〉 + 〈N 2
AñR〉.

We multiply both sides of equations (C.1)–(C.3) by n2 and sum up over n. A similar technique
to equation (C.8) leads to

0 = −(0L + 20ph)〈N 2
An0〉 +

0R

2
〈N 2

Anmol〉 +0R〈N 2
AñR〉 +0ph〈NAn0〉

+
ν0R

2
〈NAnmol〉 +

νλ2
A0R

2
〈nmol〉, (C.9)

0 = 0L〈N 2
An0〉 −

(
0R

2
+ 20ph

)
〈N 2

Anmol〉 + 4λ2
A0L〈NAn0〉

+

[
ν + 4λ2

A

2
0R + (ν + 1 + 8λ2

A)0ph

]
〈NAnmol〉λ

2
A(1 + λ2

A)0L〈n0〉

+λ2
A

[
1 − ν− 3λ2

A

2
0R + (1 − ν− 6λ2

A)0ph

]
〈nmol〉 −0R〈ñR〉, (C.10)

New Journal of Physics 15 (2013) 083032 (http://www.njp.org/)

http://www.njp.org/


24

0 = −(0R + 20ph)〈N 2
AñR〉 +

[
4λ2

A0R + (1 + 8λ2
A)0ph

]
〈NAñR〉

+
{[
(ν− 1)2 + λ2

A(1 − 3λ2
A)
]
0R + λ2

A(1 − 6λ2
A)0ph

}
〈ñR〉. (C.11)

From equations (C.9)–(C.11), we find

〈N 2
A〉 − 〈NA〉 = 2λ2

A

0L

0ph
〈NAn0〉 +

(
ν + 2λ2

A

2

0R

0ph
+
ν + 4λ2

A

2

)
〈NAnmol〉 + 2λ2

A

(
0R

0ph
+ 2

)
〈NAñR〉

−
ν + 2λ4

A

2

0L

0ph
〈n0〉 −

λ2
A(ν + 6λ2

A)

2
〈nmol〉 −

[
ν(2 − ν)

2

0R

0ph
+ 3λ2

A

]
〈ñR〉.

Now we evaluate g(2)A (0) when 0L ,R � 0ph. In this case, 〈ñR〉 =O(0ph/0L ,R) from
equation (C.4). Then

I =
e0R

2 + γ
+O(0ph/0L ,R), 〈NA〉 =

ν + 2λ2
A

2 + γ

0R

0ph
+O(1).

Equations (C.5) and (C.7) yield

2〈NAn0〉 = γ 〈NAnmol〉 +O(1), 〈NAñR〉 =O(0ph/0L ,R).

Using 〈NA〉 = 〈NAn0〉 + 〈NAnmol〉 + 〈NAñR〉, we have

〈NAn0〉 = (ν + 2λ2
A)

γ

(2 + γ )2
0R

0ph
+O(1),

〈NAnmol〉 = (ν + 2λ2
A)

2

(2 + γ )2
0R

0ph
+O(1).

Using these relations, we obtain equation (24), i.e.

g(2)A (0)=
ν + 4λ2

A

ν + 2λA
+O(0ph/0L ,R).

C.4. Case of large decay rate of phonon

Here, we comment on the opposite limit of 0L ,R � 0ph. The analytical expressions for the
current, g(2)A (0), etc can be obtained in a similar way to the case of 0L ,R � 0ph. At the main
peak of the current (1= 0), the electron number and current are written as

〈ne〉 = 〈nmol〉 '
1

2 + γ
, I '

e0R

2 + γ
,

whereas the phonon number and its autocorrelation function are

〈NA〉 '
λ2

A

2 + γ
, g(2)A (0)' 2 + γ.

At the νth subpeak of the current (1=1ν ' νh̄ωph), we obtain

〈ne〉 ' 〈ñR〉 '
1

1 + γ
, 〈nmol〉 ' 0, I '

e0R

1 + γ

and

〈NA〉 '
λ2

A

1 + γ
, g(2)A (0)' 1 + γ. (C.12)
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As discussed in section 3.4, phonon bunching is observed even for small λA in the case of
0L ,R � 0ph. In this case, an electron is localized in dot R for a long time, forming a polaron
|R, 0〉eA, after a phonon is immediately decayed. Thus, the number of phonons created by the
interdot tunneling is much smaller than that accompanied by the polaron staying in dot R. This
situation results in the bunched phonons.

Appendix D. Rate equation for S-phonon

In this appendix, we derive the rate equation in the presence of S-phonons only (λA = 0). We can
analytically diagonalize Hamiltonian H for any 1 in this case. The eigenstates of H are given
by the zero-electron states, |0, n〉eS = |0〉e ⊗ |n〉S, and bonding and anti-bonding states between
the polarons

|+, n〉eS = cos
θ

2
|L , n〉eS + sin

θ

2
|R, n〉eS, (D.1)

|−, n〉eS = − sin
θ

2
|L , n〉eS + cos

θ

2
|R, n〉eS (D.2)

with tan θ = 2VC/1. |L , n〉eS and |R, n〉eS are given in equation (28). The corresponding energy
eigenvalues are ε0,n = nh̄ωph and

ε±,n = ±
[
(1/2)2 + V 2

C

]1/2
+ (n − λ2

S)h̄ωph

(n = 0, 1, 2, . . .), respectively. Using the dissipator Le in equation (10), we obtain the rate
equations under a finite bias voltage as

Ṗ0,n = −

[ ∑
α=L ,R

∑
σ=±

∞∑
m=0

fα(εσ,m − ε0,n)0α,σ |S〈m|T †
S |n〉S|

2

]
P0,n

+
∑
α,σ,m

f̄ α(εσ,m − ε0,n)0α,σ |S〈n|TS|m〉S|
2 Pσ,m +0ph

[
(n + 1)P0,n+1 − n P0,n

]
, (D.3)

Ṗ±,n = −

[∑
α,m

f̄ α(ε±,n − ε0,m)0α,±|S〈m|TS|n〉S|
2

]
P±,n

+
∑
α,m

fα(ε±,n − ε0,m)0α,±|S〈n|T †
S |m〉S|

2 P0,m +0ph

[
(n + 1)P±,n+1 − n P±,n

]
. (D.4)

Here, we have introduced tunnel coupling strength 0α,σ between lead α and molecule orbital
σ in equations (D.1) and (D.2): 0L ,+ = 0Lcos2(θ/2), 0L ,− = 0Lsin2(θ/2), 0R,+ = 0Rsin2(θ/2)
and 0R,− = 0Rcos2(θ/2). In the limit of large bias, these equations yield

Ṗ0,n = −0L P0,n +
∑
σ=±

∞∑
m=0

0R,σ |S〈n|TS|m〉S|
2 Pσ,m +0ph

[
(n + 1)P0,n+1 − n P0,n

]
, (D.5)

Ṗ±,n = −0R,± P±,n +
∞∑

m=0

0L ,±|S〈n|T †
S |m〉S|

2 P0,m +0ph

[
(n + 1)P±,n+1 − n P±,n

]
. (D.6)
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We sum up both sides of equations (D.5) and (D.6) over n to obtain the reduced rate equations
for electrons

Ṗ0 = −0L P0 +
∑
σ=±

0R,σ Pσ , (D.7)

Ṗ± = −0R,± P± +0L ,± P0 (D.8)

with P0 =
∑

∞

n=0 P0,n and P± =
∑

n P±,n. Equations (D.7) and (D.8) are the same as those in the
absence of electron–phonon coupling. This indicates that S-phonons do not affect the electron
transfer in the large bias-voltage limit, whereas they are created by the current through the
Franck–Condon effect. Further calculation yields the current, electron and S-phonon numbers
and phonon autocorrelation function in equations (30), (31) and (33), in a similar way to
appendix C.
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