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Abstract. At optical frequencies metals behave as an electron plasma and
conventional antenna designs need modifications when transferred to this regime.
In contrast to antenna theory and to the effective wavelength picture, the
position and width of the dipolar resonance of a rectangular cuboidal plasmonic
nanoantenna scales nonlinearly with its length, width and height, as shown in
this paper directly by analytical formulae. Moreover we show that the quality
factor calculated for different sizes varies significantly with size, in contrast to
the quasi-static approximation which predicts invariance. We present analytical
expressions that provide a tool for direct and precise calculation of the dipolar
plasmon resonance which can be applied to the antenna design process. These
expressions enable both physical insight and the quick exploration of a wide
range of parameters to tailor the plasmon resonance response or scattering
by nanoparticles, for either metals or dielectrics, for numerous promising
applications in optical sensor, photovoltaic and light emitting device design.
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1. Introduction

Antenna technology, which was developed for radio and micro-wave frequencies, manipulates
the electromagnetic field on a subwavelength scale, providing a means to interface propagating
and localized fields [1]. The control of light, however, has typically been accomplished using
devices much larger than the wavelength, such as lenses, mirrors, gratings, etc, and, therefore,
has been intrinsically limited by diffraction. Recently, advances in nano-optics and plasmonics
have enabled the creation of nanoscale antennas that work at optical frequencies, with the aim
to create analogous devices to those that work at larger wavelengths.

Nanoantennas have been shown to have many possible applications, such as in
enhancing light–emitter interactions [2], high-resolution microscopy and spectroscopy [3],
optical sensors [4–9], THz plasmonics [10], photovoltaics and solar cells [11–14], solid state
lighting [15] and lasing [16]. Currently, much research is focused on scaling the established
concepts of antenna theory to the optical regime to facilitate optical antenna design.

One of the main difficulties is that at optical frequencies the incident radiation penetrates
into the metal and is not perfectly reflected. This gives rise to coherent oscillations of the free-
electron gas, i.e. to a plasmon resonance [17]. The response of a metal at optical frequencies
is, therefore, very different from that of a perfect conductor, as is assumed in antenna theory.
In order to obtain meaningful results at optical frequencies, it is then necessary to take into
account the dielectric function of the metal. For metallic spheres, Mie theory provides the
solution of the scattering problem, and ellipsoids can be solved analytically in the quasi-
static approximation [18, 19]. Fuchs and Ruppin demonstrated a method to calculate the
electromagnetic cross sections of cubes in the electrostatic limit [20, 21] although this method
does not consider radiative damping or any other retardation effects. In general, no solutions are
available for other geometries. A simple analytical description of the scattering from rectangular
cuboidal antennas (or any other shaped scatterer [22]) could allow a deeper understanding and
it would provide a simple method for studying the scattering phenomena without resorting to
complex and time consuming simulations.

Cubic [14, 23–25], or generally rectangular cuboidal [7, 8, 26–28], single nanoparticles,
dimers [29–31] or arrays of nanoparticles of different shapes have been widely studied due to
their tunability and ease of fabrication. For rod nanoantennas, an effective wavelength picture
has been derived, in which the optical antenna no longer responds to the external wavelength,
but to a shorter effective wavelength λeff which depends on the material properties via a
linear relationship λeff = n1 + n2[λ/λp], where λp is the plasma wavelength and n1 and n2 are
coefficients that depend on the properties of the antenna and the surrounding dielectric [32].
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This picture is more effective in the infra-red regime [33] but it fails to provide an accurate
solution in the interesting range of optical frequencies, where structures are usually in the range
of 100 nm or less. Moreover, under the quasi-static approximation, theory predicts that the Q
factor is determined solely by the complex dielectric function of the metal and is independent
of the nanostructure form or dielectric environment [34]. We will show that this is not the case
for rectangular cuboidal nanoantennas usually used, due mainly to radiation losses, which are
neglected in the quasi-static approximation.

In this paper, we provide general analytical formulae for the calculation of the scattering
properties of a rectangular cuboid (which, from now on, will be simply referred as cuboid)
inside a medium, in the assumption that the field inside the cuboid is constant, corrected for the
charges at the vertices. From these formulae, we consider the scaling of the position and width
and of the value of the peak of the extinction efficiency of the resonance with the length, width
and height of the cuboid. The results improve upon those given by the effective wavelength
model for metal structures smaller than 100 nm and illustrate the scaling and behaviour of the
Q factor of the resonance, highlighting its change with the nanostructure geometry. The results
have been compared for a wide range of geometrical parameters against finite element method
(FEM) simulations using COMSOL, obtaining a very good agreement.

1.1. Formalism

Consider a rectangular cuboid of volume V placed with its centre at the origin, as shown in
figure 1, with length La = 2a, width Lb = 2b and height Lc = 2c. The cuboid is composed
of a material with a complex, wavelength dependent, dielectric function ε and is surrounded
by a background material with a dielectric constant εB. The incident electromagnetic field is
a plane wave E(r) = E0 eikBz, where, in all the following, it will be assumed the time varying
dependence of the field is given by e−iωt . The electric field E0 is along the x direction and
the wave-vector in the background is kB =

√
εBk0 =

√
εBω/c. A first analytical expression is

obtained using the Meier–Wokaun approach [35]. Later we improve the result by means of
the Green function formalism. This formalism [36, 37] has been used in order to obtain an
expression for the scattered field in the far field under the assumption that the electric field inside
the cuboid is constant and is given by the field at the central point previously obtained with the
Meier–Wokaun approach. The field at the central point is calculated by considering the effects
of depolarization in the volume and of the charges induced at the vertices. We can consider
this as the zero order of a modal expansion and this can be considered as an educated guess
confirmed a posteriori. It is important to point out that we model only the dipolar order and,
secondly, that using the experimental dielectric functions of metals instead of the Drude formula
(particularly gold), the resonances higher than the dipolar are strongly suppressed by the losses,
making this assumption a good approximation. Moreover this approximation is reasonable
considering the small scale of the nanoparticles and the fact that gives the exact solution for
a small sphere [35]. A full derivation of the resulting equations is provided in the supporting
information.

1.1.1. Electric field inside the nanoantenna. Starting from the Meier–Wokaun [35] approach
for a sphere, the electric field inside a cuboidal nanoparticle can be approximated by considering
the necessary corrections due to the induced charges (see the appendix). The electric field inside
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a) b)

Figure 1. (a) Sketch of a cuboid with sides La = 2a along the x direction,
Lb = 2b along the y direction and Lc = 2c along the z direction. The electric
field of the incident plane wave is polarized along the x direction. The centre
of the cuboid is placed at zero of the coordinate system. The solid angle � of
equation (2) is also shown in dark. (b) Comparison between the extinction cross
sections for cubes of side lengths L = 6, 30 and 80 nm calculated using our
theory (solid black line) and the ones obtained by FEM simulations (dotted red
line). Results obtained using the dipolar approximation (dashed blue line), which
works best for small nanoantennas, are also shown. The smaller peaks appearing
between 450 and 500 nm in the numerical simulation curves are higher order
modes.

the nanoantenna may then be expressed as

Ex,int =
E0

1 −
ε−εB
4πεB

[
−2� − δ + k2

B
2 β + 16

3 ik3
Babc

] , (1)

where E0 is the incident field, � is the solid angle subtended by the side perpendicular to the
polarization axis of the cuboid (the x-axis in this case), i.e. the side Lb–Lc (see figure 1(a)),
which gives the singular contribution of the dyadic [37], and is expressed by

� = 4 arcsin

(
bc√

(a2 + b2)(a2 + c2)

)
, (2)

β is the dynamic geometrical depolarization factor, defined by equation (A.3) in the
appendix section and with full derivation in the supplementary data (available from
stacks.iop.org/NJP/15/063013/mmedia). For a cube, it is expressed by βcube ≈ 12.6937a2. δ is a
term that takes into account the polarization charges at the planar ends of the cuboid orthogonal
to the x direction, and is expressed by

δ =
8abc

(a2 + b2 + c2)3/2

εB

ε
. (3)

Lastly, the term 16
3 ik3

Babc constitutes the radiative correction to the field. Note that equation
(1) takes into account the effect of depolarization from all dipole moments surrounding the
centre [35].
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1.1.2. Dipolar approximation. The above expression for the internal electric field can be used
together with the dipolar expressions for the scattering and absorption cross sections:

σsca =
k4

B

6π
|α|

2 (4)

and

σabs = kB=(α), (5)

respectively, along with the polarizability α, obtained from the dipole moment p = ε0εBαE0,
and defined as

α = 8abc
(ε − εB)Ex,int

εB E0
=

8abc
εB

ε−εB
−

1
4π

[
−2� − δ + k2

B
2 β + 16

3 ik3
Babc

] , (6)

to obtain very simple expressions for the cross sections, with the extinction cross section defined
as σext = σsca + σabs.

1.1.3. Far-field scattering. Although the field inside the nanoantenna allows us to derive
simple dipolar formulae for the scattering, absorption and extinction cross sections, a more
accurate result is obtained by now considering scattering in the far field using the Green function
formalism (see the appendix), since in this case we do not assume that the scatterer is a point
dipole. Starting with equation (A.6) and considering the field inside the nanoantenna given by
equation (1), the scattering cross section is obtained as

σsca =
1

E2
0

∫
S

dS r 2
∣∣EFF

sca

∣∣2 =
k4

0 |1ε|2

15π E2
0

{
8

63
a2b2c2[1260 − k2

B(84a2 + 168b2 + 168c2)

+k4
B(3a4 + 9b4 + 9c4 + 4a2b2 + 4a2c2 + 6b2c2)]|Ex,int|

2
}
, (7)

where 1ε = ε − εB. A derivation is shown in the appendix section. The extinction cross section
is also obtained from the scattered field by means of the optical theorem using equation (A.9)

σext =
4π

k2
B E0

<

[
−ikBr

eikBr
Ex,sca

]
x,y=0

z→+∞

= −
k2

0

kB E0
<[i1εEx,int]

(
8abc −

4k2
B

3
abc3

)
, (8)

where < is the real part. The absorption cross section is calculated by using the expression
σabs = σext − σsca.

In order to compare with simulation results, we consider the case of gold (Au)
nanoantennas. The dielectric function of the Au has been expressed using Drude model, which
fits well to the experimental dielectric function but neglects the interband transition region. Note
that this is chosen only for convenience during the comparison. In fact, the model works with
an arbitrary dielectric function, ε, and therefore also with any experimental dielectric function.
In particular, we have simulated gold using the following expression:

ε(ω) = ε∞ −
ω2

P

ω(ω + iγ )
, (9)

where ε∞ = 10.7026, ωP is the plasma frequency (ωP = 1.3748 × 1016 Hz) and γ is the collision
frequency (γ = 1.1738 × 1014 Hz). We will show that the analytic formulae agree very well with
numerical calculations over a wide range of values, from just a few to ≈100 nm.
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Figure 2. Comparison between the extinction efficiencies σext/(La Lb) for
cuboids of length, width and height equal to 40, 70 and 110 nm (as indicated)
calculated from our theory (equation (8), solid black line), the dipolar
approximation (equations (4) and (5), dashed blue line) and the ones obtained by
FEM simulations (dotted red line). The dimensions of either La, Lb, Lc which
are not indicated in the inset on each figure are equal to 60 nm. The smaller peaks
appearing between 450 and 500 nm in the numerical simulation curves are higher
order modes.

2. Results and discussion

The geometry of the scattering problem is shown in figure 1(a), where the electric field is
incident in the x direction. Figure 1(b) shows the comparison between the extinction cross
section for cubes of different side lengths L calculated using our approach (equation (8), solid
black line), our dipolar approximation (equations (4) and (5), dashed blue line) and that obtained
by numerical FEM simulations using COMSOL (dotted red line). The plasmon resonance
appears as a single main peak that red-shifts and widens with increasing the size of the particle.
Smaller peaks appear between 450 and 500 nm in the simulations curves due to higher order
modes.

Figure 2 shows the comparison for cuboids of different side lengths between our theory
(equation (8), solid black line), our dipolar approximation (equations (4) and (5), dashed
blue line) and the same obtained by FEM simulations (dotted red line). To avoid numerical
errors due to the discontinuity at the surface in the FEM simulations, all sharp corners and
edges of the cuboid have been slightly smoothed by spherical or cylindrical surfaces of radius
R = L/10 where L is the shortest side length. The total scattering cross sections were obtained
by integrating the scattered power flux over an enclosing spherical surface outside the cuboid,
while the absorption cross sections were determined by integrating the Ohmic heating within the
cuboid. Each numerical simulation curve shows a strong dipolar resonance, as well as several
weak higher order resonant modes.

As shown in figures 1 and 2, theory and FEM simulations are generally in good agreement.
Both expressions (8), (4) and (5) give good information about the plasmonic resonance. In
particular, equation (8) predicts well the position of the main dipolar plasmon resonance peak
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Figure 3. Colour plot of the extinction efficiency σext/L2 of cubes of different
side length L against the wavelength. The peak of the plasmon resonance shows a
nonlinear shift with length up to 80 nm. Results are calculated using equation (8).

and very well its width and strength for particles of only few nm to more than 100 nm. We
can also see that our model works better for larger particles, while, for smaller ones, we notice a
small blue-shift of the resonance of approximately 20 nm. This is due to the fact that the constant
field approximation does not exactly capture the excited modes inside the cuboid.

The good agreement of these analytical results with complex simulations means that the
analytic expression provides a simple, quick, yet accurate method of evaluating the effect of
varying size parameters on the plasmon resonance. For example, one can study the behaviour of
the resonance when varying the cube side length. Interestingly, one discovers that the plasmon
resonance peak shifts nonlinearly with the length, as shown very clearly by figure 3, which
shows the extinction efficiency, σext/L2, for cubes of different side length L as a function of the
wavelength. As expected, the resonance red-shifts and broadens when increasing the length of
the structure, due to the increases in the effective wavelength and radiative losses, respectively.
From figure 3 one can see the existence of two scaling regimes, one nonlinear for side lengths
smaller than approximately 80 nm and one linear for side lengths larger than that.

It is also possible to check quickly the tuning of the plasmon resonance to a desired position
by changing any of the three dimensions of the cuboid. In particular, as shown in figure 4, the
plasmon resonance position scales nonlinearly when changing the length, width and height of
the cuboid, in contrast to the predictions of the effective wavelength model which show a linear
scaling with the length. In particular, the squeezing of the width and height causes a significant
red-shift of the resonance.

These results are important to establish design rules for transferring antenna technology
to the optical regime. This technique can then be extended to complex designs composed, for
instance, of many antenna rods such as Yagi–Uda antennas.

Another interesting parameter to characterize a plasmon resonance is the quality (Q) factor,
which is inversely proportional to the width of the resonance. Figure 5(a) shows a colour plot
of the Q factor with changing length, La, and width, Lb, with a fixed height Lc = 50 nm. The
region with La < 40 nm shows the highest Q factor, above 35, while the lowest Q factor of
about 10 is in the region with La > 60 nm and Lb > 40 nm. For sensing applications, it is often
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the plasmon resonance for cuboids, changing the length La between 10 and
120 nm, with Lb = Lc = 50 nm. Quasi-static theory is always above the values
from our theory, because it neglects radiation losses. Results are calculated using
equation (8).

important to tune the plasmon resonance to a specified region and to have a resonance with the
highest Q factor achievable in order to have the greatest sensitivity. Quasi-static theory predicts
that with losses occurring only in the metal part of the nanostructure, the Q factor may be
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expressed as

Q =
ω

2ε ′′

dε ′

dω
=

ω3

γ (ω2 + γ 2)
, (10)

where ε ′ and ε ′′ are the real and imaginary parts of ε, respectively, and we have used the
definition of ε from the Drude model (equation (9)). Note that equation (10) neglects losses
due to radiation, which effectively increase the loss coefficient ε ′′, making the Q factor smaller.
Figure 5(b) shows the comparison between the results predicted by equation (10) and the values
calculated using our formalism from Q = ω/1ω, where 1ω is the FWHM of the plasmon
resonance, for cuboids of different side lengths. The quasi-static theory always produces values
above those from our theory because it neglects radiation losses, and, in the worst case, can be
off by up to a factor of 2 compared to the value from our theory.

Another important parameter for sensing is the figure of merit (FOM) [9], which is defined
as FOM =

∂λ

∂n /1λ, where 1λ is the resonance width and ∂λ

∂n is the shift of the resonance
wavelength upon a change of the refractive index of the surrounding medium n. Clearly, for
a known background refractive index, upon a shift ∂n of its value which causes a shift of
the peak of the plasmon resonance ∂λ, equation (8) makes it possible to obtain ∂λ

∂n and the
width of the resonance 1λ. In this way we have a direct and useful method to obtain the
FOM.

Finally, we consider how the maximum of the extinction efficiency, σext/(La Lb), shown in
figure 6 varies with changing length, width and height. This provides important information on
how to increase the extinction efficiency at resonance for the same volume of material. Changing
the length La, the extinction efficiency monotonically increases, in some cases to very large
values (over 40), whereas changing the width Lb has the inverse effect, since we obtain large
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values only for small widths. Changing the height Lc has a small mixed effect with an increase
or decrease for smaller height Lc depending of the values of the length and width. This can be
used for the fabrication of strongly scattering nanoantennas, with low absorption, since it shows
the marginal contribution of a change in size of each dimension.

3. Conclusions

In summary, we have derived analytical expressions for the extinction, scattering, and absorption
cross sections of a rectangular cuboid, showing a nonlinear scaling of the plasmon resonance
position, width and extinction efficiency. This enables one to precisely downscale antenna
designs to optical frequencies by enabling a convenient calculation of the dipolar plasmon
resonance. Moreover, the formalism can be applied to the design of strongly scattering
nanoantennas with low absorption and to the analysis of operational parameters such as the
Q factor and FOM. In fact, we have shown that the Q factor changes significantly with
the dimensions of the cuboid, in contrast to the quasi-static approximation, which predicts
invariance with size. This enables the simultaneous tailoring of the Q factor of the plasmon
resonance and of the FOM for sensing applications.
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Appendix

A.1. Near-field

We assume that the polarization of the cuboid is homogeneous in its volume. Obviously, this is
not strictly correct for a cuboid, but the result will be corrected to take into account the induced
charges at the vertexes. More in details, the polarization is given by

P = ε0(ε − εB)(E0 + Edep), (A.1)

where Edep is the depolarization field generated by the matter surrounding a point in the volume.
Following Meier and Wokaun [35], the electric field produced by a retarded dipole dp(r)
oriented along x at the centre of the cuboid parallel to the x axis, is expressed by

dEdep,x =
1

4πε0εB

[
1

r 3
(3 cos2 θ − 1) +

k2
B

2r
(cos2 θ + 1) +

2

3
ik3

B

]
Px dV . (A.2)

By changing coordinates and integrating this expression over the cube we are left with three
terms. The first term is equation (2), the second is β expressed by

β =

∫ c

−c

∫ b

−b

∫ a

−a

1√
x2 + y2 + z2

(
1 +

x2

x2 + y2 + z2

)
dx dy dz, (A.3)
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which can be expressed analytically with a rather long expression, given in the supporting
information. The third term can be integrated in a simple way to give 16

3 ik3
Babc, which takes

into account the radiative correction to the field. In this way we obtained

Edep,x =
1

4πε0εB

[
−2� +

k2
B

2
β +

16

3
ik3

Babc

]
Px . (A.4)

By considering also the effect of polarization charges at the planar ends of the cuboid and
orthogonal to the x direction, another term in the expression of Edep,x appears. Using equation
P · n = σ where σ is the surface charge at the planar ends and n is the external normal vector, we
obtain that the charge at the surfaces, which we consider concentrated at each vertex, is given
by q = Pxbc for each vertex, where q is positive in the x = a and negative in the x = −a planar
surfaces. The contribution to the field along x at the centre of the cuboid given by the charges
at the vertices is

Evert,x = −
8

4πε0ε

abcPx

(a2 + b2 + c2)3/2
, (A.5)

where we have taken into account the projection of the electric field along x generated by the
charges. Using the expression of equations (A.4) and (A.1) and by defining δ as equation (3),
we are left with the expression of equation (1), which gives a corrected expression that takes
into account the induced charges at the surface of the cuboid.

A.2. Far-field

Consider the expression of the scattered field given by the Green formulation, where
↔

GFF is the
Green function in the far field:

EFF
sca(r) =

∫
V

dr′
↔

GFF k2
0 1ε E(r′) =

∫
V

dr′
eikB R

4π R

[
↔

I −
RR
R2

]
k2

0 1ε E(r′), (A.6)

where R = r − r′, R = |r − r′| and 1ε = ε − εB, were ε is the dielectric function of our antenna
and εB that of the surrounding medium.

Given that the structure is symmetric in the x − z and y − z planes, it can be shown that the
electric field fulfils the following symmetry relationships:{

Ex(x) = Ex(−x),

Ex(y) = Ex(−y),

{
Ey(x) = −Ey(−x),

Ey(y) = −Ey(−y),

{
Ez(x) = −Ez(−x),

Ez(y) = Ez(−y),
(A.7)

which are valid for each z = constant plane. Our main assumption is that the field inside the
cuboid is given by equation (1). With this assumption and by doing the approximations of
1/R ≈ 1/r , R ≈ r − r ′ cos γ , where γ is the angle between r and r′, and

[
1 −

RR
R2

]
≈
[
1 −

rr
r2

]
since the higher order terms generate contributions that go to zero faster than 1/r 2 which are
negligible in the far field, one obtains

EFF
sca =

eikBr k2
0 1ε

4πr

[
↔

I −
rr
r 2

]
Eint

∫
V

dr′ e−ikBr ′ cos γ . (A.8)

If we consider an internal electric field only along the x direction (see figure 1) Eint =

(Ex,int, 0, 0), it is possible to derive the following expressions of the scattered electric field in
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the far field by direct integration of each term of the exponential series:

EFF
x,sca =

eikBr k2
0 1ε

4πr

{[
1 −

x2

r 2

]
Ex,int

(
8abc −

4k2
B

3r 2

[
a3bcx2 + ab3cy2 + abc3z2

])
+ O(k3

B)

}
,

EFF
y,sca =

eikBr k2
0 1ε

4πr

{
−

yx

r 2
Ex,int

(
8abc −

4k2
B

3r 2

[
a3bcx2 + ab3cy2 + abc3z2

])
+ O(k3

B)

}
, (A.9)

EFF
z,sca =

eikBr k2
0 1ε

4πr

{
−

zx

r 2
Ex,int

(
8abc −

4k2
B

3r 2

[
a3bcx2 + ab3cy2 + abc3z2

])
+ O(k3

B)

}
.

From the scattered field, equations (7) and (8) give the scattering and extinction cross sections.
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