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Abstract. Undulatory swimming is a widespread propulsion strategy adopted
by many small-scale organisms including various single-cell eukaryotes and
nematodes. In this work, we report a comprehensive study of undulatory
locomotion of a finite filament using (i) approximate resistive force theory
(RFT) assuming a local nature of hydrodynamic interaction between the
filament and the surrounding viscous liquid and (ii) particle-based numerical
computations taking into account the intra-filament hydrodynamic interaction.
Using the ubiquitous model of a propagating sinusoidal waveform, we identify
the limit of applicability of the RFT and determine the optimal propulsion
gait in terms of (i) swimming distance per period of undulation and (ii)
hydrodynamic propulsion efficiency. The occurrence of the optimal swimming
gait maximizing hydrodynamic efficiency at finite wavelength in particle-
based computations diverges from the prediction of the RFT. To compare the
model swimmer powered by sine wave undulations to biological undulatory
swimmers, we apply the particle-based approach to study locomotion of the
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model organism nematode Caenorhabditis elegans using the swimming gait
extracted from experiments. The analysis reveals that even though the amplitude
and the wavenumber of undulations are similar to those determined for the
best performing sinusoidal swimmer, C. elegans overperforms the latter in
terms of both displacement and hydrodynamic efficiency. Further comparison
with other undulatory microorganisms reveals that many adopt waveforms with
characteristics similar to the optimal model swimmer, yet real swimmers still
manage to beat the best performing sine-wave swimmer in terms of distance
covered per period. Overall our results underline the importance of further
waveform optimization, as periodic undulations adopted by C. elegans and other
organisms deviate considerably from a simple sine wave.

S Online supplementary data available from stacks.iop.org/NJP/15/075022/
mmedia
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1. Introduction

In the limit of low Reynolds number, defined as Re = Ulρ/µ � 1, where U is a characteristic
speed, l a characteristic length and ρ and µ are, respectively, the fluid’s density and dynamic
viscosity, the locomotion of microorganisms is governed by small length scales such that linear
viscous forces typically dominate over nonlinear inertial forces [1–3]. For Newtonian fluids
in the absence of inertia, the equations of fluid motion are time-reversible and net forward
swimming results from non-reciprocal gait to break the symmetry; a property best known as
the ‘scallop theorem’ [4]. Among the various strategies nature has opted for, undulatory gaits
featuring the propagation of planar traveling waves characterize a wide range of small-scale

New Journal of Physics 15 (2013) 075022 (http://www.njp.org/)

http://stacks.iop.org/NJP/15/075022/mmedia
http://stacks.iop.org/NJP/15/075022/mmedia
http://www.njp.org/


3

organisms including single-cell flagellates [2], various sperm cells [5, 6], as well as multi-
cellular organisms such as nematodes [7, 8].

In particular, due to its easiness of manipulation and convenient size, the well-known
roundworm Caenorhabditis elegans (C. elegans) has gained considerable attention over the past
few years as an attractive living model to study experimentally the coupling between small-scale
propulsion and low-Reynolds-number hydrodynamics [7, 9]. One defining feature observed in
the locomotion patterns of C. elegans is the robustness of its swimming gait. While it may opt
to modulate its locomotory gait in response to the properties of the physical media in which
it is immersed, C. elegans exhibits limited changes in the overall spatial characteristics of
its gait. Namely, amplitude (b), wavelength (λ) and importantly forward speed (U ), remain
nearly constant when swimming in Newtonian fluids over a range of viscosities spanning
nearly a hundred-fold [9, 10], whereas undulating frequency (�) shows a very slow monotonic
decay. Similarly, for propulsion through non-Newtonian viscoelastic media, such as in aqueous
solutions of gelatin [11] or polysaccharide [12], frequency, wavelength and amplitude of the
flexural wave have been observed to decrease slowly within a limited range upon increasing
the concentration of the thickening agent. These experimental observations raise the question
as to whether C. elegans’ choice of a specific spatial gait arises as a well-adapted solution to
swimming at low-Reynolds-number, and more generally if there exits optimal swimming gait
for planar undulatory locomotion.

Considerable efforts have been pursued to quantify swimming gaits on the basis of various
swimming efficiency definitions. For instance, one classic metric compares power expenditure
in swimming over a fixed distance at a fixed velocity to the power required to drag the
swimmer at the same velocity by an external force (the hydrodynamic efficiency δ based
on that definition is provided below in equation (2.13)). Lighthill considered hydrodynamic
efficiency for locomotion powered by the passage of periodic waves down the length of an
infinitely long flagellum and found that for an optimal flagellar waveform, the angle between
the local tangent to the flagellum and the swimming direction should be constant (in absolute
value) [13]. Thus, for planar undulations of infinitely long swimmers the optimal waveform
is non-smooth and adopts a sawtooth form. In contrast, for finite slender swimmers, Pironeau
and Katz [14] considered the optimal swimming waveform by applying an approximate resistive
force theory (RFT) and arrived at the optimal ratio between the amplitude and the wavelength for
the sawtooth and for small-amplitude sinusoidal waveforms. The optimal sawtooth, sinusoidal,
curvature sinusoidal and other waveforms of finite filaments have also been studied numerically
using, e.g. boundary integral approach [15–18] and variants of slender body theory [19, 20].
Spagnolie and Lauga [21] considered the regularization of Lighthill’s sawtooth waveform while
taking into account the additional costs of bending, sliding of the internal microtubules and
internal viscous resistance. Most recently, Koehler et al [22] reported a detailed numerical study
of undulatory locomotion of finite filament in a range of lengths and actuation parameters using
RFT.

Yet, one should consider whether or not microorganisms are indeed concerned about
the power expenditure in swimming. Experiments and supporting predictions for flagellated
bacteria, such as Escherichia coli, show that locomotion accounts for only a few per
cent of their metabolic costs [23, 24]. Hence, if microorganisms are less concerned about
hydrodynamic power expenditure, they may care about getting furthest away over a stroke. For
undulatory locomotion driven by a traveling wave propagating along the filament length, the
net distance traveled per period can be taken as an alternative measure of propulsion efficiency.
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Figure 1. Prediction of the local RFT for an infinitely (exponentially) thin
filament with ξ = 2 propagating traveling sine wave, the solid line stands for the
scaled speed of propulsion U/�b and the dashed line denotes the hydrodynamic
efficiency δ.

Note, however, that for a more general swimmer, stroke or swimming gait, the distance per
stroke may not be an adequate metric for comparison; low-Reynolds-number locomotion is
geometric such that the net distance covered per stroke is independent of how fast the stroke is.
However, for a given frequency of undulation (e.g. the undulation frequency of C. elegans may
vary from approximately 2 Hz down to less than 0.3 Hz as the solvent viscosity is increased by
10 000 folds [11, 12]), the only way to move furthest is through optimizing the waveform.

Before detailing the mathematical models employed here, it is instructive to briefly point
out differences in optimal performance pertaining to the two metrics introduced above. For
this, let us consider the simplest possible planar sinusoidal waveform. From the point of view
of hydrodynamic efficiency, without considering the additional costs associated with bending,
internal resistance and others, RFT for undulatory propulsion of an infinite filament (see [6] or
section 2 for more details) suggests that there is an optimal product of the amplitude b and the
wavenumber k = 2π/λ, namely κ = kb ≈ 1.208, that maximizes the hydrodynamic efficiency
giving δ ' 8.2% (see the dashed line in figure 1). Namely, optimized propulsion driven by short
small-amplitude waves is equivalent (efficiency-wise) to swimming with long large-amplitude
waves, as long as the value of κ = kb is maintained at the optimum. For a finite filament of length
l, however, there is a constraint relating k, b and the number of waves p per distance from head-
to-tail, such that the increased amplitude would result in a smaller value of p and could lead to
considerable pitching and transverse motion, presumably yielding a reduction in hydrodynamic
efficiency. Therefore, swimming with many short small-amplitude waves is expected to be the
best strategy efficiency-wise for a finite filament. This is in agreement with most recent findings
in [22], where RFT was applied to study optimal locomotion of finite filaments for various
periodic waveforms. However, RFT does not take into account hydrodynamic intra-filament
interaction that could deteriorate hydrodynamic propulsion efficiency when swimming with
many short waves.

The situation is different if the optimal displacement per stroke (or the mean propulsion
speed) is concerned. The approximate expression for the velocity of an infinite filament
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propagating a sinusoidal wave based on RFT [6] reads (see also section 2.2)

U

c
= −

1

2
κ2 ξ − 1

1 + ξκ2/2
, (1.1)

where c = �/k is the wave speed, f⊥ and f‖ are the normal and longitudinal viscous drag
coefficients (i.e. per unit length of the filament), respectively, and ξ = f⊥/ f‖ typically varying
between 1 and 2 for an incompressible Newtonian liquid. This approximate solution suggests
that there is an optimum at κ = (2/ξ)1/2

≈ 1 that maximizes the scaled velocity U/(�b) =

−
1
2κ

ξ−1
1+ξκ2/2 (see the solid line in figure 1 for ξ = 2 corresponding to an exponentially thin

filament).
Therefore, increasing the wavelength λ and the amplitude of undulations b proportionally

to each other at fixed �, while keeping κ at the optimum, would yield a faster propulsion. For
a finite filament, however, such an upscale of the waveform would result in a smaller value of
p leading to considerable pitching motion as p diminishes, presumably hindering propulsion.
Since small-amplitude undulations are inefficient speed-wise (the velocity in equation (1.1)
is quadratic in the amplitude b at κ � 1), there should be an optimal amplitude (b/ l) and
wavelength (kl) for a finite-length filament yielding the maximum displacement per period of
undulation.

Thus, for a finite undulating filament the two relevant metrics of self-propulsion (i.e. the
distance covered per stroke and work invested in propulsion) are expected to yield different
values of the optimal amplitude and wavelengths. While maximizing the distance covered per
stroke determines some particular combination of kl and b/ l, power saving strategies require
many short small-amplitude waves (at least within the RFT approximation) so that the optimum
is expected to be found at the maximum allowable value of kl at the boundary of (b/ l, kl)
domain. An interesting question concerns how far the two optima are separated in the plane of
parameters (b/ l, kl) for finite swimmers and whether undulatory microorganisms including
sperm cells, flagellates and nematodes prefer one hydrodynamic efficiency metric over the
other. Here, we shall address these points in detail both analytically and numerically, using
a combination of the approximate RFT and particle-based computations, where the non-local
nature of hydrodynamic interaction between different parts of the filament is more rigorously
accounted for. As in earlier works [15–18], the present study incorporates numerically the non-
local intra-filament interactions for finite filaments. However, we detail here a comprehensive
parametric study of optimal locomotion (considering either definition) in contrast to previous
studies where the major accent was placed on different aspects of undulatory locomotion,
including accuracy of slender-body theory against less accurate RFT, filament interaction with
a passive head (relevant for sperm cells), and non-sinusoidal undulations.

Due to the complexity of the general problem of what would be the optimal waveform
as to swim the furthest over a period of undulation, we restrict our discussion to the simplest
possible undulatory gait, namely the planar traveling sinusoidal wave. This waveform has been
studied extensively in the past and constitutes a crucial propulsion model in an effort to deepen
our general understanding of low-Reynolds-number undulatory locomotion. We compare the
performance of our particle-based model to the swimming characteristics of the nematode
C. elegans obtained from experiments [9, 10] and extend our discussion and results to a wider
range of undulatory microorganisms, including nematodes, sperm cells and primitive flagellates.
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Figure 2. Schematic of the employed coordinate frame (laboratory frame (x, y)

and co-moving frame (x0, y0)) and an undulating filament (red).

2. Mathematical formulation

2.1. Resistive force theory for a finite filament

The shape of the swimmer at the moment t is given by s 7→ r0(s, t) = {x0(s, t), y0(s, t)} ,

s0 6 s 6 s1 (see figure 2). The actual embedding of it in R2 is given by s 7→ r(s, t) =

{x(s, t), y(s, t)} where

r(s, t) = U(t) · [r0(s, t) + R(t)] , U(t) =

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)
.

The angular velocity of the swimmer is ω = θ̇ ẑ, where dot stands for time derivative, and
through some abuse of notation one may write U̇ = ω ×U . The local swimmer velocity then
reads

v(s, t) =
dr
dt

= ω × r +U · (ṙ0 + Ṙ) = U · (ω × r0 + V + v0) .

Here we denote by v0 = ṙ0 the local deformation velocity and by V = U−1
·

d
dt (U · R) =

ω × R + Ṙ the extra rigid translation experienced by the swimmer, both expressed in a frame
rotating with it. We shall denote γ = |r ′

0| where prime stands for ∂

∂s . Then ŝ = γ −1r ′

0 is the unit
tangent to the filament as expressed in a frame rotating with it. (In the lab frame the unit tangent
is U · ŝ.)

The local velocity v = ṙ can be written as a sum of parallel and transverse velocities,
v = v‖ + v⊥ where

v‖ =
ṙ · r ′

|r ′|2
r ′

= ŝ · (V + ω × r0 + v0) U · ŝ.

We assume that the local force (per unit length) exerted on the swimmer may be expressed as
f = f⊥v⊥ + f‖v‖ for some constant f⊥, f‖ and denote ξ = f⊥/ f‖. This allows to express the
force (per unit length) as 1

f‖
f = ξv + (1 − ξ)v‖. Using the above expressions for v, v‖ we obtain

New Journal of Physics 15 (2013) 075022 (http://www.njp.org/)

http://www.njp.org/


7

that the moving frame force f 0 = U−1
· f is given by

1

f‖
f 0 = ξ(V + ω × r0 + v0) + (1 − ξ) ŝ · (V + ω × r0 + v0) ŝ. (2.1)

The zero net force and zero net torque conditions are then

F =

∫ s1

s0

f 0 γ ds = 0, T =

∫ s1

s0

r0 × f 0 γ ds = 0,

where γ ds ≡ dζ is a length element. At each instant t this gives a set of three linear equations
for V = (Vx , Vy) and ω = ω̂z. Integration over t then gives θ =

∫
ω dt which defines the matrix

U(t). The distance covered by the swimmer is found from U · R =
∫
U · V dt .

In our description of the swimmer by r0(s, t), we parameterized it using a parameter s.
It was implicitly assumed that each specific value of s corresponds to specific material point
of the swimmer, i.e. a specific material point at r0(s, t2) at time t2 is the same one which was
at r0(s, t1) at time t1. If this assumption fails, then the calculation described above would fail
too. In most biological cases the filament is assumed to be incompressible. This automatically
implies that a good parameterization corresponding to actual material points is by its proper
length parameter. In such case the correct parameterization should be through the proper length
ζ =

∫
γ ds =

∫ ∣∣ ∂ r0
∂s

∣∣ ds rather then by s. The above formulation would still hold provided we
interpret v0 ≡ ṙ0 as a derivative at constant proper length ζ rather then at constant s,

v0 = ṙ0 =

(
∂ r0

∂t

)
ζ

=

(
∂ r0

∂t

)
s

+

(
∂ r0

∂s

)
t

(
∂s

∂t

)
ζ

. (2.2)

Actual implementation of this requires calculating (∂s/∂t)ζ as a function of (s, t) for the
prescribed undulating filament.

Alternatively, the velocity in (2.2) can be expressed as

v0 =
∂ r0

∂t
+ α(s, t)ŝ (2.3)

for some α(s, t). In other words, the second term on the rhs of equation (2.2) can be interpreted
as an extra tangential velocity (shown in figure 2). Demanding incompressibility requires
vanishing of the one-dimensional (1D) velocity divergence ∇s · v0 = ŝ ·

∂v0
∂s = 0. Solving this

equation we find α(s, t) = −
∫

ŝ ·
∂2r0
∂s∂t ds + C(t) up to some arbitrary function of time C(t).

The integration constant C(t) may be determined by considering the boundary conditions at
the swimmer edges. Note that if s is not proportional to the proper length parameter ζ then
incompressibility constraint also implies that its range s ∈ [s0, s1] must be time-dependent, s0 =

s0(t), s1 = s1(t). The constraint l =
∫ s1

s0
γ ds does not determine the endpoint s0, s1 uniquely.

Only by specifying an extra condition (e.g. requiring s0 or s1 or their average to vanish) does
one completely define the swimming mode. The possible arbitrariness of s0(t) does not matter
however, in the special case of our main interest where r0(s, t) corresponds to a traveling
wave r0 = {s, φ(ks − �t)}. Indeed any choice of (periodic) s0(t) may be compensated by
redefining the time parameter as t ′

= (�t − ks0(t))/� (and applying the ‘gauge’ transformation
R(t) → R(t) − x̂s0(t)). Thus in the following we use the simplest choice namely s0(t) = 0.
Since the velocity of the endpoint (which is a material point) at s = s0 is v0 =

∂ r0
∂t + ∂ r0

∂s
ds0
dt we see

that the condition s0 ≡ 0 imply α|s=0 = 0 and hence α(s, t) = −
∫ s

0 ŝ ·
∂2r0
∂s∂t ds. For the specific
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example r0(s, t) = {s, b sin(ks − �t)} we obtain

α(s, t) =
�

k

[√
1 + κ2 cos2(ks − �t) −

√
1 + κ2 cos2(�t)

]
, (2.4)

where κ = kb.
The equation l =

∫ s1

0 γ ds determining s1(t) leads in the case of the sine waveform to

kl
√

1 + κ2
= E

(
�t,

κ2

1 + κ2

)
− E

(
�t − ks1(t),

κ2

1 + κ2

)
, (2.5)

where E(ϕ, m) =
∫ ϕ

0 (1 − m sin2 θ)1/2 dθ is the elliptic integral of the second kind. Only in the
special case where the sine wave contains exactly half-integer number p of periods, one finds
that s1(t) = 2pπ/k becomes t-independent. In this special case one may relate κ and p as

p =
kl

4E(−κ2)
, (2.6)

where E(m) ≡ E(π/2, m) is a complete elliptic integral.
In the more general case the number of full waves p(t) = ks1(t)/(2π) varies somewhat

during a swimming stroke. The limiting values (pmin, pmax) of p(t) during a stroke are provided
by the solutions of the two equations

E
(

pπ, −κ2
)
=

kl

2
,

√

1 + κ2 E

(
pπ,

κ2

1 + κ2

)
=

kl

2
.

Throughout the paper p will stand for the mean value averaged over a stroke period that may
be estimated quite well by equation (2.6). The variation of p during a stroke 1p = pmax − pmin

can be well approximated by

1p ≈
κ2

4π(1 + 0.43κ2)
| sin(2πp)|. (2.7)

The numerical calculations of finite filament propulsion based on RFT were performed as
follows.

1. First we fixed numerical values for b, k and ξ (we fixed � = 1, l = 1 for all calculations).
2. We calculated the expressions for the force and torque densities in the rotated frame

f 0, r0 × f 0 by using equations (2.1)–(2.4). This has three independent components
corresponding to the force fx , fy and torque nz densities. We expressed them as Ai jq j +
Bi , i = 1, 2, 3 where q = (Vx , Vy, ω).

3. We discretized the time range 06 t 6 T = 2π/� into N = 100 steps ti . (Few calculations
were done with higher N up to 300.)

4. For each ti we first calculated s1(ti) by solving equation (2.5) numerically.
We then calculated numerically the integralsAi j =

∫ s1

0 Ai jγ ds,Bi =
∫ s1

0 Aiγ ds and solved
Ai jq j +Bi = 0 for the values of instantaneous velocities q = (Vx , Vy, ω). We kept a table
containing the values (ti , Vx(ti), Vy(ti), ω(ti)), i = 0, 1, 2, . . . , N .

5. Interpolating ω(ti) we constructed a continuous ω(t) which was then integrated to define
θ(t) and hence the matrix U(t).

6. Noting the relation U · R =
d
dt (U · V ) we constructed the ‘rotated frame center of mass

velocity’ U cm(ti) = U · V (ti). We then interpolated it to a continuous U cm(t) and integrated
over t to obtain the trajectory of the swimmer over a cycle. The distance covered per stroke
is then D = |

∫ T
0 U cm(t) dt |.
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2.2. Resistive force theory for an infinite filament

The analysis based on the local RFT for an infinite undulating filament can be found elsewhere
(e.g. [6, 13]), however we choose to present our short derivation offering a short route to the
closed-form expressions for the propulsion velocity and the power dissipated in swimming.

For an infinitely long incompressible undulatory swimmer it is convenient to
use a representation of the local velocity v0, which takes full advantage of the
symmetry/homogenuity of the problem. This representation will be slightly different than
the one used in the previous subsection7 which was better suited to use in numerics.
Consider a swimmer powered by traveling wave type undulations, r0(s, t) = {s, φ(ks − �t)}.
Incompressibility then requires v0 to be a superposition of movement along the filament −α(t)ŝ
and rigid motion (in general a plane translation and rotation). Taking advantage of the geometric
nature of low Reynolds swimming one may assume α to be time independent. In the case of the
traveling sine wave we take α to be the velocity required to travel along a period of r0(s) over
time T =

2π

�
i.e.

α =
�

2π

∫ λ

0
γ ds =

2c

π
E(−κ2), (2.8)

where λ =
2π

k and c =
�

k is the phase velocity. Averaging over the trajectory of a material
point we have 〈−α ŝ〉 = −cx̂, i.e. the phase speed. Thus v0 = −α ŝ + cx̂ will describe the local
velocity due solely to the (incompressible) periodic deformation. For small amplitudes this is
just v0 = {0, −b� cos(ks − �t)} +O(b3).

If we want to describe a swimmer of finite length then we should also specify the parameter
range s ∈ [s0, s1]. The fact that the longitudinal velocity (v0)x is not exactly zero implies that
the location of the edges will contain (small) time dependence s0 = s0(t), s1 = s1(t). Since the
endpoint are material points, s0(t) and s1(t) must be solutions of ds

dt = (v0)x = −α ŝ · x̂ + c. This
leads to the rather complicated relation (t (i)

0 being the integration constants)

E

(
ksi(t) − �t,

κ2

1 + κ2

)
=

αk
√

1 + κ2
(t (i)

0 − t), i = 0, 1.

This deviates from the s0 = 0 and equation (2.5) for s1(t) used in the previous section due to the
use of different gauge.

Now consider a very long incompressible swimmer described by r0(s, t) = {s, b sin(ks −

�t)}. The small oscillations of the endpoints, s0,1(t) = Const − b2k
8 sin(2�t) +O(b4), are

completely negligible compared to l. Thus, in the limit of a long swimmer one may take s0, s1 as
constants and even assume [s0, s1] to contain exactly a large integer number p of wavelengths.
This assumption considerably simplifies the subsequent calculations.

The local velocity due to deformations is v0 = −α ŝ + cx̂ with α given in equation (2.8). The
total local velocity would include also a rigid motion which for an infinitely long swimmer can
only be a longitudinal motion along x-axis, as transverse translation and rotation are zero from
symmetry. The total local velocity is then v = v0 + U x̂ = −α ŝ + (c + U ) x̂ with its longitudinal
and transverse components being v‖ = −α + (x̂ · ŝ) (c + U ) and v⊥ = (x̂ − (x̂ · ŝ)ŝ) (c + U ),
respectively. The corresponding local force on the swimmer is f ∝ v‖ + ξv⊥. The transverse
component of the force, Fy as well as the torque Nz, vanish by symmetry. The longitudinal

7 The two differ by gauge and by time parameterization but are equivalent.
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force may be expressed in terms of γ =
dζ

ds = (ŝ · x̂)−1
=

√
1 + κ2 cos2(ks − �t) as

Fx =

∫
fxdζ =

∫ [
ξ (c + U ) − αγ −1 + (c + U ) (1 − ξ)γ −2

]
dζ

=

∫ [
ξ (c + U ) γ − α + (c + U ) (1 − ξ)γ −1

]
ds. (2.9)

Requiring Fx = 0 determines U . Since the integrand is periodic of period λ = 2π/k and since
the integration range is assumed to be much larger than the wavelength, s1 − s0 � λ, one may
just integrate over one period

∫ λ

0 (. . .) ds. Using the identities in appendix A the swimming
velocity is then found to be

U

c
= −

(ξ − 1)(E ′
− K ′)

K ′ + ξ(E ′ − K ′)
. (2.10)

Here again κ = kb, c = �/k, ξ = f⊥/ f‖ and E ′
≡ E(−κ2), K ′

≡ K (−κ2) where K (m) =∫ π/2
0 (1 − m sin2 θ)−1/2 dθ is the complete elliptic integral of the first kind. The minus sign

indicates that the filament is propelled in the direction opposite to that of the wave propagation.
Note that the RFT result (2.10) (as well as the approximate result in equation (1.1))

is expected to be strictly valid for undulations satisfying εa � 1, where ε = |∂ ŝ/∂ζ | =

|(γ −1∂/∂s)2 r0| is the local curvature of the filament centerline and a is the filament radius.
It can be readily shown that ε 6 bk2, and therefore, we expect for the local RFT to hold as
long as abk2

� 1 or in a scaled form κ � 1/ka. The latter requirement is less severe than
κ � 1 and therefore equation (2.10) is expected to hold for large κ as well. Note furthermore
that the expression in equation (2.10) is a sole function of (E ′

− K ′)/K ′ which asymptotes to
∼κ2/2 at κ � 1. Using this, equation (2.10) yields an asymptotic result which is identical to
the approximate solution (1.1). We also note that the expressions (1.1) and (2.10) also have an
identical finite limit for κ → ∞ and therefore, the two expressions provide quite close estimates
of the propulsion speed (they differ by at most ∼7% for any κ and ξ ).

It is interesting to note that a result identical to equation (2.10) may be obtained for
an infinitely long sine wave compressible swimmer, i.e. the swimmer defined by r = {s +
Ut, b sin(ks − �t)} and v = ( dr

dt )s . This is due to exact cancelations in the integral for the force
Fx . In the case of a finite length swimmer one must also consider the integrals for the transverse
force, Fy and the torque, Tz, which usually do not possess similar cancelations. The result
for compressible/incompressible case, therefore coincide only in the limit of infinitely long
swimmer. To see how the cancelation works for Fx note that the local deformation velocities
in the two problems differ in a term of the form δv0 = ϕ(ks − �t)ŝ for some scalar function
ϕ(ks − �t) whose time average is zero. The extra contribution to the force will be of the same
type (up to a multiplicative constant f‖) and therefore δFx/ f‖ =

∫
ϕ(ŝ · x̂)γ ds =

∫
ϕ ds = 0.

Note that even though equations (1.1), (2.10) were derived for an infinite filament where
transverse displacements and pitching cancel out due to symmetry, it can be also applied for
approximate modeling of finite-length filament propulsion where transverse displacements and
turning are disallowed.

2.3. Power and hydrodynamic efficiency

The power required for our slender swimmer to maintain its movement is just the dissipation
rate P =

∫
f · v dζ . The total work in a single stroke is W =

∫ T
0 P dt . This work depends on

New Journal of Physics 15 (2013) 075022 (http://www.njp.org/)

http://www.njp.org/


11

the specific time parameterization of the stroke. It is well known that the optimal (power-wise)
time parameterization is the one which makes P(t) time independent, i.e. P(τ (t)) = P = Const.

Using the optimal time-parameterization (specifically τ(t) = T
∫ t

0

√
P dt ′∫ T

0

√
P dt ′

) one finds the optimal

work to be8

W =

∫ T

0
P dτ =

1

T

(∫ T

0

√
Pdt

)2

. (2.11)

Our numerical scheme thus allows a simple calculation of W by integrating∫ T
0 dt

√∫ s1

s0
f · v γ ds and squaring it.

For an infinitely long filament we have

f · v = f⊥v2
⊥

+ f‖v
2
‖
= f⊥(U + c)2(1 − γ −2) + f‖(α − (U + c)/γ )2.

Integrating over s and using the identities in appendix A and equations (2.8), (2.10) we find

P = f‖c2 l

(
4E ′

π2
−

1

ξ E ′ + (1 − ξ)K ′

)
E ′. (2.12)

(Note that s1 − s0 =
c
α
l.) Since the result does not depend on t it is clear that P = P and the total

work per stroke is justW = PT . At κ � 1 the expression in the brackets of (2.12) asymptotes
to ξκ2

π
+O(κ4) and E ′

'
π

2 +O(κ2), leading to P ≈
1
2 f‖ξc2κ2l =

1
2 f‖ξ(�b)2 l.

It is instructive to look at the hydrodynamic propulsion efficiency δ that measures the
energy dissipated in swimming a fixed distance at a fixed speed and defined as

δ =
f‖l D2

T W
. (2.13)

It resembles the standard Lighthill’s propulsion efficiency comparing the power invested in
swimming and dragging of inactive filament over distance D with mean velocity D/T [13].
It is readily seen from equations (2.10) and (2.12) that for infinitely long filament the net
work and distance per period can be expressed in terms of dimensionless quantities P̃ , Ũ as
W =W =

∫ T
0 P dτ = f‖c2 lT P̃(κ, ξ) and D = U T = cT Ũ (κ, ξ), yielding

δ =
Ũ 2

P̃
. (2.14)

However, for the finite length filament the hydrodynamic efficiency in (2.13) is expressed as

δ =
(kl)2

(2π)2

D̃2

W̃
, (2.15)

where D̃ = D/ l and W̃ =W/ f‖c2 lT are, respectively, the dimensionless distance and work per
period (corresponding to the optimal time parameterization). Note that in the framework of RFT
for either finite or infinite filament both propulsion characteristics, D/ l and δ, do not depend
explicitly on f‖, but are only functions of the ratio ξ = f⊥/ f‖.

8 The fact that W6W may easily be deduced by applying Cauchy–Schwartz inequality. Since the original
t-parameterization was arbitrary, this proves that τ(t)-parameterization is indeed superior to any other.
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Figure 3. Snapshot of the filament built from N = 30 spheres of radius a
propagating a sine wave with an amplitude b/ l ' 0.12 and kl ' 9.25 and p ' 1.2
corresponding to the most efficient swimming gait (see section 3).

2.4. Particle-based computations

The posed problem can be solved using a more accurate (than the local RFT) slender body
approximation [25, 26], or numerically, for example, using boundary integral formulation
[27, 28]. We, however, adopt a different approach and solve the problem using particle-based
approach. This technique is based on multipole expansion of the Lamb’s spherical harmonic
solution of the Stokes equations (e.g. [29]). The filament is constructed from N nearly touching
rigid spheres, the so-called ‘shish-kebab’ model (see figure 3), of radius a. The no-slip condition
at the surface of all spheres is enforced rigorously via the use of direct transformation between
solid spherical harmonics centered at origins of different spheres (see appendix B). The method
yields a system of O(N L2) linear equations for the expansion coefficients where the accuracy
of calculations is controlled by the number of spherical harmonics (i.e. the truncation level),
L , retained in the series. This particle-based approach was applied in [30, 31] for modeling
Purcell’s toroidal swimmer and in [32] for modeling a propulsion of rotating helical flagellum
through a fluid-filled random array of stationary spherical obstacles.

The validity and accuracy of the multipole expansion algorithm was previously tested
in [29] against (i) the exact solution (in bi-spherical coordinates) for the flow past two close-by
spheres and against (ii) a boundary element method numerical solution for the translation and
rotation of straight chains of spheres (made of N = 2–30 spheres). For most of our calculations
the truncation level L = 2 yielded quite accurate results as the relative error between the results
corresponding to L = 2 and 3 was less than 5% even for large-amplitude undulations. A similar
approach for particle-based simulations of micro-swimmers based on the extension of Stokesian
dynamics was recently proposed in [33]. An alternative particle-based approach based on the
force-coupling method was applied to construct a mechanical worm propelled through arrays of
micro-pillars [34].

The swimming filament is described by r0(s, t) = {s, b sin(ks − �t) + Y (t)}, s0 6 s 6 s1,
where the positions of the endpoints s0(t) and s1(t) (i.e. centers of the first and N th sphere) and
the time-periodic function Y (t) are determined from the requirement that the local velocity
v0 corresponds to a pure deformation i.e. the origin of the laboratory coordinate frame is
instantaneously fixed with the geometric center (GC) of the filament,

∫ s1

s0
r0γ ds = 0 and the

condition
∫ s1

s0
γ ds = l is imposed. Here γ = |∂ r0/∂s| and γ ds is a length element of the

filament centerline. At each instant, N spheres are positioned equidistant along this centerline
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in xy-plane. The distance between centers of neighboring spheres set equal to d = 2.02a (see
the illustration in figure 3). The net filament length is thus fixed as l = (N − 1)d + 2a.

The translation velocity v0i of the i th sphere due to the centerline deformation is calculated
numerically at each time step using a backward difference scheme. v0i consists of transverse
undulations (∂ r0/∂t)i plus a tangential velocity αi ŝ, as the spheres are re-distributed along
the filament due to the incompressibility constraint. The total velocity Vi of the i th sphere is
obtained by adding to v0i an unknown propulsion speed, V, and rotation with respect to the
GC, ω. The rotation rate of i th sphere composing a filament with respect to its center can be
written as ωi =

1
γ
(ŝ × ∂v0/∂s)i + ω, where the first term corresponds to the rotation due to local

bending and the second term to rigid rotation of the whole filament.
The translation velocity, V = {Vx(t), Vy(t)} and rotation ω = ω(t) ẑ are determined

from the requirement of force- and torque-free propulsion, i.e. F =
∑

i Fi = 0, and T =∑
i (T i + Ri × Fi) = 0, whereas F = {Fx , Fy} and T = Tz ẑ. Here Fi =

∫
∂Si

σ ·n dS is the
hydrodynamic force and T i =

∫
∂Si

r i × (σ ·n) dS is the hydrodynamic torque exerted on i th
sphere composing the filament and Ri is the position vector of the ith sphere center in the
fixed laboratory frame. The rate-of-work expended in propulsion of an undulating filament can
then be found as

P =

N∑
i=1

(−V i · Fi − ωi · T i). (2.16)

After calculating the translation and rotation velocities, Vx(t), Vy(t) and ω(t), respectively,
over a period 2π/�, we integrated the interpolated velocities over time to compute the trajectory
of the filament in xy-plane R(t):

θ(t) =

∫ t

0
ω dt, U = U(θ) · V , |R(t)| =

∣∣∣∣∫ t

0
U(τ ) dτ

∣∣∣∣ , (2.17)

where U(θ) is the rotation matrix associated with θ(t).
We calculated the plane motion and net displacement of the GC of a filament composed of

30–60 spheres, using 100 time steps per period of undulation. We also performed a simplified
‘1D’ calculation in which no pitching or transverse motion was allowed (i.e. Uy = ω = 0 was
enforced) while Ux was calculated by requiring only Fx = 0. Since such ‘1D’ calculation was
found to be less sensitive to numeric accuracy than the full plane motion, it was sufficient in this
case to use only 32 time steps per period of undulation. Note that undulations for which kl is
fixed in time were considered. This implies that the number of full waves, p, may slightly vary
during the stroke period due to the constant length requirement as discussed in section 2.1. This
variance, 1p, can be important at large values of b/ l, e.g. at b/ l & 0.8, the variation can be
significant and up to 30% of the mean value of p. However, at b/ l ∼ 1 one cannot consider b as
an amplitude of the undulation and the swimming gait no longer resembles traveling wave. For
biologically relevant swimming gaits with b/ l . 0.2 (see figure 11(a)), 1p/p remains below
5%. Recall that the values of p reported in the results correspond to the mean number of waves
averaged over a period of undulation.

3. Results and discussion

3.1. Finite sine swimmers: resistive force theory, small-κ asymptotic analysis

The RFT of plane locomotion of the finite sine swimmer is completely determined by the
equations of section 2.1. Finding an analytic solution to these equations is clearly not feasible.
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However, expanding all variables in a small κ Taylor series it is possible to solve analytically for
the leading Taylor coefficients. The resulting approximate solution is expected to be correct up
to a relative error of O(κ2). Comparison with the numerical RFT results shows that it conforms
with these formulae for κ . 0.4 (see figures 6(a)–(c)). In particular one finds

D ≈ kb2(ξ − 1)π

(
1 −

4

k2 l2
(2 + cos(kl)) +

24

k3 l3
sin(kl) +

24

k4 l4
(cos(kl) − 1)

)
, (3.1)

θmax ≈ −
24b

k2 l3
(kl cos(kl/2) − 2 sin(kl/2)) , (3.2)

W ≈
4 f‖ξ�b2

πk2 l
(k2 l2

− 4(1 − cos(kl)) + kl sin(kl))E2(χ), (3.3)

where

χ =
48 + 8k2 l2 + 16(k2 l2

− 3) cos(kl) + 2kl(k2 l2
− 24) sin(kl)

k2 l2(k2 l2 − 4(1 − cos(kl)) + kl sin(kl))
and as before E stands for the complete elliptic integral. Here θmax corresponds to the maximum
pitching angle, i.e. twice the angle of maximum tilt of the rotated frame r0(s, t) with respect to
the direction of propulsion. The asymptotic expression for δ is too lengthy to give any useful
insight. However, it may be of interest to consider the limit of high values of the parameter
p = kl/2π +O(κ2(kl)), i.e. whereas the swimming gait involves multiple waves propagating
along the filament. In this limit the relation simplifies into

δ ≈ κ2 (ξ − 1)2

2ξ

(
1 −

127 + 64 cos(2pπ) + cos(4pπ)

64π 2 p2

)
having local maxima at half-integer values of p. Note also that in this case pitching is eliminated
since the maximum turning angle θmax = −

6κ

π2 p2 cos(πp) +O(p−3) vanishes.
The analogous expansions for D,W at high p read

D ≈ κ2 l
(ξ − 1)

2p

(
1 −

2 + cos(2πp)

π2 p2

)
,

W ≈ κ2 f‖ξ�l3

4πp2

(
1 −

129 + 64 cos(2πp) − cos(4πp)

64π 2 p2

)
.

Note that in the limit p → ∞ the infinite filament small-κ results are recovered as expected.

3.2. Finite sine swimmers: resistive force theory versus particle-based computations

The comparison of the local RFT with the results of particle-based computations requires
the knowledge of the ratio ξ = f⊥/ f‖. For slender filaments the corresponding viscous drag
coefficients (i.e. per unit length) are f⊥ = 2 f‖ ≈ 4πµE +O(1), where µ is the dynamic
viscosity, E = (ln 2/ε)−1 is a small parameter and ε = 2a/ l ' 1/N � 1 is the aspect ratio,
while l and 2a are the length and the typical width of the filament, respectively [35]. However,
the limiting value of ξ = 2 is only achieved for extremely slender (exponentially thin) filaments.
The classical RFT theories of undulatory locomotion, e.g. [1, 6], suggest that ξ is slowly varying
function of either λ/a or 3/a, respectively, where 3 is the filament length in one full wave,
however, these theories assume swimming gaits with many wavelengths per filament length, i.e.
λ � l, while we look at p ∼ 1.
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Figure 4. (a) Comparison of the drag coefficients f⊥ (4), f‖ (�) determined
via the particle-based computation for a straight chain of length l made of N =

12–80 nearly touching spheres of radii a (symbols) versus the predictions of the
slender body theory for a prolate spheroid (solid and dashed line, respectively),
as a function of the same aspect ratio ε = 2a/ l; (b) ratio of the drag coefficients
f⊥/ f‖ for a filament made of spheres as function of the aspect ratio ε = 2a/ l '

1/N (◦); the continuous line stands for the best fit, ξ = c1(1 − c2 E)/(1 + c2 E),
with c1 = 1.96 and c2 = 0.525 (the slender body theory result for a prolate
spheroid [36] corresponds to c1 = 2 and c2 = 0.5).

In order to account for the finite thickness of the undulating filament, the value of ξ in RFT
predictions was determined numerically from computing the longitudinal and transverse viscous
drag forces for a ‘shish-kebab’ straight chain of N nearly touching spheres. The corresponding
values of the individual drag coefficients f⊥ and f‖ as a function of the filament’s aspect ratio
ε are shown in figure 4(a) together with the asymptotic results for a prolate spheroid [36]
accurate up to O(ε2 ln ε). Both coefficients f⊥ and f‖ computed for a ‘shish-kebab’ filament
are slightly larger than the respective coefficients corresponding to a prolate spheroid and the
deviation increases with the increase in ε (i.e. for less slender filaments). Values of ξ as a
function of the rod aspect ratio ε are depicted in figure 4(b) (◦). Although there is no analytic
or asymptotic theory for such ‘shish-kebab’ rod, however, the slender body theory solution for
a prolate spheroid [36] yields ξ = 2(

1−E/2
1+E/2 ) +O(ε2 ln ε). Approximating our numerical results

by the model ξ≈c1(
1−c2 E
1+c2 E ) (solid line in figure 4(b)) suggested by this theory gives c1 = 1.96

and c2 = 0.525, which is quite close to the theoretical values (c1 = 2, c2 = 0.5) for the prolate
spheroid. This indicates that ξ is rather insensitive to the local variation of the filament shape.
This is in agreement with [36] where it was shown that for a general slender axisymmetric
body the asymptotic result ξ ≈ 2 + 2(ln ε)−1 is independent of the way in which the cross-
sectional radius varies along the length, while the error in ξ estimate due to spatial variance
of the local filament shape is of O[(ln ε)−2]. The model for ξ indicates that it approaches the
limiting value of 2 logarithmically slow (see figure 4(b)) and in the wide range of biologically
relevant slenderness ξ is in the range 1.4–1.6. For instance for N = 30 (ε ' 0.033) we find
ξ ' 1.515.

First we test the limits of applicability of the local ‘1D’ RFT analytic result in
equation (2.10) toward modeling propulsion of finite-length force-free (Fx = 0) filament. The
scaled propulsion velocity (averaged over a stroke period) for the simplified ‘1D’ model, 〈U 〉/c
together with the root mean square deviation from the mean value (bars), is depicted versus the
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Figure 5. Scaled averaged (over time of a period) propulsion speed 〈U 〉/c plotted
versus κ = kb for a filament undergoing 1D locomotion opposite to the direction
of wave propagation (disallowing pitching and transverse motion). The symbols
stand for the numerical results for p = 0.7 (�), 1 (◦), 1.5 (B) and 2 (C). The
bars stand for the root mean square deviation of the swimmer’s instantaneous
velocity from its mean value during a period of undulation. The solid line
corresponds to the prediction of the RFT in equation (2.10), the dashed line
corresponds to the approximate solution (1.1). (a) Filament composed of 30
spheres corresponding to ξ = 1.515 in RFT expressions; (b) filament composed
of 50 spheres, corresponding to ξ = 1.56 in RFT expressions.

amplitude-to-wavelength ratio κ = kb in figures 5(a) and (b) for filaments composed of 30 and
50 spheres, respectively. As discussed in section 2.2, the local RFT is expected to be applicable
at εa � 1, where ε is the local curvature of the filament, yielding the condition κ(kl) � ε−1.
Our results show that for small values of κ the numerical results fall on the theoretical curves
in equation (2.10), while at higher κ it may deviate considerably. It is reasonable to expect
that upon reducing the width of the filament (or, alternatively, increasing filament’s length in
particle-based computations) the agreement with the RFT prediction (2.10) for the same value
of p should improve. Indeed, increasing all lengths by the same factor to preserve p, the value
of κ(kl) remains fixed, while ε−1 increases, so the deviation from RFT is expected to kick in at
a somewhat higher value of κ . It can be readily seen in figures 5(a) and (b) that the agreement
of the numerical results and RFT is closer for a longer filament composed of 50 spheres in
comparison with a filament composed of 30 spheres.

Next we calculate the net displacement per stoke period for a force- and torque-free
plane motion. Figure 6(a) show the scaled distance covered per period, D/ l, versus undulation
amplitude b/ l for different values of mean p. Each curve corresponds to some fixed value of
mean p. For each swimming gait (i.e. for each value of mean p) there is an optimal amplitude
that maximizes the displacement, as was suggested earlier. Note that for the waveforms
characterized by p in the range 0.4–1.2 the optimal displacement D/ l varies in a relatively
narrow range ∼1–1.2. The maximum displacement D/ l ≈ 0.117 is achieved at p ≈ 0.8 and
b/ l ≈ 0.24. The agreement between the prediction of the local RFT and the particle-based
calculation is quite close in terms of both the optimal amplitude, and displacement, although
the RFT seem to overestimate the displacement at large amplitudes beyond the peak likely due
to hydrodynamic self-interaction between the parts of the curved filament which is not taken
into account by the RFT. We found that the amplitude at which the deviation between RFT and
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Figure 6. Comparison of the particle-based results versus the prediction of the
RFT for a finite length filament with aspect ratio ε ' 1/30 upon keeping the
mean number of waves fixed (i.e. fixed p); the corresponding values of mean
p are shown. Symbols correspond to the results of particle-based computations:
p = 1.4 (�), 1.2 (C), 1 (O), 0.8 (◦), 0.7 (B), 0.6 (♦) and 0.4 (M); the solid
lines correspond to the numerical RFT calculations and dashed lines correspond
to the small-κ asymptotic RFT predictions in equations (3.1)–(3.3), both at
ξ = 1.515. (a) The scaled distance per period of undulation, D/ l versus the
scaled undulation amplitude b/ l; (b) maximum pitching angle during a cycle,
θmax, versus the scaled amplitude b/ l; (c) optimal work per period of undulation,
W/ f‖c2 lT , versus the scaled amplitude b/ l.

the particle-based calculations kicks in is well correlated with local curvature of the filament,
namely κ(kl) ∼ 0.5ε−1. For large amplitudes such that κ(kl)& 0.5ε−1 the RFT can significantly
overestimate the net swimming distance as shown in figure 6(a).
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Figure 6(b) shows the maximum pitching angle θmax
9 during the stroke period, versus the

amplitude b/ l for the same values of p as in figure 6(a). It can be seen that for incomplete
wave with p < 1, the pitching angle is considerable and can get to θmax ∼ 90◦ for p = 0.6.
The agreement between the RFT and the particle-based calculation is reasonable, except at the
higher values of p where the curvature is probably too high for the underlying assumptions
of RFT to remain accurate. The increase in p yields smaller θmax, as expected, as for many
waves we expect no pitching. An interesting observation is that for the finite-length filament
the distance-wise optimal propulsion is associated with substantial pitching during the cycle,
as θmax ≈ 53◦ at b/ l ≈ 0.24 for locomotion with p ≈ 0.8. Note that there are other potential
definitions of pitching angle, e.g. based on head-to-tail vector which is probably more suitable
for image processing of swimming gaits in experiments with undulatory microorganisms, that
may produce somewhat different results (at the optimum for b/ l ≈ 0.24 and p = 0.8 it yields
pitching angle ≈40◦). Nevertheless, the detailed investigation of alternative definitions and its
relevance will be conducted elsewhere.

The scaled net work per period invested in swimming (i.e. dissipated by viscosity),
W/ f‖c2 lT , is plotted versus the scaled amplitude b/ l in figure 6(c) for the same values
of p as in the two previous figures. Note that the parameter W/ f‖c2 lT corresponds to the
optimal time parameterization of the stroke defined in (2.11). Obviously, for a fixed amplitude,
b/ l, swimming with a smaller fraction of wave, p, is advantageous power-wise, since the
relative motion between different parts of the filament diminishes. Note that while the favorable
comparison between the RFT and the results of particle-based calculations for D/ l and θmax

(in figures 6(a) and (b)) only requires the value of the ratio ξ = f‖/ f⊥, comparison of the work
necessitates knowledge of both ξ and f‖. We found that the value of f‖ that fits best the RFT
results in the whole range of wavelengths and amplitudes is a sole function of the filament
aspect ratio ε. This observation deviates from the classical theories [1, 6] showing that f‖ is
a slowly (logarithmically) decaying function of the wavelength (either λ/a or 3/a). However,
these theories assume very long filaments, λ � l, while we focus on short filaments, where
this assumption may not be valid. For the filament with aspect ratio ε ' 1/30 we found that
f‖ ≈ 3.30 µ yields an excellent agreement between the prediction of the RFT and particle-based
calculations for all values of p, while for ε ' 1/50 the corresponding value was f‖ ≈ 2.97 µ.
Note that the fitted values of f‖ are significantly larger than the corresponding values obtained
from dragging straight ‘shish-kebab’ filament of the same length, i.e. f‖ ' 1.88 and 1.61 µ for
ε ' 1/30 and 1/50, respectively. This can be attributed to the increased dissipation resulting
from bending a filament made of nearly touching spheres due to the shearing flow in the gaps
between neighboring spheres, which does not come into play when dragging straight ‘shish-
kebab’ filaments (which produces f‖ which is about the same as that for a prolate spheroid, as
can be seen in figure 4(a)).

It can be readily seen that the small-κ asymptotic predictions of D/ l, θmax andW/ f‖c2 lT
based on RFT in equations (3.1)–(3.3) shown in figures 6(a)–(c) by dashed lines match the
numerical results at small amplitudes b/ l.

The major numerical results gathered in figure 6 can also be re-cast to show net dis-
placement, maximum pitch angle and net work per period as a function of scaled amplitude b/ l,

9 This angle can be readily identified in the animations (see supplementary material, available from
stacks.iop.org/NJP/15/075022/mmedia) as twice the angle between the mean direction of propulsion and the
x-axis indicating the initial orientation of the rotated frame at t = 0.
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while keeping the wavelength of the undulation, kl, fixed and allowing p to vary. This way
we can probe undulations with much larger amplitude since for prescribed p the amplitude
b/ l is bounded by 1/4p (see equation (2.6) and the dashed red curves corresponding to fixed
values of p in figure 10). Recall that for b/ l & 1 the swimming gait no longer resembles
traveling wave and considering b as an amplitude of the undulation in such case could be
misleading.

The swimming distance per period of undulation, D/ l versus the scaled amplitude b/ l is
depicted in figure 7(a) for several values of kl for a filament with aspect ratio ε ' 1/30. For
kl = 14 we took a longer filament composed of 50 spheres (ε ' 1/50) to avoid particle overlap
at large amplitudes; the corresponding RFT prediction is not very sensitive to the filament length
as it only depends on ξ which is a weak (logarithmic) function of ε (compare the solid and
dashed curves corresponding to kl = 14 in figure 7(a)). The agreement between the prediction
of the RFT and the results of particle-based calculations is very good for moderate values of
kl = 2 (�), 4 (◦) for amplitudes up to b/ l ∼ 1, while for larger kl = 9.25 (B) the deviation
appears at b/ l ∼ 0.2 already. As mentioned above, the limit of RFT applicability is well
described by the condition κ(kl) ≈ 0.5ε−1. For large amplitudes such that κ(kl) > 0.5ε−1 the
RFT can significantly overestimate the net swimming distance, as can be seen from the results
in figure 7(a) corresponding, in particular, to kl = 9.25 (B) and 14 (M). The global maximum
advancement D/ l ≈ 0.115 is achieved for kl = 9.25 (B) and b/ l ≈ 0.2 corresponding to
p ' 0.82 in accord with the results shown in figure 6(a). The animation of the particle-based
undulatory swimmer corresponding to the maximum displacement-per-stroke is provided in the
supplementary material (see movie 1, available from stacks.iop.org/NJP/15/075022/mmedia).

Note that smaller amplitude b/ l is required for the furthest displacement upon increasing
kl (i.e. decreasing wavelength of the undulations). This trend is in a qualitative agreement
with the experimental findings (e.g. see figure 1(c) in [11]) whereas the C. elegans undulation
waveform was modulated by interaction with the motility medium by varying concentration of
a thickening agent (gelatine). However, the theoretically predicted optimal amplitudes are about
four folds higher than these reported in [11], e.g. for kl ≈ 3.6 and 12.5, the experimentally
observed amplitudes were b/ l ≈ 0.25 and ≈ 0.05, respectively, while we found (for about the
same values of kl, see figure 7(a)) the optimal amplitudes are b/ l ≈ 1 and 0.2. It should be
noticed that gelatin solutions in [11] exhibited viscoelastic behavior and the present theory
cannot be applied directly to analyze these experimental results.

The maximum pitching angle θmax is depicted versus the scaled amplitude b/ l in figure 7(b)
for the same values of kl as in the previous figure. The agreement with the RFT prediction is
excellent for all values of kl and b/ l and does not seem to suffer from the non-local nature
of the hydrodynamic self-interaction of the curved filament. We argue that since the pitching
angle is just the maximum of the integral over the angular velocity, while the traveled distance
combines translation and pitching, the latter is expected to be more sensitive to the intra-filament
hydrodynamic interaction.

The scaled optimal work per period, W/ f‖c2 lT , is depicted versus the dimensionless
amplitude, b/ l, in figure 7(c) for the same values of kl as in the previous two figures. The work
is a monotonically growing function of the amplitude, while there is a crossover to a much more
sluggish growth at some value of the amplitude b/ l depending on kl, which roughly corresponds
to having less than half wave (p ≈ 0.5) in the waveform. It can be explained intuitively by the
fact that for p . 0.5 the swimming gait no longer resembles traveling wave; describing it as
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Figure 7. Comparison of the particle-based results (symbols) versus the
predictions of the RFT (lines) for a finite length filament with aspect ratio
ε ' 1/30 upon keeping the fixed value of the wavenumber kl: 2 (�), 4 (◦), 6 (C)
and 9.25 (B). The upper (filled) triangles (N) correspond to kl = 14 computed
for a longer filament with aspect ratio of ε ' 1/50. The continuous lines stand
for the prediction of the RFT with ξ = 1.515 (corresponding to ε ' 1/30, solid
lines) and ξ = 1.56 (corresponding to ε ' 1/50, dashed line). (a) The scaled
swimming distance per period of undulation, D/ l versus the scaled undulation
amplitude, b/ l; (b) maximum pitching angle during a period of undulation, θmax,
versus the scaled amplitude b/ l; (c) optimal work per period,W/ f‖c2 lT , versus
the scaled amplitude b/ l.

such is misleading even though mathematically correct. The agreement between the RFT and
the particle-based computations is very good for low values of kl, while RFT underestimates
the power at large amplitudes and this deviation increases with kl.
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Figure 8. (a) Hydrodynamic propulsion efficiency, δ(%) (blue solid line), and
maximum pitching angle, θmax (black dashed line) versus kl from the RFT for a
finite filament with ξ = 1.515 and amplitude-to-wavelength ratio κ = kb being
fixed at the value 1.29 which corresponds to the RFT efficiency peak of an
infinite filament with the same ξ (δ ' 3.32%, red dashed line); vertical (thin)
dashed lines mark the location of the local optima; symbols (�, ◦) stand for
the particle-based calculations; (b) hydrodynamic efficiency, δ, versus κ = kb,
comparison of particle-based computation results for several values of kl: 2
(�), 4 (◦), 6 (C), 9.25 (B), 12 (♦) and 15 (M) versus the infinite filament RFT
prediction (2.14) for ξ = 1.515 (thick solid line); the filled diamond (�) stands
for the propulsion efficiency of the distance-wise best performing sinusoidal
waveform.

Using the results for the power invested in swimming and the displacement per stroke, we
can determine the hydrodynamic efficiency δ, as defined in (2.13). δ was determined via (2.15)
using RFT computations for a finite filament with ε = 1/30 and ξ = 1.515 and depicted (solid
line) in figure 8(a) upon varying kl for the fixed value of κ = 1.29 corresponding to the optimal
infinite filament with the same ξ . The dashed (red) line corresponds to the optimal efficiency,
δ ' 3.32%, of the infinite filament based on RFT (in equation (2.14) with ξ = 1.515). It can be
readily seen that our earlier arguments regarding the best performing (efficiency-wise) swimmer
apply: for a finite filament it is advantageous to swim using short small-amplitude waves and
the efficiency is growing function of kl upon keeping κ at the optimum. However, δ predicted
by the RFT for the finite filament is not a monotonic function of kl and there are local maxima,
first of which appears at kl ≈ 12, where δ ≈ 3.2%, rather close to the optimal efficiency of the
infinite filament for the same ξ = 1.515, δ ' 3.32%. The local maxima in the hydrodynamic
efficiency based on RFT occur for waveforms with about half-integer number of full waves
(i.e. half-integer p) and are associated with zeros in θmax as can be seen from figure 8(a).
This is in agreement with the small-κ asymptotic predictions of θmax and δ in section 3.1 even
though the results shown in figure 8(a) correspond to κ > 0.4, suggesting that it holds for an
arbitrary κ . This is also in accord with the most recent work [22] and with [21], whereas the
bias toward waveforms with half-integer number of full waves was suggested to result from a
competition between rotational motions and bending costs. Since we have no other costs rather
than hydrodynamic dissipation, it seems that the bias toward waveforms with half-integer p is
just due to minimal dissipation associated with pitching.
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However, particle-based calculations (� in figure 8(a)) do not show the oscillations in
the efficiency predicted by the RFT and there is global optimum at finite kl thanks to the
hydrodynamic self-interaction of the curved filament. The efficiency computed from particle-
based calculations is shown in a separate figure 8(b) versus κ for several values of kl.
The thick solid line stands for the estimate (2.14) for an infinite filament with ε = 1/30,
ξ = 1.515. The peak efficiency δ ≈ 2.8% is achieved at kl ≈ 9.25, b/ l ≈ 0.12 corresponding
to κ ≈ 1.11 and p ≈ 1.2, the animation corresponding to the most efficient particle-based
swimming gait is provided in the supplementary material (see movie 2, available from
stacks.iop.org/NJP/15/075022/mmedia). The curves for higher values of kl & 9.25 yield lower
values of δ at their peak in contrast to the RFT arguments provided in the introduction. Note also
that the best swimming gait based on distance covered in a period is somewhat less efficient—its
hydrodynamic efficiency δ ≈ 1.7%, and it requires similar wavelength kl ≈ 8.7 with doubled
amplitude of b/ l ≈ 0.24 corresponding to p ≈ 0.8 (� in figure 8(b)). On the other hand, the
most efficient swimmer performs quite well in terms of swimming distance, as D/ l ' 0.093
versus D/ l ' 0.12 at the optimum. Therefore, keeping the undulation amplitude b/ l and the
wavelength kl in the range 0.12. b/ l . 0.24, 8.7. kl . 9.2, respectively, would yield good
swimming performance both speed- and power-wise.

In comparison to a considerable rotation (θmax ≈ 53◦) associated with the distance-wise
optimal swimming gait, when propulsion efficiency is optimized the pitching is quite small
with θmax ≈ 9.5◦ (see figure 6(b)). To the best of our knowledge, the displacements featured
by microorganisms do not exhibit visibly apparent pitching; this may be however due to
factors such as more complicated non-sinusoidal waveforms thanks to complex mechanosensory
mechanisms including proprioception (i.e. the sense of the body’s curvature and the strength
employed in movements) [38].

3.3. Nematode C. elegans

The particle-based algorithm was applied to model propulsion of the nematode C. elegans. We
used a filament built from N = 12 spheres to mimic the nematode slenderness of ε = 0.083
(typical length of 1 mm and width of 0.08 mm). The swimming gait adopted in computation
was extracted from videos shot with a high-speed camera via the use of custom-written image
processing algorithm [9]. The snapshots of the nematode waveforms (in the co-rotating and co-
moving frame) are shown in figure 9(a). It can be readily seen that the nematode waveform is
not a sinusoidal wave and that the undulation amplitude varies along the body length so that
the head and the tail’s amplitudes are larger than that in the middle portion of the body. The
animation of the particle-based nematode swimming is provided in the supplementary material
(see movie 3, available from stacks.iop.org/NJP/15/075022/mmedia).

The comparison between the experimentally probed trajectory and the numerically
calculated path that uses the tabulated undulation gait extracted from experiments (in figure 9(a))
is shown in figure 9(b). The close agreement between the experimental and the numerical results
(with no adjustable parameters) justifies the use of low Reynolds hydrodynamics in C. elegans
locomotion study whereas typically Re ∼ 1 in low viscosity aqueous medium. The typical
parameters for C. elegans propulsion are b/ l ≈ 0.12, kl ≈ 7.9 and D/ l ≈ 0.17 as reported
in [9]. Using the particle-based scheme, the power invested in the nematode swimming per
period was determined giving an unexpectedly high propulsion efficiency of ∼8.8%10 and low

10 Note that the optimal swimming efficiency corresponding to Lighthill’s sawtooth traveling wave propagating
along an infinite filament is δ = 8.58% [13].
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Figure 9. (a) The snapshots of the nematode waveforms in the co-rotated and
co-moving frame of reference as tracked in the experiment in [9]; the worm
is propelled head to the right. (b) The trajectory of the geometric center of the
nematode: tracking experiment (solid line) and particle-based simulation (dashed
line). The worm in this experiment was 1.2 mm long, and it progressed 0.2 mm
per period of undulation, yielding D/ l ≈ 0.17.

pitching with θmax ≈ 8.3◦, comparable to the most efficient sine swimmer (θmax ≈ 9.5◦). The
power invested in swimming was calculated in the same way as before, whereas the longitudinal
drag coefficient f‖ ≈ 6.25 µ was determined by fitting results of particle-based computations to
RFT for a filament with aspect ratio ε ' 1/12 propelled using sine waveform. Even though the
nematode does not use a simple sine wave, the parameters of the sine waveform optimized to
the furthest advancement per stroke are similar to the values employed by the nematode (see
the comparison in figure 11(a)). However, the shape of the waveform exploited by the worm
allows a superior locomotion (in terms of both the displacement per stroke and hydrodynamic
efficiency) compared with the sine waveform optimized for the furthest displacement showing
D/ l ≈ 0.12 and δ ' 1.7%.

Note also that using the typical parameters for C. elegans propulsion in low viscosity
medium (kl ≈ 7.9 and b/ l ≈ 0.12, see [9]) and the aspect ratio of ε ≈ 1/12 gives κ(kl) ≈ 7.5,
while 1/(2ε) ≈ 6. Therefore, the estimate indicates that the RFT, widely used to model C.
elegans swimming, may not be accurate from a hydrodynamic point of view and models
accounting for non-local hydrodynamic interaction, such as particle-based algorithm, should
be invoked.

3.4. Common undulatory microswimmers

Provided a favorable agreement between the particle-based numerical results and the prediction
of the RFT, and since the latter approach is not as time-consuming as the particle-based
simulation algorithm, we applied the finite filament RFT to calculate the scaled displacement
per cycle, D/ l, and hydrodynamic efficiency δ for a filament with aspect ratio ε = 1/30 in
a wide range of parameters (b/ l, kl) and depicted the results in figures 10(a) and (b) as a
color contour plots. The dashed (red, short dashes) lines in figures 10(a) and (b) are the cross-
sections corresponding to fixed value of p (as in figure 6). The thick (black, long dashes) line
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Figure 10. Color contour plots based on prediction of local RFT for a filament
of the aspect ratio ε = 1/30 in plane of parameters (b/ l, kl). The corresponding
sections of fixed mean p are shown as thin dashed lines (red, short dashes).
Labels (on white background) stand for some representative values along the
contour lines. The thick dashed line (black, long dashes) stands for the boundary
of approximate validity of the RFT, i.e. κ(kl) = 0.5ε−1. The squares (�)
stands for the available data for sperm cells (Psammechinus miliaris [5]; bos,
chaetopterus, ciona, colobopocentotrus, lytechinus, psammechimus [2]; ostrea,
ovis [37], the circles (◦) stand for the data for nematodes (C. elegans [10];
Haemonchus contortus, Turbatrix aceti, Pamagrellus silusia [8]), filled symbols
� and F denote the best, distance-wise and efficiency-wise gaits, respectively,
determined in particle-based computations; (a) scaled distance per period of
undulation, D/ l; (b) hydrodynamic efficiency δ; the thick solid line stands for
the location of the optimal δ for an infinite filament based on equation (2.14), i.e.
κ ≈ 1.3.

stands for the approximate boundary of the RFT validity as discussed above, κ(kl) = 0.5ε−1.
Above this curve the prediction of the RFT may considerably overestimate the swimming
distance and hydrodynamic efficiency and more accurate estimates taking into account non-local
hydrodynamic interaction should be invoked such as, for example, particle-based computations.

As can be seen in figure 10(a) the RFT predicts the maximum swimming distance
D/ l ≈ 0.124 at kl ' 9.2, b/ l ' 0.3 corresponding to p ≈ 0.7, while according to particle-
based computations the optimum (D/ l ≈ 0.117) is at b/ l ≈ 0.24, kl ≈ 8.7 corresponding to
p ≈ 0.8 (black diamond � in figures 10(a) and (b)). As discussed before, the global optimum in
the hydrodynamic efficiency based on RFT (δ ' 3.32%) is achieved for an infinite filament,
i.e. at kl → ∞, b/ l → 0 at kb ' 1.3, however, a local optimum (δ ≈ 3.2%) is achieved
at kl ≈ 12 and b/ l ≈ 0.11 (see figure 8(a)). Note that the thick solid line corresponding
to κ = 1.3 which maximizes δ in case of infinite filament, crosses the (white) region of
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Figure 11. The comparison of actuation parameters and performance of
undulating microorganisms (empty symbols) versus a best-performing distance-
(�) and efficiency-wise (F) filament with aspect ratio ε = 1/30 propelled
by a sinusoidal waveform determined from particle-based computations. The
red squares (�) correspond to sperm cells (Psammechinus miliaris [5];
bos, chaetopterus, ciona, colobopocentotrus, lytechinus, psammechimus [2];
ostrea, ovis [37], the black circles (◦) stand for nematodes (C. elegans [10];
Haemonchus contortus, Turbatrix aceti, Pamagrellus silusia [8]) and the blue
upper triangle (M) is an eukaryote flagellate (Ochromonos malhamensis [2]);
(a) dimensionless amplitude of undulations b/ l versus wave number kl; the
dashed line corresponds to the approximate boundary of RFT validity, i.e.
κ(kl) = 0.5ε−1 for ε = 1/30; (b) scaled swimming distance per period, D/ l
versus scaled wave number kl.

close-to-optimal swimming efficiency of a finite filament in figure 10(b). For comparison,
the most efficient swimming gait determined from particle-based computations (kl ≈ 9.25
and b/ l ≈ 0.12 corresponding to a waveform with p ≈ 1.2 complete waves) maximizing the
hydrodynamic efficiency, δ ' 2.8%, is marked by a star symbol (F) in figures 10(a) and (b).

The empty squares (�) in both figures 10(a) and (b) correspond to sperm cells [2, 5, 37],
empty circles (◦) to nematodes [8, 10], all swimming using periodic undulations. These data
together with an eukaryote flagellate [2] (M) and the corresponding values of displacement per
period, D/ l, are shown in two separate figures 11(a) and (b). It is evident that even though
the microorganisms do not exploit a sine waveform for propulsion (e.g. see figure 9(a) that
illustrates the swimming gait of C. elegans), the typical amplitudes and wavelengths they use are
quite close to the best distance- and, in particular, efficiency-wise sine-waveform swimming gait
determined from particle-based computations (� andF, respectively). Similarly to figure 10(a)
the dashed line in figure 11(a) marks the approximate boundary of validity of the RFT for a
sine swimmer with ε = 1/30 ' 0.033. The nematodes (e.g. Haemonchus contortus, Turbatrix
aceti, Pamagrellus silusia) in [8] have ε in the range 0.03–0.04 (except for C. elegans with
ε ≈ 0.083 [9]), while sperm cells are typically more slender, e.g. ram and oyster sperm cells [37]
having ε ≈ 0.008 and 0.005, respectively. Therefore, the use of RFT for most nematodes and
sperm cells is probably justified, while for less slender swimmers, such as C. elegans, it may
not produce accurate results as discussed above in section 3.3.
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Figure 12. The effect of filament slenderness on the swimming performance
as predicted by the RFT in plane of parameters kl and b/ l; dashed (red)
curves stand for the filament with aspect ratio ε = 1/12 (ξ = 1.4), solid
(black) lines correspond to a filament with ε = 1/800 (ξ = 1.7). Contour labels
depict some representative values along selected isolines: (a) contour plots of
the swimming distance per stroke, D/ l; (b) contour plots of hydrodynamic
propulsion efficiency δ.

Varying the slenderness ε of the filament does not change much the topography of the
surfaces in figures 10(a) and (b) as can be seen in figures 12(a) and (b) where we plot the
isolines predicted by the RFT corresponding to the swimming distance per period D/ l and the
efficiency δ for two quite different values of slenderness, ε ∼ 1/12 and ε ∼ 1/800. This weak
dependence is to be expected, since in the RFT the slenderness only enters through ξ = f⊥/ f‖
which is a weak (logarithmic) function of ε (the value of ξ increases from ∼1.4 to ∼1.7 as ε

decreases from 1/12 to 1/800—by over 60 folds).
It can be readily seen that the variance in ξ has only a minor effect on the location of the

optima for both D/ l and δ. The maximum distance D/ l ≈ 0.101 is achieved at kl ≈ 9.75 and
b/ l ≈ 0.28 for ξ = 1.4 while for ξ = 1.7 the maximum D/ l ≈ 0.159 is achieved at kl ≈ 8.75,
b/ l ≈ 0.32. The peak in propulsion efficiency (within RFT) is achieved at the maximal kl we
allowed, namely kl = 12.5 (higher kl yields slightly higher efficiency) is for b/ l ≈ 0.1 and it is
δ ∼ 2.2% and ∼4.9% for ξ = 1.4 and 1.7, respectively.

4. Concluding remarks

In this paper we studied low-Reynolds-number locomotion of finite undulating filament of
length l and width 2a propelled by a propagating sinusoidal wave with amplitude b and
wavenumber k using an approximate RFT, assuming a local nature of hydrodynamic interaction
between the filament and the surrounding liquid, and more accurate particle-based numerical
computations taking into account the intra-filament hydrodynamic interaction. Based on the
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results, the approximate limit of RFT applicability was found as κ(kl). 1/(2ε), where κ = kb
is dimensionless amplitude-to-wavelength ratio and ε = 2a/ l is filament’s aspect ratio. For
κ(kl) > 1/(2ε) the predictions of the RFT may significantly deviate from the results of particle-
based computations.

We showed that there is an optimal combination of the dimensionless undulation amplitude
b/ l and wavenumber kl, namely b/ l ' 0.24, kl ' 8.7 yielding the furthest advancement
per period of undulation, D/ l ' 0.12. This propulsion gait is characterized by a waveform
with p ' 0.8 complete waves per filament length, considerable pitching (maximum tilt angle
θmax ∼ 53◦) and hydrodynamic efficiency δ ' 1.7%. Reducing the undulation amplitude two
folds, to b/ l ' 0.12 together with kl ' 9.2 yields the most efficient propulsion with δ ' 2.8%.
The latter swimming gait is characterized by p ' 1.2 complete waves per filament length, low
pitching with θmax ∼ 9◦ and advancement per period D/ l ' 0.093.

Comparison to the experimental results for C. elegans reveals that even though the
swimming characteristics in terms of amplitude and wavelength are quite similar to the best
performing (distance- and efficiency-wise) sinusoidal swimmer’s gait, the nematode is superior
to the sinusoidal swimmer in terms of both the swimming distance per stroke (D/ l ' 0.17) and
hydrodynamic efficiency (δ ≈ 8.8%) as estimated from particle-based computations exploiting
the nematode swimming gait extracted from experiments. This indicates the importance of the
amplitude modulation in the waveform adopted by C. elegans, deviating considerably from a
simple sine wave. Comparison to available data for other undulatory microswimmers including
various sperm cells and nematodes, shows that most of them operate in a narrow range of
wavelengths 7.5. kl . 11.5, whereas the best performing sinusoidal swimmer (kl ' 9.25) lies
well within this range. The typical amplitude, b/ l, of most reported undulatory biological
swimmers is within the range 0.08–0.16, with the most efficient sine swimmer (b/ l ' 0.12)
again lying well inside this range, while the fastest sine swimmer requires a larger amplitude of
b/ l ' 0.24. Moreover, with reference to C. elegans, most biological swimmers overperform the
fastest model sine swimmer in terms of swimming distance covered per stroke period, further
emphasizing the importance of the geometric waveform optimization. Based on the approximate
limit of RFT applicability derived for the model sine swimmer, the swimming gaits of most
undulatory biological swimmers reported in the literature are likely to be adequately described
by the RFT. Modeling of relatively short swimmers, such as C. elegans, may necessitate the
use of more rigorous hydrodynamic models accounting for non-local nature of hydrodynamic
interaction between different parts of the filament.
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Appendix A. Useful identities

Denoting 〈. . .〉 =
1
λ

∫ λ

0 (. . .) ds, for γ =
dζ

ds = (ŝ · x̂)−1
=

√
1 + κ2 cos2(ks − �t) we have

〈γ 〉 =
2

π
E(−κ2),
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〈
1

γ

〉
=

2

π
K (−κ2),

〈γ 2
〉 = 1 + κ2/2,

〈
1

γ 2

〉
=

1

2
√

1 + κ2
.

Appendix B. Particle-based computation scheme

The general solution for the velocity and the pressure field around a collection of N spherical
particles of radii ai , can be written as

v =

N∑
i=1

vi , p =

N∑
i=1

Pi , (B.1)

where the solution for the velocity vi outside a single i th sphere has the form of Lamb’s general
solution of Stokes equations in terms of solid spherical harmonics [35]

vi = v′

i +
1

2µ
r i Pi =

∞∑
n=1

∇ ×
(
r iχ

i
−(n+1)

)
+ ∇8i

−(n+1)

−
(n − 2)

µ2n (2n − 1)
r 2

i ∇ pi
−(n+1) +

(n + 1)

µn (2n − 1)
r i pi

−(n+1). (B.2)

Here r i is the radius vector with origin at the center of the i th sphere, ri = |r i |, pi
−(n+1) is a

linear combination of solid spherical harmonics of order −(n + 1) with the origin at the center
of the i th sphere, satisfying the Laplace equation for the pressure field ∇

2 Pi = 0, while χ i
−(n+1),

8i
−(n+1) each are combinations of solid harmonics, arising from the solution of the associated

homogeneous equations ∇ · vi = 0 and ∇
2v′

i = 0:{
8i

−(n+1),
1

µ
pi

−(n+1), χ
i
−(n+1)

}
=

n∑
m=−n

{
ai

mn, bi
mn, ci

mn

}
ui−

mn (B.3)

with ui−
mn being decaying solid spherical harmonics centered at the origin of the i th sphere

ui−
mn =

1

r n+1
i

Pm
n (cos θi) eimφi , (B.4)

where Pm
n is the associated Legendre function. For n = 1 the solution {8i

−2,
1
µ

pi
−2, χ i

−2}

corresponds, respectively, to a stresslet, stokelet and rotlet centered at the i th sphere [35].
The no-slip boundary conditions, v = ui , where ui is the local velocity of the surface of i th

particle, can be used to determine the unknown coefficients ai
mn, bi

mn and ci
mn. An elegant way of

computing the coefficients was proposed in [29]. The boundary conditions are first transformed
to the Lamb’s form by applying operators r i ·, −ri∇· and r i · ∇× to both sides of the no-slip
boundary condition and then the direct origin-to-origin transformation of spherical harmonics
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centered at different spheres is applied, yielding an infinite system of linear equations for the
coefficients

−(n + 1)ai
mn +

(n + 1)

2 (2n − 1)
bi

mn + a2n+1
i

N∑
j=1

∞∑
l=1

l∑
k=−l

(
Di j

klmna j
kl + E i j

klmnb j
kl + F i j

klmnc j
kl

)
= an+1

i X i
mn,

(B.5)

1

a2
i

(n + 1)(n + 2)ai
mn −

n(n + 1)

2 (2n − 1)
bi

mn +
N∑

j=1

∞∑
l=1

l∑
k=−l

(
G i j

klmna j
kl + H i j

klmnb j
kl + L i j

klmnc j
kl

)
= an

i Y i
mn,

(B.6)

n (n + 1) ci
mn + a2n+2

i

N∑
j=1

∞∑
l=1

l∑
k=−l

(
M i j

klmnb j
kl + N i j

klmnc j
kl

)
= an+1

i Z i
mn. (B.7)

The coefficients Di j
mnkl, E i j

mnkl, F i j
mnkl, K i j

mnkl, L i j
mnkl, M i j

mnkl and N i j
mnkl are given in the appendix

of [29] in terms of the transformation coefficient C i j
klmn:

C i j
klmn = (−1)m+n (l + n − k + m)!

(l − k)!(m + n)!
u j−

(k−m)(l+n)(Ri j , θi j , ϕi j),

where Ri j , θi j , ϕi j are the spherical coordinates of vector Ri j connecting the centers of j th and
i th spheres, u j−

(k−m)(l+n) is the decaying solid spherical harmonics defined in (B.4). According
to definition of spherical harmonics the coefficients Cklmn are assumed zero if |k| > l or if
|m| > n.

X i
mn, Y i

mn and Z i
mn are the coefficients in the expansions in surface harmonics of r i

ri
· ui ,

−ri∇ · ui and r i · ∇ × ui . When the particle surface velocity corresponds to the rigid body
motion, ui = V i + ωi × r i , the right-hand side of (B.5)–(B.7) can be written as [29]

X i
1n =

1
2

(
V 0

i x − iV 0
iy

)
δ1

n, (B.8)

X i
0n = V 0

i zδ
1
n, (B.9)

X i
−1n = −

(
V 0

i x + iV 0
iy

)
δ1

n, (B.10)

Y i
mn = 0, (B.11)

Z i
1n =

(
ω0

i x − iω0
iy

)
δ1

n, (B.12)

Z i
0n = 2ω0

i zδ
1
n, (B.13)

Z i
−1n = −2

(
ω0

i x + iω0
iy

)
δ1

n (B.14)
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with {Vi , ωi} being the translation and rotation velocities of i th sphere, respectively and δk
n being

the Kronecker’s delta.
The viscous drag force Fi exerted on sphere i and hydrodynamic torque T i about its center

can be expressed in terms of the expansion coefficients for n = 1,

Fi = −4πµ
[(

bi
11 −

1
2bi

−11

)
x̂ + i

(
bi

11 + 1
2bi

−11

)
ŷ + bi

01 ẑ
]
, (B.15)

T i = −8πµ
[(

ci
11 −

1
2ci

−11

)
x̂ + i

(
ci

11 + 1
2ci

−11

)
ŷ + ci

01 ẑ
]
. (B.16)

Thus when velocities of the spheres are prescribed the forces and torques exerted on
any sphere can be found by solving 3N × L × (L + 2) equations for the expansion coefficients
{ai

mn, bi
mn, ci

mn}, obtained by truncating the system (B.5)–(B.7) after l = L terms and solving it
together with (B.15)–(B.16). Alternatively, forces and torques can be prescribed and velocities
are computed or a mixed problem can be formulated when some velocities and forces/torques
are prescribed.
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