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Abstract. Optical absorption edge measurements are performed on I doped
PbTe using diffuse reflectance infrared Fourier transform spectroscopy. The
Burstein–Moss shift, an increase in the absorption edge (optical band gap)
with increasing doping level, is explored. The optical gap increases on the
order of 0.1 eV for doping levels ranging from 3 × 1018 to 2 × 1020 cm−3,
relevant doping levels for good thermoelectric materials. Chemical potential is
estimated from transport measurements—specifically, Hall effect and Seebeck
coefficient—using a single band Kane model. In heavily doped semiconductors,
it is well-known that the band gap shrinks with increasing doping level. This
effect, known as band gap renormalization, is fit here using an n1/3 scaling law
which reflects an electron–electron exchange interaction. The renormalization
effect in these samples is shown to be more than 0.1 eV, on the same order of
magnitude as the band gap itself. Existing models do not explain such large
relative changes in band gap and are not entirely self-consistent. An improved
theory for the renormalization in narrow gap semiconductors is required.
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1. Introduction

The maximum efficiency obtainable by a thermoelectric device is related to the dimensionless
figure of merit, zT =

S2σ

κ
T , where S is the thermopower (or Seebeck coefficient), σ is

the electrical conductivity, κ is the thermal conductivity and T is the temperature. Each
of the properties included in zT depends intimately upon the number of free carriers and
electronic transport parameters of the material. These parameters arise from the materials’
electronic band structure. Recent work on PbTe and other materials highlight the manipulation
of these electronic states or ‘band engineering’ as a method for improving thermoelectric
efficiency [1–4]. Band engineering in thermoelectric PbTe involves alloying and doping to
modify the band structure in a way that improves the thermoelectric quality factor [4]. Of
particular importance is the relative position of the primary and secondary transport bands that,
as measured by the band gaps, can be modified with temperature, alloying and even doping.

PbTe alloys have some of the highest efficiencies for thermoelectric power generation, with
zT values above 1 in the temperature range useful for waste heat recovery [1, 5–7]. In p-type
PbTe a complex valence band structure exists that has been described with two valence bands: a
lighter band at the L point (direct) and a heavier at the 6 line in the Brillouin zone [1, 2, 6, 8–17].
While the qualitative results of density functional theory (DFT) calculations show excellent
agreement, band gap values and transport properties are known to be dependent on the specific
approximations made such as the specific exchange/correlation functional, how the alloy is
accounted for (e.g. supercell or Korringa–Kohn–Rostoker coherent potential approximation
(KKR-CPA)), assumptions about the relaxation time and the effect of temperature.

Measurement of the optical properties directly investigates the electronic structure of the
material giving a wealth of information useful for engineering thermoelectric properties [18].
Optical measurements can be used to estimate the energy difference between the valence
and conduction bands, the band gap (Eg), which can help determine the electronic and
thermoelectric properties of materials. At high temperatures, when Eg ∼ 3 or 4kBT , the Fermi
distribution is sufficiently broad such that a significant minority carrier population can develop,
which results in a cancelling of a portion of the Seebeck voltage. Peltier heat currents from
different carrier types exist even at zero net electrical current thereby leading to the bipolar
thermal conductivity [19]. The presence of minority carriers in thermoelectric materials is the
primary reason for reduction of zT at high temperatures.

There are several experimental methods of measuring the band gap, both using electronic
and optical properties. First, the band gap can be estimated from electronic resistivity for an
intrinsic semiconductor (where the number of holes and electrons are approximately equal), but
this simple calculation assumes that both electrons and holes have the same mobility and that
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it has a specific temperature dependence. Alternatively, the peak in the Seebeck coefficient that
appears at high temperatures due to the influence of minority carriers can be used to estimate
the band gap as Eg = 2αmaxT [20], but again this requires similar assumptions about the relative
mobility of holes and electrons. Because of the assumptions these methods can only give
qualitative values (within 0.1 eV or ∼30% in PbTe). For a more direct measurement of band
gap, optical methods have been preferred.

Due to their ease of heavy doping and high electrical conductivity, thermoelectric materials
are generally small band gap semiconductors with gaps in the mid infrared (0.1–0.5 eV). Optical
measurements in PbTe were first performed in the 1950 and 1960s and showed a band gap of
around 0.3 eV with a temperature dependence of dEg

dT = 0.3 ± 0.1 meV K−1 [21–24]. Prakash
investigated the pressure dependence of the fundamental gap and determined that only about
half of the change with temperature could be attributed to thermal expansion while the rest was
probably due to interaction with phonons [25, 26]. Nikolic and others have studied the optical
band gaps in a variety of lead chalcogenide alloys [27–30]. Several studies of p-type PbTe found
evidence of a second valence band using optical methods through inter-valence band transitions
below the fundamental absorption energy [9, 31]. Also, the formation of impurity states has
been observed and their energies have been estimated using optical absorption for PbTe doped
with In [32–34] and Tl [34, 35]. Other thin film and bulk absorption measurements of alloys
and quantum wells are useful for design of infrared lasers and detectors [36–40]. While there
are many optical measurements of the band gap, many studies do not consider the effects of free
carriers on the fundamental absorption edge.

Many of the previous reports of optical band gap measurements on PbTe have used single
crystal samples measured in transmission [22, 23, 25, 29–31, 41, 42]. Transmission experiments
have a few disadvantages. Firstly, optically transparent single crystals are often used to avoid
internal reflections and light scattering at the grain boundaries—which are generally more
difficult to prepare than polycrystalline samples. Secondly, the samples must be polished
extremely thin since the absorbance scales exponentially with the absorption coefficient and
sample thickness through Beer’s law. This limits the highest absorption coefficient that can be
measured for a given sample thickness. Lastly, in cases where the samples were sufficiently thin
(i.e. thin film samples with thicknesses on the order of the light wavelength), oscillations can
result in the measured absorbance. These Fabry–Perot fringes are related to interference during
internal reflection. While the effect can be mitigated through mathematical models, additional
analysis is required.

Other methods of measuring the optical properties in lead chalcogenides have also been
used. PbTe, being a narrow gap semiconductor, has been rather thoroughly studied for uses
in infrared lasers and photodetectors. Other studies have measured specular reflectivity of
PbTe samples which requires Kramers–Kronig analysis in order to obtain the absorption
coefficient—inevitably, some extrapolation of the dielectric function is necessary which can
complicate the analysis [43]. Spectroscopic ellipsometry can bypass the necessity for the
Kramers–Kronig analysis by measuring both the real and imaginary components of the
dielectric function simultaneously, and some studies of lead chalcogenides as photodetectors
or infrared lasers use these techniques [37, 44]. Many of the optical measurements show the
higher energy features (>1 eV) of PbTe which can be important to determining critical points in
the joint density of states—a convenient way to compare with DFT calculations [18, 45]. This
work, however, will focus on the fundamental absorption edge.
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Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used
exclusively in this work for optical measurements due to its ease of sample preparation
and data analysis. Diffuse reflectance can be obtained in a thin sample layer of a ground
powder. The measurement requires only a small amount of polycrystalline sample (100 mg
or less). Because of the Fourier transform analysis, light at all frequencies can be measured
simultaneously—greatly reducing sampling time. Relating the diffuse reflectance to sample
absorption can be performed using the Kubelka–Munk function. This report shows that DRIFTS
is very sensitive to small changes in the energy of direct transitions across the band gap due to
progressively higher doping levels. With proper extrapolation the small shifts associated with
doping can be shown and understood according to existing optical analysis techniques.

Heavily doped semiconductors, including most good thermoelectric materials, have free
carrier contributions to the optical absorption that can complicate the estimate of the band gap.
Often the band gap is simply assumed to be the extrapolation of the absorption edge to zero
absorption. In the case of degenerately doped semiconductors, this can cause large errors in
the estimate of the true band gap on the order of the value of the electrochemical potential, ζ ,
relative to the band edge (which can be more than 0.1 eV in heavily doped samples). Since the
early 1950s, it has been known that for semiconductors with small effective mass, the band gap
tends to change with increasing doping [46, 47]. These effects have been considered in lead
chalcogenides by several authors [24, 48–50] using methods other than DRIFTS.

In the case of a degenerately doped n-type semiconductor, states near the conduction band
edge have a nonzero occupancy. As a result, the photon energy required for excitation across a
direct band gap becomes higher by an additional (1 + mc

mv
)ζ in the case of direct transitions (see

figure 1) which results in an increase in the optical band gap, Eg,opt, known as the Burstein–Moss
shift. The true band gap (Eg) remains unaffected with doping if we consider the rigid band
approximation which assumes the band gap and band parameters are independent of the electron
filling. This often used approximation has proven effective in electronic transport modeling
for many thermoelectric materials over a wide range of temperatures and doping levels. The
thermal gap, Eg,thermal, is relevant to transport properties and minority carrier excitation. The
true band gap, Eg, has been shown both experimentally through optical measurements [51–53]
and theoretically [51–53] to be reduced as the carrier concentration increases in heavily doped
semiconductors—known as band gap renormalization. Renormalization is thought to be related
to Coulombic repulsion of the electrons and/or exchange interactions.

The difference between the optical and true band gaps have been studied in many III–V
and other semiconductors and semiconductor devices. It is important to have an understanding
of band gap renormalization for a variety of semiconductor devices where both the majority
and minority carrier concentration and specific band positions can be necessary to optimize
performance. In thermoelectric materials, though, the effects of heavy doping on the optical
properties are generally not considered. In fact, there is often no distinction made between the
thermal and optical gaps in doped materials [54, 55]. While the differences can be circumvented
in the case of an undoped material (PbTe undoped binary), some thermoelectric materials may
include both shifts in the doping level and to the band structure itself. In this work, we attempt
to quantify the Burstein–Moss shift on the optical gap, and gap renormalization in iodine doped
PbTe using diffuse reflectance spectroscopy. We primarily use measured Seebeck coefficients
to estimate the chemical potential which is an improvement to simply measuring the Hall
carrier concentration. Further, we attempt to improve upon renormalization estimates by self-
consistently considering the band gap parameter.
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Figure 1. Optical band gap as a result of the Burstein–Moss shift in degenerately
doped semiconductors.

2. Experimental and theoretical methods

PbTe samples were synthesized by melting and annealing. The ingots were hand-ground into
a fine powder and hot pressed into 1/2 inch diameter discs using an induction hot press
method described previously [56]. The particulars of their synthesis and electronic properties
measurements are shown in a previous work [57].

Electronic properties measurements were used in conjunction with Boltzmann transport
equation models and a single Kane type band which is outlined in detail by several references
[1, 10, 58]. These models were used in order to obtain an estimate of the electrochemical
potential ζ , which reduces to the chemical potential (ξ ) in the absence of an applied electric
field, for each sample; this was accomplished in two ways. Firstly, using room temperature
Seebeck coefficient measurements, the electrochemical potential could be estimated assuming
a single Kane band model where acoustic phonon scattering is assumed as the primary electron
scattering mechanism. The single Kane band model has been shown to be a good model for
the conduction bands in PbTe [57]. The band gap parameter in the Kane model was assumed to
have a constant value near that of the undoped PbTe, 0.295 eV, for this analysis. Secondly, the
electrochemical potential could be estimated for a given carrier concentration using a constant
effective mass; the effective mass was obtained from fitting the room temperature Seebeck
relation with Hall carrier concentration (Pisarenko plot), m∗

d0 = 0.276 me was a reasonable
value for these PbTe samples. Alternatively, the chemical potential could be estimated from
Seebeck coefficient measurements directly without assumptions about the effective mass. While
a six-band model could be used to improve chemical potential estimates at high doping
(>5 × 1019 cm−3) [16], the Kane model shows good agreement with transport properties and
was used instead.

Samples were measured in diffuse reflectance with a Praying Mantis attachment using a
Nicolet 6700 Fourier transform infrared spectrophotometer with a deuterated triglycine sulfate
(DTGS) detector and KBr beamsplitter. All samples were referenced to the provided alignment
mirror, this was found to give nearly same results as when referenced to KBr powder without
the added impurity features from KBr itself. The absorption coefficient was obtained using
Kubelka Munk analysis F(R) =

α

K =
(1−R)2

2R , where R is the fractional reflectance, α is the
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Figure 2. Normalized Kubelka Munk function for PbTe1−x Ix for (a) raw data,
and (b) absorption coefficient direct gap fit along with the linear extrapolation to
obtain the optical band gap from the Tauc method.

absorption coefficient and K is the scattering coefficient. For particle sizes greater than the light
wavelengths measured (20–2 µm), the scattering coefficient is understood to be approximately
independent of frequency [59].

3. Results

Each sample revealed an absorption edge near 0.3 eV (shown in figure 2(a)), but heavily
doped samples also showed increasing absorption at low energy. For samples with high
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doping (>2 × 1019 cm−3), there was an observable peak in absorption. This corresponds to the
downward peak in reflection associated with the oscillating electron plasma in the material

near the plasma frequency, ωp =

√
Ne2

ε∞m∗
I

[60], where N is the electron concentration, e is the

fundamental electronic charge, ε∞ is screened dielectric constant and m∗

I is the inertial effective
mass. For metals, the plasma frequency is in the ultraviolet and visible, but in heavily doped
semiconductors it can exist into the far infrared. The location of the reflectivity minimum can
also be used as an estimate for the optical effective mass of the charge carriers, but this was
neither the focus of this work nor will it be explored in detail here. In order to isolate interband
transitions, these features were fit and subtracted with a power law (y = axb + c). In almost
all cases, the exponent, b, followed the expectation for Drude carriers of b = −2, but some
deviations occurred for heavily doped samples which showed more clearly the plasma reflection
minimum. This method was also compared to just normalizing the data to its minimum value,
the resulting extrapolated band gap was consistently ∼5 meV lower for the fits with the free
carrier contribution subtracted.

While the accepted view of PbTe is as a direct gap semiconductor, with evidence shown
both experimentally [50, 61–63] and theoretically [14, 15, 64], some confusion as to whether
PbTe was a direct or indirect gap semiconductor existed in early optical measurements of
PbTe where some authors obtained good fits to α1/2 versus h̄ω expected for indirect transitions
[23, 41]. Similar to these reports, the absorption spectra in this work have a linear α1/2 versus h̄ω

region where the extrapolated band-gap energy is slightly lower (∼30–60 meV) than those fit for
direct transitions. Scanlon suggests that this difference can be attributed to indirect transitions
where a phonon is absorbed [10, 23], although single phonon energies are at most 12 meV or less
based on a Debye temperature of 140 K [65] and neutron scattering experiments [66]. Prakash
suggests Scanlon’s observation could also be interpreted as merely a coincidental fit due to the
Urbach tail (exponential decrease in density of states below the band edge) [25]. Although, we
believe that Prakash’s interpretation is correct in PbTe, many materials do exhibit both indirect
and direct transitions with some energy separation. For example, in germanium, both direct
and indirect transitions exist with the indirect gap occurring first at about 0.63 eV and direct
transitions beginning at 0.81 eV [67]. The indirect portion involves a slow rise in absorption
coefficient over a long energy range (∼100 cm−1 over ∼0.2 eV) while the direct absorption on
the other hand gives a much steeper rise over a shorter period (∼104 cm−1 over ∼0.05 eV). As
a result, the direct gap is much more easily observed particularly if both direct and indirect
transitions occur at close to the same energies. The absorption coefficient of PbTe changes
∼104 cm−1 over ∼0.05 eV [49, 68], suggesting it is a direct gap semiconductor. Recently, it
has been suggested that the true gap value is convoluted by mid-gap defect states [18]. While
these states may affect the measured optical band gap, we see no significant contribution from
localized states in the transport properties which are characteristic of itinerant (delocalized)
carriers giving metal-like transport behavior. Therefore, the measured absorption edge was
assumed to be associated with the band edge in PbTe and not mid gap defect states, although
defect states near the band edge could certainly play a role in band gap renormalization.

A series of PbTe samples doped with iodine (n-type) were measured using DRIFT
spectroscopy, the normalized spectra are shown in figure 2(a). Free carrier absorption which
scales as (h̄ω)−2 in the classical limit is observed at low frequencies. As the doping level
increases, the free carrier contribution to the absorption coefficient moves to higher and higher
frequencies as expected from the Drude model, when ω � τ−1: αFC ∝

ne2

nrcm∗τω2 where n is the
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number of free carriers, e is the elementary charge of an electron, nr is the real refractive index,
c is the speed of light, τ is the Drude scattering time and ω is the photon frequency [69]. The free
carrier absorption was subtracted for the analysis of the optical gaps. Optical band gaps were
obtained using the Tauc method, where (αh̄ω)2 is extrapolated on a plot versus photon energy,
h̄ω, to zero absorption (figure 2(b)) [60] which is based on direct transitions between parabolic
bands. Other authors have plotted α2 versus h̄ω for fitting the direct gap [23], but regardless of
the method the result is similar (within the measurement error: ∼0.005 eV).

In heavily doped samples an optical band gap can be extracted in the same way, although
it is not immediately clear the absorption should still have such a simple functional form.
Several spectral features are observed near the absorption edge. First, many observers note an
exponential increase in absorption just below the gap, known as an Urbach tail. The Urbach
tail is thought to be related to the random distribution of impurity atoms in the material; we
also observe an approximately exponential increase in absorption just below the band edge
[60, 70]. Next, as electrochemical potential moves deeper into the band with doping level, there
is a decrease in the number of available states near the band edge for an electron to be excited
into. This effect, known as the Burstein–Moss shift [46, 48, 60, 71], means that a higher energy
photon is required to produce the same amount of absorption—moving the absorption edge to
higher energies. Lastly, the true band-gap Eg has been shown to decrease with heavy doping,
known as band gap renormalization [51, 72–74]. The Burstein–Moss shift and renormalization
effects will be discussed further below. In order to relate the measured optical band gap to the
thermal gap, a chemical potential estimate is required.

In many cases, the chemical potential is estimated by the 0 K limit of the parabolic band as
an estimate of the Fermi energy: 0 K limit as E f =

h̄2

2m∗ (3π 2n)2/3 where m∗ is the band effective
mass [75–77]. While this may be a good estimate for degenerate systems (at low temperature,
high doping) for materials with parabolic band shapes, a better estimate involves solving the
more general temperature dependent expression n =

∫
∞

0 D(E) f (E, ζ, T ) dE where D is the
density of states and f is the Fermi distribution function which is a function of the electron energy
E, chemical potential ζ and temperature T. It is well known that many semiconductors, including
lead chalcogenides, deviate significantly from parabolic behavior. Ravich has developed an
adaptation of the Kane band model for application to the lead chalcogenides which has shown
excellent agreement to experimental transport data [1, 10, 57]. Using Ravich’s solution of the
Kane band model applied to lead chalcogenides, n can be calculated by numerically integrating
equation (1)

n =

∫
∞

0

√
2m∗

d0(kBT )1/2(ε + ε2β)(1 + 2εβ)

π 2h̄3 (1 + exp (ε − η))−1 dε, (1)

where m∗

d0 is the band edge density of states effective mass, ε is the dimensionless energy
(= E

kBT ), β is the non-parabolicity parameter (= kBT
Eg

from Ravich) and η is the reduced

electrochemical potential (= ζ

kBT ). Calculation of the electrochemical potential as a function
of the true carrier concentration is rather straightforward, but in order to compare to the Hall
carrier concentration the Hall factor, rH, is needed. Equations for the Hall factor and other
relevant model parameters were obtained assuming acoustic phonon scattering in a single band
as described in detail by Ravich et al [10] and Wang et al [58] and relevant parameters for PbTe
were used following LaLonde et al [1] and Pei et al [57].

Using the Boltzmann transport equation, it is possible to obtain an estimate for the
electrochemical potential, ζ , directly from the measured Seebeck coefficient with no assumption
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Figure 3. The change in electrochemical potential (calculated from the Seebeck
coefficient) with Hall carrier concentration as a result of doping.

about the band edge effective mass (equation (2)) [10, 58]

S =
kB

e

(1 F1
−2

0 F1
−2

− η

)
, (2)

where n Fm
l =

∫
∞

0

(
−

d f
dε

)
εn(ε + βε2)m[(1 + 2βε) + 2]l/2 dε, a modified version of the Fermi

integrals from Wang et al (figure 3) shows the calculated chemical potential for each iodine
doped sample calculated using a single Kane band model both from the room temperature
Seebeck measurements and using a constant band edge effective mass, m∗

d0 = 0.276m0 (best
fit of the Seebeck versus nH Pisarenko plot). Here, we can see the chemical potential for the
most heavily doped samples increases to ∼0.15 eV from the band edge. It is important to note
that the chemical potential estimate can vary depending on the particular band model. In the
case of a single parabolic band, the chemical potential change to be as much as 50% higher for
the same doping level. Once the electrochemical potential is known, it is possible to estimate the
true gap from the optical gap measurement (figure 5(a)). As an alternative to the Tauc method,
the gap can also be fit using the spectral Fermi distribution.

The Fermi distribution can be projected onto the unperturbed interband absorption as
a multiplicative factor shown in equation (3). This technique and similar methods have
been performed on a variety of materials, including lead chalcogenides [48, 49] and other
materials [46, 51, 78, 79]:

α (h̄ω) ∝ α0 (h̄ω) [1 − f (h̄ω, ζ, T )] , (3)

α0 is the absorption for an unpopulated conduction band; at T = 0 K which for parabolic bands

is proportional to α0 =

√
h̄ω−Eg

h̄ω
=

√
h̄ω−[Eg,opt−(1+ m∗

c
m∗

v
)ζ ]

h̄ω
. f is the Fermi distribution, which is related

to the photon energy as f (h̄ω, ζ, T ) = [1 + exp (
h̄ω−Eg,opt

(1+ m∗
c

m∗
v
)kBT

)]−1. The second term of equation (3)

represents the electronic excitation probability based on the electron population from Fermi
distribution. The electronic occupation probability is equal to 1/2 at the chemical potential which
can then be related to the photon energy, h̄ω, assuming direct transitions and a fully occupied
valence band (Eg � kBT ).
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Figure 4. Fermi spectra method projecting the Fermi distribution onto the
absorption edge in PbTe1−yIy , y = 0.0012 fit with a Fermi function.

(a) (b)

Figure 5. (a) Optical band gaps fit from optical data in two methods:
extrapolation by the Tauc plot method and estimation from Fermi spectra fits.
(b) The true band gap, calculated from the optical gaps by Eg = Eg,opt − 2ζ .
A fit is performed using all of the data and the renormalization as in equation (4).

Using a proportionality factor and the band gap value as a fitting parameter, it is possible
to obtain an estimate for the optical band gap using equation (3) from the measured absorption
spectra for a given estimate of the chemical potential (as estimated from either room temperature
Seebeck and/or nH measurements). The resulting fit is shown in figure 4. The optical and true
gaps obtained by both the Tauc and Fermi spectra methods are shown in figures 5(a) and (b).
Effectively, the Fermi projection method gives the optical band gap near the inflection point in
the absorption (where the slope is the largest).

Two different methods have been used to calculate the band gap. The Tauc method takes
the raw absorption data and extrapolates to estimate the optical gap while the Fermi spectra
method projects the Fermi distribution onto the joint density of states which is fit to the measured
absorption spectra to estimate the optical band gap. Figure 5(a) shows an increasing optical gap
with doping level—a Burstein–Moss shift. As the doping level increases, the chemical potential
in the conduction band moves upward which results in occupied states nearest the band edge
which requires a higher energy photon for excitation of a carrier across the gap. The results
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Table 1. Band gap and transport measurement results and chemical potential
estimates for this series of samples. All Kane band calculations assume a
constant β parameter of ∼0.087 corresponding to the undoped sample band gap
of 0.295 eV.

x nH (1018 cm−3) S (µV K−1) ζSeeb (eV) ζSKB (m∗
= 0.276) (eV) Eg,opt (eV) 1RN,Seeb (eV)

0.0000 – −275.0 −0.030 −0.033 0.295 –
0.0000 – −230.0 −0.014 −0.022 0.300 –
0.0004 5.87 −141.4 0.021 0.020 0.304 0.033
0.0007 1.03 −109.6 0.039 0.040 0.308 0.066
0.0012 1.76 −81.9 0.067 0.063 0.315 0.114
0.0020 2.94 −66.9 0.086 0.089 0.324 0.142
0.0028 41.1 −52.0 0.108 0.108 0.331 0.181
0.0035 51.4 −43.0 0.126 0.123 0.349 0.199
0.0040 58.7 −42.9 0.115 0.132 0.355 0.170
0.0055 80.8 −41.5 0.122 0.156 0.364 0.175
0.0100 147 −33.7 0.147 0.208 0.388 0.201

from both the Tauc and Fermi spectra methods appear to agree within ±0.015 eV, although the
broadening fits generally show a larger optical band gap. From figure 1, we can relate the optical
gap to the true gap Eg.

Figure 5(b) shows the calculated true band gap with respect to doping level. In the case of
direct transitions and similar valence and conduction band effective masses, the true band gap
is related to the optical gap and the chemical potential as Eg = Eg,opt − 2ζ . The result shows a
true gap that decreases significantly with doping level relative to the undoped sample. This is a
result of the measured optical gap not increasing nearly as quickly as expected. Over the same
doping range, the optical band gap is expected to increase by 2ζ , which is as much as 0.25 eV
at the highest doping levels—see figure 3. The measured optical band gap only increases by
about 40% of the electrochemical potential value or ∼0.07 eV at higher doping levels as shown
in figure 5/table 1. The relatively small change of the optical band gap can be explained by the
renormalization effect which is an estimate of band gap shrinkage with doping. The optical band
gap increases according to equation (4) as described the schematic in figure 1 [71, 75, 76]:

Eg,opt = Eg0 − 1RN +

(
1 +

m∗

c

m∗
v

)
ζ, (4)

where Eg0 is the band gap of the undoped material, 1RN is the band gap renormalization,
m∗

c and m∗

v are the conduction and valence band effective masses respectively, and ζ is the
electrochemical relative to the conduction band edge. This equation again assumes direct
transitions which is the reason that a factor greater than 1 is multiplying the electrochemical
potential. The true band gap in equation (4) can be represented by Eg = Eg0 − 1RN which
accounts for a shrinking band gap with increasing doping level as shown in figure 5(b).

Both experimental and theoretical work has been done to determine how the band
gap should change due to renormalization with increasing electron concentration in many
semiconductors including: Si [51, 53, 74, 79, 80], Ge [80, 81], GaAs [73, 76], InP [52], ZnO [82]
and other materials. The effect has proven important in semiconductor device applications
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where the material’s band gap determines many device characteristics and careful engineering
is required to optimize performance. Gap narrowing is thought to be due to combination of
effects including electron–electron exchange interactions, electron–donor interactions and band
tailing [73, 75, 80, 83]. Electron–electron exchange has been shown to scale as n1/3 in a
weakly interacting free electron gas [80, 82]; this model is often used empirically, although
the specific form may vary with crystal and energy band structure. The effect can be thought
of as Coulombic repulsion between electrons in the material which scales as 1/r where r is the
mean distance between electrons. Experimentally, attempts have been made to empirically fit
the theoretical models. Most use a combination of power laws whose prefactors can in theory
be calculated, but are most often used as fitting parameters [75, 80, 83]. Drabkin et al [49], for
example, suggest that for PbTe a shift on the order of 10 meV is reasonable for doping levels
on the order of 1 × 1019 cm−3. When using the method of Mahan [83], however, the predicted
reduction was 1 meV or less due to the large static dielectric constant (ε(0) ≈ 400) for PbTe.
Following [51, 79], we fit the experimental renormalization (for both Tauc and broadening
methods) to an n1/3 power law, including an additional constant term: 1RN = An1/3 + 1RN,0.
The resulting renormalized fits to the optical and true band gap are plotted in figures 5(a) and
(b) and are also shown in table 1.

Figure 5(b) shows the true band gap, when considering renormalization, reduces rather
significantly. For the three most heavily doped samples, the chemical potential, as estimated
from Seebeck coefficient measurements, does not continue to increase at the same rate. As
a result, the true gap approaches an approximately constant value of close to 0.15 eV. The n1/3

model deviates significantly for carrier concentrations >∼ 6 × 1019 cm−3, resulting in a gap that
rapidly approaches zero above this value. While the magnitude of the gap reduction is consistent
with previously published results for heavily doped n-type PbTe [49], Si [51, 53, 79], Ge [81]
and III–V semiconductors [52, 73, 75, 76, 84], the apparent discrepancy at high doping is not
easily explained using the simple n1/3 empirical model.

In Ravich’s adaption of the Kane band model for lead chalcogenides, the band gap is a
necessary parameter as it determines the non-parabolicity parameter—β =

kBT
Eg

. Because optical
measurements have shown evidence that the band gap in PbTe decreases with doping as a result
of band gap renormalization, it might be expected to affect the energy dependence of the band
structure. The band edge effective mass in narrow gap semiconductors has been suggested to
scale with the band gap itself [10, 69]. Ravich suggests that the energy dependent effective mass
for a Kane type band should scale with energy as

m∗
=

m0 Eg

2p2

(
1 +

2E

Eg

)
, (5)

where p is the kp matrix element coupling states between two bands: 〈u1 |p| u2〉. The first
term will scale proportional to the band gap, while the second will scale with E, the electron
energy. More often, the prefactor in equation (5) is treated as a constant—m∗

0, the band edge
effective mass—which can be fit from the Seebeck coefficient versus carrier concentration
Pisarenko plot. Optical measurements of the band gap renormalization in this work suggest
that the gap decreases with increasing carrier concentration. In order to probe the effect that
this might have on the estimate of the chemical potential and on the transport properties, a self-
consistent approach should be taken. For all of the previous calculations, the chemical potential
has been estimated from Seebeck coefficient (equation (2)) assuming a constant Kane-band
nonparabolicity parameter (β used in equations (1) and (2)) given by assuming a constant band
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(a) (b)

Figure 6. Iterative self-consistent calculation of the true gap Eg(n) in accordance
with the Kane band model. (a) The result of different n-dependences of the
Kane β parameter solid points represent Eg(n) in accordance with equation (4)
(using the measured optical gaps and chemical potential estimates from Seebeck
coefficient measurements). (b) The estimated chemical potential as a function
of doping level for different dependence of β on n—lines represent constant
effective band edge mass (equation (2), m∗

0 = 0.276 m0) and points are calculated
from Seebeck coefficient (equation (3)).

gap of 0.295 eV equal to that of the undoped PbTe sample. Using the fitted n-dependent gap:
Eg(n) = Eg0 − 1RN(n), we can self-consistently calculate n as a function of chemical potential
with an n-dependent nonparabolicity parameter, β =

kBT
Eg(n)

. The new value of chemical potential
was used to recalculate the gap renormalization using the measured optical gaps—which was
again fit to an n1/3 model. After several iterations, the true gap appeared to converge to a self-
consistent value that was slightly higher than the previous result which assumed constant gap.
The self-consistent solution yielded renormalization fitting parameters of 5.6 × 10–8 eV cm and
−0.068 eV for A and 1RN,0 respectively. The band gap, both fit (solid lines) and values from
measurements (circles), for the model assuming constant β and the self-consistent form which
includes an n-dependent band gap is shown in figure 6(a). Renormalized gap estimates were
obtained using measured optical gaps and estimates of the electrochemical potential, ζ (shown
in figure 6(b)). Here, we can see the effect of the band-nonparabolicity as an increasing band
mass as the chemical potential raises. This is based on the assumption of a constant band edge
effective mass: m∗

0
m0

=
Eg

2p2 , which there is reasonable evidence for based on the Seebeck versus
nH Pisarenko plot. At higher carrier concentrations (>6 × 1019 cm−3), the renormalized band
gap value becomes quite small, and errors become larger. Therefore, the fact that Eg(n) levels
out at about 0.15 eV may not be entirely accurate since the renormalization effect is probably
overestimated at these doping levels. Further, PbTe is known to deviate from the Kane model
for carrier concentrations greater than this value [16]. As in the constant β case, the empirical
n1/3 model may be an oversimplification in the case of increasingly narrow gap and/or the
simplified Kane model of Ravich may also be an oversimplification which cannot account for
these narrowing phenomena.

In the discussion of electronic band structure it is typically a good first approximation
to assume the energy bands remain unaltered with doping—the rigid band approximation.
Lee, Mahanti et al give some examples where this may not be a good assumption in Na
doped PbTe [85], although the picture here is complicated by the variability in supercell
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calculations [86]. Even experimental measurements of effective mass can show small changes
in band structure when using different dopants (I or La) in PbTe which may be related to a
shift in band gap [87].With the goal of band engineering in mind it is important to be able to
determine how the band structure is altered as the materials are doped or alloyed. While the
rigid band approximation works reasonably well for many purposes, this work demonstrates
that the differences between true, optical and thermal band gaps can be different of the order
0.1 eV. Most thermoelectric materials are heavily doped semiconductors, where Eg,thermal > kBT .
In this case, the electronic transport properties (electrical conductivity, Seebeck coefficient) are
determined by a single band. In materials that contain multiple bands, the effect of a changing
band gap with doping level will be important in developing a self-consistent transport model.
The most obvious effect of a narrower band gap is the increased concentration of minority
carriers. In the case of most thermoelectric materials, though, the chemical potential (and
thermal band gap) is deep enough into the band to where the minority carrier population
is still very small compared to majority carriers. The effects become more apparent at high
temperatures when kBT ∼ Eg,th.

While band gap renormalization is a well-known effect that has been studied in many
materials, it is generally ignored in thermoelectric materials in favor of the rigid band
approximation. This work suggests that in PbTe, both approximations may play a role. While
it seems unlikely that the band gap in these materials might become very small (<0.1 eV),
it is possible that if the material is sufficiently doped that bipolar effects can be suppressed
and a reduced band gap would not be observed by measuring transport properties alone.
Ultimately, the apparent discrepancy between the rigid band approximation and band gap
renormalization may need to be resolved with either better estimates of the n-dependent
chemical potential (using a six band model, rather than the Kane model), or by developing
models that more accurately represent renormalization in narrow gap semiconductors. While
the constant β single band Kane model does show a much lower chemical potential increase
with doping, there is still a significant renormalization leading towards zero gap at very high
doping levels, even when the self-consistent solution is considered. This probably is an artifact
of the renormalization fit which is best for doping levels less than 6 × 1019 cm−3. While the
n1/3 scaling law works well in a free electron gas [80], there may be some corrections for
narrow gap semiconductors—particularly as the gap becomes small. Even though band gap
narrowing is thought to be well understood, the effects in narrow gap semiconductors—as most
thermoelectric materials are—are difficult to reconcile with other measurements. Perhaps more
experimental and theoretical work should be done to investigate what is different in narrow gap,
heavily doped semiconductors from other wider gap materials.

4. Conclusions

While the DRIFTS method of measuring the optical absorption has been thoroughly explored in
catalysis research and has shown some promise for quantifying chemical reactions [88, 89], as
a technique for precisely determining band gaps in semiconductors diffuse reflectance has only
proven semi-quantitative (±0.1 eV) [90]. In this work, we detect shifts in band gap with doping
of smaller than 0.01 eV in PbTe which can be analyzed and understood by methods consistent
with current optical literature.

While electronic transport measurements are essential to determine the thermoelectric
properties for a materials, optical properties can provide more direct knowledge about the
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band structure. Although diffuse reflectance measurements have been used in the thermoelectric
literature, it is important to account for the effects of electron population on the absorption edge
that alters the observed optical band gap. We have shown a series of iodine doped PbTe samples
which show a Burstein–Moss shift in the absorption edge to higher frequencies. Using estimates
of the chemical potential from transport measurements, it is possible to estimate that a gap
shrinkage of up to 0.15 eV occurs at the highest doping levels appropriate to thermoelectrics.
This is observed both by fitting the optical band gap using the Tauc method and by fitting the
band gap directly from the spectrally dependent absorption coefficient with a Fermi function.
An attempt is made to fit the true gap self-consistently using a single band Kane model which
results in a slight reduction in the renormalization. While renormalization has been shown to
fit well-behaved empirical models for many semiconductors, PbTe (and possibly other narrow
gap materials) exhibits a Burstein–Moss shift and renormalization that are not readily explained
with existing theory.
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