
            

PAPER • OPEN ACCESS

Dynamics of an impurity in a one-dimensional
lattice
To cite this article: F Massel et al 2013 New J. Phys. 15 045018

 

View the article online for updates and enhancements.

You may also like
ALMA Spatially Resolved Dense Molecular
Gas Survey of Nearby Ultraluminous
Infrared Galaxies
Masatoshi Imanishi,  , Kouichiro Nakanishi
et al.

-

Deeply Buried Nuclei in the Infrared-
luminous Galaxies NGC 4418 and Arp
220. II. Line Forests at  = 1.4–0.4 mm and
Circumnuclear Gas Observed with ALMA
Kazushi Sakamoto, Sergio Martín, David
J. Wilner et al.

-

The Molecular Interstellar Medium in the
Super Star Clusters of the Starburst NGC
253
Nico Krieger, Alberto D. Bolatto, Adam K.
Leroy et al.

-

This content was downloaded from IP address 3.15.25.32 on 09/05/2024 at 18:34

https://doi.org/10.1088/1367-2630/15/4/045018
https://iopscience.iop.org/article/10.3847/1538-4365/ab05b9
https://iopscience.iop.org/article/10.3847/1538-4365/ab05b9
https://iopscience.iop.org/article/10.3847/1538-4365/ab05b9
https://iopscience.iop.org/article/10.3847/1538-4357/ac29bf
https://iopscience.iop.org/article/10.3847/1538-4357/ac29bf
https://iopscience.iop.org/article/10.3847/1538-4357/ac29bf
https://iopscience.iop.org/article/10.3847/1538-4357/ac29bf
https://iopscience.iop.org/article/10.3847/1538-4357/ac29bf
https://iopscience.iop.org/article/10.3847/1538-4357/ac29bf
https://iopscience.iop.org/article/10.3847/1538-4357/ac29bf
https://iopscience.iop.org/article/10.3847/1538-4357/ab9c23
https://iopscience.iop.org/article/10.3847/1538-4357/ab9c23
https://iopscience.iop.org/article/10.3847/1538-4357/ab9c23


Dynamics of an impurity in a one-dimensional lattice

F Massel1,5,6, A Kantian2, A J Daley3, T Giamarchi2 and P Törmä4
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Abstract. We study the non-equilibrium dynamics of an impurity in a
harmonic trap that is kicked with a well-defined quasi-momentum, and interacts
with a bath of free fermions or interacting bosons in a one-dimensional lattice
configuration. Using numerical and analytical techniques we investigate the full
dynamics beyond linear response, which allows us to quantitatively characterize
states of the impurity in the bath for different parameter regimes. These vary
from a tightly bound molecular state in a strongly interacting limit to a polaron
(dressed impurity) and a free particle for weak interactions, with composite
behaviour in the intermediate regime. These dynamics and different parameter
regimes should be readily realizable in systems of cold atoms in optical lattices.
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Impurities play a crucial role in determining the low-temperature features of a number of
condensed matter systems. These impurities may be localized ones, as for the x-ray edge [1] and
Kondo effects [2], or mobile ones, like the itinerant single electrons modified by the phonon bath
of the solid-state crystal in which they move (polarons) [1], or the single spin-flipped electron
moving in a lattice populated by opposite spin electrons, as studied in the context of high-Tc

superconductors [3]. With the recent experimental developments on systems of ultracold atoms,
such as the tunability of the two-body interaction with the aid of Feshbach resonances [4], a
particularly well-controlled environment [5] to explore the properties of these types of many-
body systems has become available.

For two- and three-dimensional (3D) systems, these advances have enabled the
experimental [6–11] and theoretical [12–23] study of mobile impurities inside a fermionic bath,
i.e. a type of polaron, usually created by preparing two-component ultracold Fermi gases with
a large number imbalance between the components. In this context, the possibility of tuning the
bath–impurity interaction across a wide range and even from attractive to repulsive regimes has
opened up both the polaronic and the molecular regime to investigations. These advances have
also stirred interest in using these fermionic systems to study the dynamics of the x-ray edge
effect, which is induced by a localized impurity [23].

At the same time, the ability to restrict the spatial dimension of ultracold gas experiments
almost arbitrarily has also made possible the study of impurities inside one-dimensional (1D)
many-body baths. As the movement of the impurity in such a bath can very easily involve the
collective motion of many bath atoms, the result can be profoundly modified compared with
what would be expected in higher-dimensional systems, giving rise to a regime of subdiffusive
impurity motion, in which it can displace only proportional to the logarithm of time, more slowly
than any power law [24–28]. Another reason for the particular interest in 1D impurity–bath
systems is that they make particularly compelling benchmark systems for a wide range of

New Journal of Physics 15 (2013) 045018 (http://www.njp.org/)

http://www.njp.org/


3

impurity–bath systems, due to the powerful theoretical approaches available to treat interacting
1D systems [29, 30]. For example, the ground state of an impurity in a 1D Fermi gas in a lattice
was calculated via exact numerical methods [31], demonstrating that it can be described by
a polaron-type ansatz for weak interactions, while the strong-interaction regime corresponds
well to the strongly interacting limit of the Bethe ansatz. Static properties of polarons in
1D ultracold Fermi gases have been studied also in [32], and in recent years there has been
interest in exploring the dynamics as well [33, 34]. Complementary to the fermionic case, the
dynamics of an impurity in a continuous bosonic bath was recently studied experimentally and
theoretically [35–38]. Major advances with single-site addressing and manipulation in optical
lattices [39, 40] have recently enabled the realization of lattice impurities within a bath described
by a 1D Bose–Hubbard model [41].

In this paper, we explore the basic dynamical properties of a single impurity in a lattice
potential and a harmonic trap in 1D, which interacts with a bath of free fermions or interacting
bosons, also confined in the 1D lattice. Specifically, we consider the non-equilibrium response of
the impurity to a kick with well-defined momentum. A key open question in this context is how
to characterize the role that the bath atoms play in the dynamics. In particular, we ask whether
the dynamical response of the system implies polaronic behaviour, in which the properties of
the particle are renormalized by the presence of the bath, or whether the interaction gives rise to
other states, e.g. to tightly bound pairs or more complex objects.

Using time-evolving block decimation (TEBD) methods [42–45] in conjunction with
the Bethe-ansatz results, we study the non-equilibrium dynamics of the impurity beyond the
weak coupling assumptions of linear response theory. We show that the observed oscillation
frequencies of the impurity–bath system can be mapped onto different physical states, and
explain their dependence on bath density and strength of the impurity–bath interaction. In
different limits, we see that the behaviour ranges from a tightly bound pair for strong
interactions to polaron-like behaviour at weak interactions for a fermionic bath. The latter case
is characterized by an interesting internal dynamics corresponding to the scattering between a
bound pair and an impurity particle propagating through the fermionic bath. We also compare
these results with the case of a bosonic bath to better define the role of the Fermi sea. Generally,
we find that the physics for a boson bath can be qualitatively and even quantitatively similar
to the fermionic case, for both the tightly-bound-pair and the polaron regime, provided the
boson–boson repulsion is larger than the attractive interaction between the bath and the impurity.

This setup and characterization of the dynamics should be readily realizable with cold
atoms in optical lattices, and we expect our zero-temperature results to hold also at finite
temperature, provided it is lower than the energy scale given by the oscillation frequency.

This paper is organized as follows. We first introduce the system and describe the method
used in section 1. There we also discuss the effects of combining a lattice potential with a
trap in the case of an impurity that does not interact with the bath. In section 2, we present
numerical results for the impurity dynamics and explain them both in the regimes of strong
and weak interactions through a comparison with analytical methods. We discuss especially
the frequency spectrum of oscillations, and identify different physical regimes of impurity
behaviour. In section 3, we compare with the case of a bosonic reservoir, and identify similarities
and differences to the case of the fermionic bath dependent on the boson–boson repulsion. In
section 4, we discuss our findings and establish a connection to earlier impurity and polaron
studies. Finally, the appendix contains details of several analytical results we have derived.
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1. The fermionic system

1.1. The basic model and method

We consider a setup that is composed of an optical lattice, loaded with a number-imbalanced
mixture of two hyperfine species of fermionic atoms, hereafter labelled ↑ and ↓, which are
confined to move along one dimension. Our interest lies in the case of extreme imbalance,
namely N↓ = 1 and N↑ ∈ {1, . . . , L}, where L is the lattice size and N↑/↓ is the total number of
atoms for each species. In addition to the optical lattice, the ↓ atomic impurity experiences a
parabolic confining potential. For atoms in the lowest Bloch band, the system can be described
by the Hubbard Hamiltonian (h̄ ≡ 1)

H = −J
∑
i σ

c†
iσ ci+1σ + h.c. + U

∑
i

ni ↑ni ↓ + V
∑

i

ni ↓

(
i −

L − 1

2

)2

, (1)

where J represents the hopping amplitude between neighbouring sites, U < 0 is the on-site
(attractive) interaction energy and V characterizes the strength of the parabolic confining
potential for the impurity. Throughout the paper we set h̄ = 1, and we choose as the length
scale the lattice period a. Therefore, all energies are given in frequency units and all momenta
are given in units of 1/a.

To obtain the ground state of this Hamiltonian and simulate the full many-body dynamics
after the impurity has received a kick with a defined quasi-momentum, we use a code based on
the TEBD algorithm, more details of which can be found in e.g. [46–49]. In our simulations,
we have considered a lattice size of L = 200 sites (L = 400 in one case), N↓ = 1, N↑ =

[1, 10, 20, . . . , 180, 190, 200] and |U |/J = 0, 0.5, 1, 3, 5, 10, 20 with particular emphasis
on the case |U |/J = 10. At t = 0+, a quasi-momentum k (k = 0.1π unless otherwise stated) is
imparted to the ↓ impurity.

1.2. The non-interacting impurity

To provide a better description later on of the effects on the motion of an impurity that are
induced by interactions with the bath, we first single out the dynamical effects induced by the
concomitant presence of the harmonic trapping and the 1D lattice at U = 0. That is, we consider
a single particle in a potential formed by combining a lattice and a harmonic potential. As shown
in [50], if the particle is initially in the ground state of the combined potential and then the
harmonic trap is displaced by an amount δ, the expectation value of the particle position is

〈x〉 = δ exp

[
−

(
δ

aho

)2

sin2 (V/8t)

]
cos

[
V

(√
2

V meff
−

1

4

)
t −

δ2

2a2
ho

sin

(
V t

4

)
+

π

2

]
,

(2)

where V is the strength of the trapping potential and meff is the effective mass of the particle
in the lattice, which for our choice of units (a = 1) is meff = 0.5J −1. The harmonic oscillator
length is defined via the trapping frequency ω and the mass of the particle as aho = 1/

√
meffω,

and on the other hand, the strength of the harmonic oscillator potential V = meffω
2/2: thus

aho = (2meffV )−1/4 and with meff = 0.5J −1 we then should have aho = (V/J )−1/4.
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Our initial conditions involving a finite quasi-momentum kick differ from those in [50],
where the harmonic trap is initially displaced by an amount δ. To account for this difference, we
need to introduce a π/2 phase in the cosine term of equation (2), and also compute the value
of δ corresponding to our initial momentum kick. We can do this by matching the energy of the
initial state in each case. The energy for the state at t → 0+ is given by the lowest eigenenergy of
the combined harmonic trap and lattice system (equation (14) of [50]), with the addition of the
kinetic energy given by the kick of a quasi-momentum k. If, by a semiclassical argument, we
assume that this energy must be converted to potential energy (removing the zero-point energy
from both the terms), then we have

V

(
δ2 +

1

16
+

√
V/J

256

)
= (1 − cos k)/meff. (3)

The left-hand side of equation (3) represents the small V expansion of the potential energy of a
particle in a 1D lattice in the presence of harmonic confinement when displaced by δ from the
minimum of the potential, while the right-hand side is its kinetic energy. We can thus deduce an
approximate expression for δ:

δ =

[
1 − cos k

V meff
−

1

16
−

√
V/J

256

]1/2

. (4)

Combining equations (2) and (4), we obtain the relation between the centre of mass (COM)
oscillation frequency ωCOM and the theoretical value of the mass of the different particles

ωCOM = V

[(√
2

meffV
−

1

4

)
−

√
V/J

4

(
1 − cos k

meffV
−

1

16
−

√
V/J

256

)]
. (5)

As a benchmark, we have compared the frequency given by equation (5) with the value obtained
from the numerical simulations for a free particle (meff = 0.5), and we found good agreement
between analytical and numerical values.

2. Dynamics of an impurity in a fermionic bath

In the following, we characterize the different physical states which the impurity may form
inside the bath. The key observable in our analysis is the oscillation of the time-dependent
doublon density, defined as 〈ni ↑ni ↓〉(t), after a kick with quasi-momentum k = 0.1π has been
imparted to the impurity at t = 0+. We find that this is a more useful quantity than the impurity
density 〈ni ↓〉(t), as it provides more direct information corresponding to the bath dynamics and
pairing with the impurity.

Examples of the oscillatory motion of the doublon density are shown in figures 1 and 2
in the regime of strong (|U |/J = 10) and weak (|U |/J = 1) attraction, respectively. In the
strongly attractive case, we see the oscillation frequency shifting as a function of the bath
filling, increasing only slightly while the bath density is below half-filling, but jumping to much
larger values above, from where it decreases again as the density approaches integer filling.
Conversely, in the case of weak attraction the oscillation frequency only decreases slightly for
low and high densities, and is roughly the same for all intermediate densities.
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Figure 1. Time dependence of the local doublon density 〈ni ↑ni ↓〉 for |U |/J =

10 and N↑= 20 (a), 60 (b), 140 (c) and 180 (d). The horizontal axis: site
index i ; the vertical axis: time (in units of J −1). In the simulations, we first
calculate the ground state of the lattice (number of lattice sites L = 200) loaded
with one impurity (N↓ = 1), in the presence of a bath of spin-up particles
(different simulations were performed with varying numbers of up particles
N↑ = [1, 10, 20, . . . , 180, 190, 200]), whose description is provided by the
Hubbard Hamiltonian. In addition to the attractive interaction between spin-
up and spin-down particles, characterized by the parameter U , the impurity
is confined by a parabolic potential of the form V i2, with i the site index,
and V/J = 0.1. At t = 0+, the down particle is kicked with quasi-momentum
k = 0.1π . As is described in the text, it is possible to see that, as a function
of N↑, the dynamics exhibits different regimes, characterized by a transition
from doublon oscillations to a regime where the internal dynamics of the
polaron dominates, and eventually to free-particle oscillations. All simulations
are performed with a TEBD code, with the following numerical parameters:
lattice size L = 200, unless otherwise stated; Schmidt number χ = 80; initial
imaginary timestep (ground-state calculation) δti = 0.1J −1; timestep (real-time
evolution) δt = 0.02J −1 (throughout the paper h̄ = 1, and the length scale is set
equal to the lattice spacing a, see the text). After testing with larger values of the
Schmidt number, we have used the value χ = 80, which provides accurate results
both for the ground state and the time evolution. The reason for the effectiveness
of this rather small value of χ lies in the reduced size of the Hilbert space for a
strongly imbalanced gas.

The observable that encapsulates all these behaviours is the doublon centre of mass (X↑ ↓),
defined as

X↑ ↓(t) =

∑
i

(
i −

L−1
2

)
〈ni ↑ni ↓〉(t)∑

i〈ni ↑ni ↓〉(t)
,

which is extracted from the full density and is shown in figures 3 and 4.
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Figure 2. Time dependence of the local doublon density 〈ni ↑ni ↓〉 for |U |/J = 1
and N↑= 20 (a), 60 (b), 140 (c) and 180 (d). For |U |/J = 1, the time evolution of
〈ni ↑ni ↓〉 is characterized by single-particle oscillations decreasingly damped for
increasing bath particle population. For N↑ = 20, small-amplitude oscillations
(not visible here, see figure 6) appear; these oscillations are associated with
the pair-breaking mechanism as we will discuss in section 2.3. All simulation
parameters (except U ) are the same as in figure 1.

As is explained in detail in the following sections for the different interaction and bath
density regimes, we gain insight into the physics of the system by analysing the Fourier
transform of X↑ ↓(t), X↑ ↓(ω), which is shown in figures 5 and 6 for strong and weak attraction.
For strong attraction, X↑ ↓(ω) shows that the oscillation of a tightly bound on-site pair dominates
the dynamics at low density, while a polaron-like state is present but weak (low- and high-
frequency peaks in figure 5(a), respectively). The relative weights of the polaronic and bound-
pair peaks reverse as the density of bath atoms increases above 0.5, with the polaron component
becoming predominant and the bound-pair peak almost vanishing (high- and low-frequency
peaks in figure 5(b), respectively; note, e.g., how for N↑ = 140 the bound-pair peak has become
essentially just a broad shoulder).

In order to understand the physics of the bound pair for strong interactions between the
impurity and the bath atoms, we make use of the so-called string hypothesis from the Bethe-
ansatz solution of the Hubbard model (cf section A.1 of the appendix). Using this, we see that
a tightly bound on-site pair dominates at low bath fillings, and can be understood in a two-body
picture, where we can compute formulae for the pair oscillation frequency, as shown in figure 7.
On the other hand, the polaron-like state dominating at higher densities can be explained by the
scattering of bath particles from the Fermi surface to the edge of the Brillouin zone meditated by
the oscillating impurity. We find that the frequency of the resultant peak in X↑ ↓(ω) is insensitive
to the value of both the interaction strength U and the initial momentum kick k. We also examine
the way the impurity modifies the density of the bath around its position, and explain why the
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a)

Figure 3. The doublon centre of mass X↑ ↓(t) for |U |/J = 10 and (a) N↑ = 20
(purple curve), 60 (green dash-dotted curve), 100 (black continuous curve); and
(b) N↑ = 100 (black continuous curve), 140 (blue dashed curve), 160 (red curve).
In panel (a), it is possible to see how the centre-of-mass oscillations associated
with the doublon dynamics are increasingly damped when the bath population
increases towards half-filling. Above half-filling, the oscillations associated with
the polaron internal dynamics (described in section 2.2) start to appear, reaching
the free-particle oscillation frequency for N↑ → L . The deviation of X↑↓ for
t → 100J −1 is a finite-size effect. It corresponds to the time for which excitations
in the bath are reflected back from the system boundaries to the centre of the trap,
affecting thus the doublon dynamics. All simulation parameters are the same as
figure 1.

peak position stays independent of U despite this local distortion. Section 2.2 describes this in
detail, including the change in the polaron oscillation frequency with density.

In contrast, in the case of weak interaction, a polaron component to the oscillation
is significant only for densities at or below 0.2 (low-frequency peak in figure 6(a), while
the dominant component of X↑ ↓(ω) stems from the motion of a free particle (low- and
high-frequency peaks in figures 6(a) and (b), respectively). In this regime, the polaronic
component corresponds to the resonant scattering between a bound pair and an impurity particle
propagating through the background particle bath. This will be described in section 2.3.

2.1. Strong interactions: the low-frequency peak

In a 1D Hubbard model with strong interactions, Bethe-ansatz techniques provide two sets of
solutions, which together cover all possible eigenstates of the system—provided that we assume
the so-called string hypothesis to be correct [30]. In each of these two sets of solutions, A and
B, the total energy E and quasi-momentum P of a many-body state can be expressed in terms
of Bethe-ansatz quantum numbers {ki} and 3.
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1
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Figure 4. The centre of mass X↑ ↓(t) for |U |/J = 1 and (a) N↑ = 20 (purple
dashed curve), 60 (green dash-dotted curve), 100 (black continuous curve) and
(b) N↑ = 100 (black continuous curve), 140 (blue dashed curve), 160 (red curve).
For |U |/J = 1, the oscillations are dominated by the single-particle oscillation
frequency ω/J ' 0.62 and increasingly damped for decreasing bath population.
All simulation parameters are the same as in figure 2.

For the solutions of type A

P =

N∑
j=1

k j , E = −2J
N∑

j=1

cos
(
k j

)
+ const. (6)

and for the solutions of type B,

P =

N−1∑
j=1

k j + 2q, E = −2J
N−1∑

j

cos
(
k j

)
− 4J cosh ξ cos(q) + const., (7)

where ξ is defined by

cosh ξ =

√
1 +

U 2

16J 2 cos2 (q)
(8)

and q is the real part of the quantum numbers associated with the k − 3 string (see section A.1
of the appendix). In the strong coupling limit, it is possible to show that

−4J cosh ξ cos q → U − 4J 2/|U | − 4J 2/ |U | cos(κ) + O

(
1

U 2

)
, (9)

where κ = 2q is the total quasi-momentum of the pair.
The eigenstates of type A correspond to the effectively free motion of both the bath

particles and the impurity, while solutions of type B correspond to a bound state of the impurity
with one bath atom (with the remaining N↑ − 1 bath atoms again moving freely) (see section A.1
of the appendix). For an attractive interaction, the B-type solutions are always energetically
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Figure 5. The doublon centre of mass X↑ ↓(ω), |U |/J = 10. The Fourier analysis
allows a quantitative estimation of the oscillation frequencies for different values
of N↑, complementing the description given in figure 3. (a) N↑ = 20, 60, 100
(purple dashed, green dash-dotted and black continuous curves). For N↑ = 20
only the doublon peak for ω/J ' 0.5 is present, while for N↑ = 100 the polaron
internal dynamics peak appears, for ω/J ' 2.1, respectively, and for N↑ = 60 the
precursor of the polaron peak starts to appear around ω/J ' 3.8. The inset shows
additional data for higher values of ω. (b) N↑ = 100, 140, 180 (black continuous,
blue dashed, and red dash-dotted curves). The polaron internal dynamics peak
shifts to the left for increasing interaction (ω/J ' 2.1, 1.1, 0.8 for N↑ = 100, 140,
180), while the doublon peak is increasingly damped. All simulation parameters
are the same as in figure 1.

favourable, and for |U |/J > 2 there is no overlap between the bands associated with type-A
and type-B solutions.

Thus focusing on the B-type manifold of eigenstates, we can describe the observed
behaviour of the low-frequency peak in X↑↓(ω) at large |U | (cf figure 5) by deriving the explicit
expression for the many-body energy E in equation (7) as a function of the doublon quasi-
momentum κ (see section A.1 of the appendix) to be

Eκ = −

√
U 2 + 16J 2 cos2 (κ/2), (10)

where the dependence of the energy on the other N↑ − 1 quasi-momentum quantum numbers
{ki} has not been taken into account, being irrelevant in the dynamics considered here. From
this, the effective mass of the tightly bound pair can be extracted to be

mdoublon =

[(
∂2 E

∂κ2

)]−1

κ→0

=
1

J

√
1 +

U 2

16J 2

|U |/J�1
−−−−→

|U |

4J 2
, (11)

which, in the limit |U |/J � 1, coincides with the expression that would be obtained from
second-order perturbation theory.

It is interesting to note that our Bethe-ansatz solution delivers the same result for the quasi-
momentum dependence of the doublon contribution to the energy as the simple solution to
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Figure 6. X↑ ↓(ω), |U |/J = 1. (a) N↑ = 20, 60, 100 (purple dashed, green
dash-dotted and black continuous curves) and (b) N↑ = 100, 140, 180 (black
continuous, blue dashed and red dash-dotted curves). For N↑ =20 both the
polaron and the free-particle peaks are present (ω/J ' 0.4, 0.8, respectively,
while for larger values of N↑, only the free-particle peak is present. All
simulation parameters are the same as in figure 2.

the problem of two distinguishable bound particles on a lattice [51, 52]. In figure 7, we show
the comparison between the numerical value of the doublon peak oscillation frequency (low-
frequency peak in the strong-interaction regime), and the theoretical value obtained using our
value for the doublon mass (11) in conjunction with equation (5). The excellent agreement seen
shows that the doublon dynamics is well captured by our Bethe-ansatz-based model.

2.2. Strong interactions: the high-frequency peak

In the case of strong attraction (large |U |) treated in this section, the oscillations of the doublon
density also show another, high-frequency component in X↑↓(t), which is weak for low bath
densities, but which becomes significant above half-filling (see figure 5). Here, we argue that
this feature can be understood in terms of an effective scattering of bath particles from the Fermi
surface off the oscillating impurity towards the edge of the Brillouin zone. We will show that
the position of this high-frequency peak in X↑ ↓(ω) depends primarily on the filling fraction in
the bath and the associated value of kF, and is essentially independent of the kick strength and
insensitive to U .

2.2.1. Description of the dynamics in terms of particle–hole excitations of the bath. The high-
frequency peak in the strongly interacting limit can be understood in terms of scattering between
two bath particles mediated by the presence of the impurity, together with the dynamics of the
impurity itself. Within the framework of a two-band model (see figure 8), the effective scattering
between bath particles is explained in terms of an exchange process, involving the transfer of
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Figure 7. Comparison between the numerical value of the low-frequency peak
oscillation frequency for the large interaction case (as extracted from X↑↓(ω)),
and the theoretical value for |U |/J > 1, given by equations (10) and (11)). This
comparison allows us to establish that the low-frequency oscillations of X↑ ↓

can be described in terms of oscillations of a particle (composed of one spin-
up and one spin-down particle) in a parabolic confining potential. All simulation
parameters are the same as in figure 1, except for the interaction strength and the
lattice size. Here |U |/J =3, 5, 10, 20 and L = 200 or 400. The error bars account
for the finite resolution of the Fourier transform. Larger lattices allow for longer
simulation times before the reflection from the edges starts playing a role in the
doublon dynamics, thus allowing higher resolutions in the frequency domain. It
is worth noting that the full Bethe-ansatz formula works even for moderately
weak interaction. The characteristic size of the composite particle is given by
ξ−1 (see figure A.1), corresponding to a value of ' 2.3 for |U |/J = 3.

the up particle from the tightly bound pair to the ↑-particle band above the Fermi level, and the
concomitant transfer of a particle from the Fermi surface to the tightly bound pair (see figure 8).

The total energy necessary for this process, which the initial kick must supply now,
involving both the scattering process and the impurity dynamics, is given by

1E = ωhi + 2J
[
(1 − cos kp) − (1 − cos kF ↑)

]
, (12)

where ωhi is the oscillation energy associated with the dynamics of the impurity in a completely
full bath–particle band. The frequency ωhi thus corresponds to the oscillation frequency of a
free particle in the lattice, in the presence of the parabolic confining potential V , and its value
can be calculated from equation (5).

The term 2J (1 − coskp) corresponds to the transfer of an ‘↑’ particle from the tightly
bound pair to a free state of the bath above the Fermi level, as sketched in figure 8. The term
(1 − coskF ↑) then is related to the transfer of an ↑-particle from the Fermi surface of the bath to
the bound state of the ↑↓- pair.
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Figure 8. Two-band process leading to the scattering of a bath particle from
kF to π . The specific pair-mediated process depicted here (kP = π ) represents
the process associated with the maximum energy transfer from the pair to the
bath. The promotion of an ↑ particle from the pair to the bath is allowed for
kF < k < π , while for 0 < k < kF the process is forbidden due to Pauli blocking.

In figure 9, we show how the position of the high-frequency peak depends on the bath
density—provided by numerics—and that it is in reasonable agreement with the expression
given by equation (12) when kp = π , corresponding to the largest possible energy associated
with the transfer of an ↑-particle from the pair to the bath (see figure 8). We further find the
peak position to be insensitive to changes in U and kick strength k.

The offset between numerical results and equation (12) is then related to the non-uniform
spatial distribution of kF for the bath particles. This non-uniformity, in turn, is due to the
perturbing effect of the impurity, which can be approximated as Friedel oscillations in the bath
as we will show below. As the spatial extent of Friedel oscillations does not depend on |U |, the
spatial distribution of kF and consequently 1E are independent of the strength of the interaction.
These findings go some way towards explaining why even the local density disturbance of the
bath by the impurity is congruent with the observed U independence of the high-frequency
peak.

2.2.2. Bath–particle distribution in the presence of an impurity. With attractive interactions
and an impurity that is localized by the tight parabolic confinement potential, the density of
bath particles is modified locally in the centre of the system. Let us denote the size of this
modified region of the bath by ζ . We make a first estimate of the value of ξ by considering the
limiting case U → −∞, with the impurity being located on a single site, i . In this case, due to
the limit of infinite attraction, the site i will act as a hard-wall boundary condition [53, 54], and
the density profile of the bath particles around the impurity will undergo Friedel oscillations [55]
(see figure 10), as was recently pointed out in [28] for repulsive interaction and in the absence
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Figure 9. Plot of the high-frequency peak as a function of the bath filling,
compared to the value of 1E obtained from equation (12), for kp = π . The
position of the peaks in the numerical results does not show any dependence on
k and U : the value of ωnum coincides for k = 0.05π, 0.1π, 0.25π and |U | = 10,
and k = 0.1π and |U | = 5.

Figure 10. Friedel oscillations (see equation (13)) induced by the presence of a
hard-wall boundary condition at j = (L − 1)/2 for (a) 20 (purple dashed curve),
60 (green dash-dotted curve), 100 (black continuous curve) and (b) 100 (black
continuous curve), 140 (blue dashed curve), 180 (red dash-dotted curve) bath
particles, respectively (see equation (13)).
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Figure 11. Comparison between the numerical estimate of the ground-state
spatial oscillations induced in the bath by (a), (c), (d) a single down impurity
or (b) a doublon (blue continuous curves), with the Friedel oscillations induced
by hard-wall boundary conditions (green dash-dotted curves), with (a) N↑ = 180,
|U |/J = 10, (b) N↑ = 20, |U |/J = 10, (c) N↑ = 180, |U |/J = 1 and (d) N↑ =

20, |U |/J = 1. In the high-density limit, there is good agreement between the
numerical calculations and the approximate model, while in the low-density
limit, the numerical results suggest that the role of the impurity cannot be
described in terms of an impurity-induced Hartree potential. This hypothesis
is confirmed by the exact diagonalization of an Hamiltonian describing a spin-
polarized gas in the presence of a localized potential mimicking the potential
induced by the impurity. In this case the results are compatible with the results
implied by equation (13). All simulation parameters are the same as in figures 1
and 2.

of the lattice, according to the following formula:

ρ↑( j) =
N↑

L
−

1

2π

sin
[
2kF ↑ ( j − i)

]
| j − i |

. (13)

We note that in a 1D system the period of these oscillations is always independent of the
strength of the interactions between the bath particles and the bath impurity interactions, and is
always (2kF ↑)

−1 for a fermionic bath, and (2πρ0)
−1 for a bosonic one—all that changes with

the interaction is the amplitude of the Friedel oscillations.
In figure 11, we show how approximating either the on-site bound pair (in the case of

strong attraction) or the single particle (for weak attraction) as a boundary condition located at
the minimum of the parabolic potential works well to describe the density modulation induced
in the bath when N↑ is large, while it fails in the case of a more dilute system. As we have been
focusing on just this regime of intermediate and high filling in this part, this approximation
should be very reasonable.
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Figure 12. Comparison between the numerical value of the low-frequency peak
at |U |/J = 1 and the ωpol corresponding to the resonant frequency of the bound-
doublon to scattering-states transition. This peak can be seen in the N↑ = 20 plot
(a small peak around ω ' 0.2 in figure 6). Above N↑/L ' 0.2, it merges with
the free-particle peak, and eventually disappears. In this picture, the spin-up bath
particles are resonantly bound to the spin-down impurity, analogous to the case
of static polarons. All simulation parameters are like those in figure 2. The error
bars account for the finite resolution of the Fourier transform.

2.3. Weak interactions

As anticipated, for interactions |U |6 1, the peak in X↑ ↓(ω) associated with the oscillation of
a tightly bound on-site pair is not present. Nevertheless, we observe two distinct modes in the
doublon-density centre-of-mass oscillations X↑ ↓(t) in the weakly interacting regime as well.
One of them appears due to the free oscillatory motion of a non-interacting particle as derived
in section 1.2. Another peak, at lower frequencies, appears as well (see figures 6 and 12).

The underlying physics of this low-frequency peak derives from a resonant transition
between a bound pair and scattering states, specifically the spin-down impurity at zero quasi-
momentum and a spin-up bath particle at the Fermi quasi-momentum kF↑. The frequency of this
peak can thus be obtained considering the difference between the energy of the (weakly bound)
pair and the energy of the scattering state

ωpol = E↑ + E↓ − E↑ ↓ = −2J
[
1 + cos(kF ↑)

]
+

√

U 2 + 16J 2. (14)

Figure 12 shows excellent agreement between this model and the numerical results of the TEBD
calculations, within the error bars set by the finite resolution of the Fourier transform.

Further, the existence of the two peaks in X↑ ↓(ω) can be related to the known structure of
the polaron ground state: in the polaron ansatz [12] of the type

|9〉 =
√

Zc†
0↓

|F S〉↑|0〉↓ +
∑

k>k↑

F ,q<k↑

F

φk,qc†
k↑

cq↑c†
q−k↓

|F S〉↑|0〉↓, (15)

the first term describes the impurity at rest in the presence of the unperturbed Fermi sea of the
bath (with the quasi-particle weight Z ), and the second term a coherent superposition of states
in which the motion of the impurity is correlated with a single particle–hole excitation of the
Fermi sea (like the weakly bound state entering equation (14)).
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We can hypothesize that the high-frequency ‘free particle’ peak in X↑ ↓(ω) corresponds to
a second-order process involving the virtual breaking of a pair, while the low-frequency peak
is caused by the breaking up of the correlated state between the impurity and a particle–hole
excitation of the Fermi sea.

2.4. Damping

Along the lines of the above discussion on the particle–hole excitation process, it is possible
to intuitively understand the oscillation damping. When approaching half-filling, both from the
low- and the high-density limit, the oscillation damping is increased. This increase is associated
with the increase of the particle–hole creation mechanism through the virtual breaking of a
pair for increasing filling, and the concomitant energy transfer increase for decreasing filling.
This mechanism of dissipation is confirmed by the observation in the numerical data of density
perturbations in the bath particles, propagating at 2J , consistent with the picture of the transfer
of bath particles to the top of the band k = π .

3. The kicked impurity in a bosonic reservoir

Comparing the results obtained for a fermionic reservoir to those from a bosonic one enables us
to state which features of the observed dynamics are universal and which are particular to the
fermionic bath. Towards achieving this, we have performed TEBD simulations for a two-species
Bose–Hubbard Hamiltonian,

H = −J
∑
i σ

b†
iσ bi+1σ + h.c. + U

∑
i

ni ↑ni ↓ +
W

2

∑
i

ni ↑(ni ↑ − 1) + V
∑

i

ni ↓

(
i −

L − 1

2

)2

,

(16)

where the trap parameter V , tunnelling J and the values of U and N↑ are the same as described
in section 1, as is the impurity preparation and the initial kick to the impurity (as in the fermionic
case, we will set J = 1, a = 1). The two key differences are that now bi σ , b†

i σ are operators for
soft core bosons, which interact repulsively on-site with energy W , if σ =↑. Here, we have
considered W/J = 4, 10, 20.

3.1. The weak interaction limit

Repeating the TEBD simulations for weak interactions between the impurity and a bosonic bath,
we find that the two-peak structure discussed in section 2.3 persists for all the values of W we
have simulated, as shown in figure 13. Moreover, the position of the polaron-dissociation peak
(cf section 2.3) is still described remarkably well by the theory for the fermionic bath even for
the lowest value of W , W/J = 4. These findings can be understood analytically by observing
that, at low densities and reasonably large values of W , 1D lattice bosons map to spinless
fermions with weak nearest-neighbour attractions. This mapping is achieved by describing the
sector of low-energy, long-wavelength excitations of the ↑ component of the Hamiltonian (16)
as a Tomonaga–Luttinger liquid (TLL), whose properties are characterized by the so-called TLL
parameters, Kb and vb [56]. Expanding the ↑-sector in Hamiltonian (16) and the bath density
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Figure 13. Comparison of X↑ ↓(ω) between fermions and bosons in the weak-
attraction case, |U |/J = 1, N↑ = 20. The position of the low-frequency peak for
the fermionic bath, which stems from a break-up of correlated states between the
impurity and particle–hole excitations in the bath (cf section 2.3), is very similar
to that for the bosonic bath, at all values of W . See the text for details.

operator nx ↑ in terms of the canonically conjugate TLL field operators φ↑(x) and θ↑(x), one
obtains

H ≈
1

2π

∫
dx

(
ubKb(∂xθ↑(x))2 +

ub

Kb
(∂xφ↑(x))2

)

+U
∑

i

(
ρ0 −

∂xφ↑(xi)

π

)( ∞∑
m=−∞

e2im[πρ0xi −φ↑(x)]

)
ni ↓

+J
∑

i

b†
i↓bi+1↓ + h.c. + V

∑
i

ni ↓

(
i −

L − 1

2

)2

, (17)

where expanding the impurity–bath coupling in this way presupposes that the impurity does not
distort the bath density too much locally. In the limit of large W/J , the TLL parameters are
known perturbatively, Kb ≈ 1 + 4J

πW sin πρ0, ub = 2J sin πρ0

(
1 −

4J
W ρ0 cos πρ0

)
.

Now, a bath of spinless lattice fermions with attractive nearest-neighbour interactions
Vnn and Fermi quasi-momentum kF coupled to an impurity with an on-site density–density
interaction, can be mapped to a TLL in 1D in a manner identical to (17), where Kb is replaced
by Kf and ub by uf [29]. These parameters are also known from perturbation theory for small

Vnn: Kf = 1 + Vnn(1−cos 2kF)

2π sin kF
, uf = 2J sin kF

(
1 −

Vnn(1−cos 2kF)

2π J sin kF

)
.
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Figure 14. Comparison of X↑ ↓(ω) between fermions and bosons in the strong-
attraction case, |U |/J = 10. (a) N↑ = 140. For the fermion bath (black solid
line), the virtual pair-breaking peak (cf section 2.2) has become dominant,
with the doublon peak at lower frequency having almost completely flattened
out. For bosons at W/J = 20 (blue dashed line), the behaviour is qualitatively
similar, but the oscillation of the doublon is still dominant, as evidenced by
the larger low-frequency peak. For W/J = 10 (green dotted line) and W/J = 4
(red dash-dotted line), only the high-order bound states oscillate; there is no
virtual pair-breaking peak. (b) N↑ = 180. For the fermion bath, the virtual pair-
breaking peak (cf section 2.2) is now fully dominant, with the doublon peak
at lower frequency having completely vanished. The dynamics for the boson
bath at W/J = 20 (blue dashed line) now almost completely matches that of
the fermions, showing that for bosons as well a virtual pair-breaking peak,
corresponding to the fermionization of the bosonic gas. For W/J = 10 and 4,
only the high-order bound states oscillate as in (a); there is again no virtual pair-
breaking peak.

Computing Kb and ub for densities between 0 and 0.2 and large W/J shows that
equation (17) can be read equivalently as the model of an impurity coupled to weakly nearest-
neighbour attractive spinless fermions. For example, for W/J = 10 and n↑ = 0.1, Kb = 1.039,
ub/J = 0.59, values that are best matched by Kf and uf for |V |/J = 0.75, kF = 0.1π . Crucially,
a value of Kf = 1.039 is still very close to the values for free fermions, Kf = 1. Thus, the
continued applicability of equation (14)—which had initially been developed from a one-body
picture of the free fermion bath—to predict the polaron peak in the weak-coupling regime even
for a (sufficiently repulsive) bosonic bath can be explained (cf figure 13).

3.2. The strong interaction limit—higher-order bound states of the impurity

In the opposite limit of large bath–impurity attraction, |U | � J , the kick-induced dynamics of
the impurity start to depend crucially on the ratio |U |/W . As an example, as for the fermions,
we focused on the case |U |/J = 10. As long as W > |U |, the spectrum of doublon dynamics,
X↑↓(ω), remains qualitatively unaltered from the case of the fermionic bath: when n↑ < 0.5,
the dynamics of the kicked impurity are dominated by the oscillation of the doublon mode,
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Table 1. Table summarizing the different regimes identified for the problem
considered here.

|U | range Bath population Dynamics regime

Strong interaction Large N↑ Free particle
Strong interaction Intermediate N↑ Bound pair + polaron internal dynamics
Strong interaction Small N↑ Bound pair
Weak interaction Large N↑ Free particle
Weak interaction Intermediate and small N↑ Free particle + polaron

whereas for n↑ > 0.5 this doublon peak increasingly flattens out and eventually disappears as
n↑ increases above half-filling, as shown in figure 14. At the same time, like for fermions,
a high-frequency peak appears for n↑ > 0.5, increasing in amplitude as n↑ grows above the
threshold while the doublon peak decreases, signalling the transition of the dynamics to a regime
dominated by the virtual breaking of the pair (cf section 2.2). Even for a substantial value of W ,
W/J = 20, the value of the oscillation frequency is higher than in the fermionic case, signalling
an incomplete transition to a Tonks regime for the bosonic system.

On the other hand, when the boson–boson repulsion W becomes comparable to or smaller
than the magnitude of the boson–impurity attraction |U |, the numerics clearly show that higher-
order bound states between the impurity and the bath particles are formed in the ground state.
At W/J = |U |/J = 10, both doublon and trion states (the impurity binding to one or two bath
particles on-site, respectively) are present, whereas for W/J = 4, doublon, trion and quatrion
bound states are occupied, with the trion state carrying the largest weight at any bath density.
When quasi-momentum is applied to the impurity by the kick, these higher-order bound states
perform oscillations, at frequencies significantly lower than those for the doublons due to the
even higher effective mass. Interestingly, the damping we observe becomes gradually smaller,
the smaller the W/J is, with the oscillations at W/J = 4 showing almost no decay at any
value of n↑ in the time domain over which we simulate. An interesting question for further
study is whether this effect is due to the partial ability of 1D superfluids to be protected against
excitations [29, 57]—which would be the source of a damping of the bound state oscillations.

4. Discussion and conclusions

The dynamics of an impurity moving on a 1D lattice inside a fermionic bath, or a strongly
repulsive bosonic one, shows intriguingly complex dynamics, as can be seen by studying
the time evolution of the doublon density. One of the characteristic frequencies that appear
corresponds to the motion of a free particle, appearing in the limit of high filling of the
bath, and is easily understood due to the increasingly uniform interaction energy the impurity
experiences on all the sites. Another feature of the dynamics, namely the oscillations of a
bound pair are also rather intuitive to understand, allows us to draw an analogy with the
molecule versus polaron question in 3D continuum systems. The bound pair is present in
the regime of large |U |/J and low density, like the molecule in the polaron versus molecule
analogy. In the limit of small |U |/J , we observed the dynamics of a free particle side-by-
side pair breaking of the correlated states of a polaron. This actually corresponds well to the
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polaron ansatz [12], which is a superposition of a non-interacting Fermi sea (free particle) plus
a contribution from correlated particle–hole states. Thus, the crossover from a polaron to a
bound pair with increasing interaction is also taking place in analogy with higher dimensional
continuum systems. In our system, however, we have a feature that does not have any analogy in
the polaron versus molecule crossover in 3D continuum, namely the high-frequency peak in the
large |U | = J regime, which becomes dominant for bath fillings above 0.5, which is the result of
a virtual particle–hole creation process. This virtual exchange of paired and bath particles can be
read as a kind of internal dynamics of the polaron. Observation of the dynamics predicted here
should be feasible in currently available ultracold gases systems, provided that the temperature
is below the energy scale of the oscillations, which we found to be of the order of 0.1J–1J .
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Appendix

A.1. Effective mass from the Bethe ansatz

We show here how to gain some insight into the problem through the string hypothesis for the
solution of the Lieb–Wu equations whose solutions describe (most of) the eigenvalues of the
Hubbard Hamiltonian in one dimension (chapter 4 of [30]), in the limit of large lattice lengths L .
For a fixed total number of particles N and the number of down particles M , the patterns that
the solutions of the Lieb–Wu equations are composed of can be classified into three different
categories:

• k − 3 strings;

• single real values of k j ;

• 3 strings.

Every eigenstate of the Hubbard Hamiltonian can be represented in terms of a particular
configuration of strings, containing Mn 3-strings, M ′

nk − 3 strings of length n (in our case
n = 1) andMe single k j . Here Mn, M ′

n,Me are related to N and M by

M =

∞∑
n=1

n
(
Mn + M ′

n

)
, (A.1)

N =Me +
∞∑

n=1

2nM ′

n. (A.2)
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In our case, M = 1 implies the existence of two classes of string solutions:

(A) Mn = 1, M ′

n = 0,Me = L: this solution is characterized by one 3 string composed of a
single real value, N real k j s and no k − 3 strings.

(B) Mn = 0, M ′

n = 1, Me = L − 2: in this case the solution is characterized by N − 2 real
k j s and one k − 3 string, characterized by two (complex valued) k1,2s and one real 3,
related by

sin(k1,2) = 3 ± iU/4J. (A.3)

In terms of the string parameters, the energy and quasi-momentum are given by

P =

N−2M ′∑
j=1

k j −

∞∑
n=1

M ′
n∑

α=1

(
2 Re arcsin

(
3′

α
n + niU/4J

)
− (n + 1)π

)mod 2π, (A.4)

E = −2J
N−2M ′∑

j=1

cos
(
k j

)
+ 4J

∞∑
n=1

M ′
n∑

α=1

Re
√

1 − (3′
α + niU/4J )2. (A.5)

The two classes of solutions identified previously, see appendices A and B above, take the
following form:

(A) P =

N∑
j=1

k j , (A.6)

E = −2J
N∑

j=1

cos
(
k j

)
+ const. (A.7)

(B) P =

N−1∑
j=1

k j − 2 Re [arcsin (3 + iU/4J )] , (A.8)

E = −2J
N−1∑

j

cos
(
k j

)
+ 4JRe

√
1 − (3 + iU/4J )2 + const. (A.9)

The solution containing the k − 3 string can be written in a more transparent form as

P =

N−1∑
j=1

k j + 2q, (A.10)

E = −2J
N−1∑

j

cos
(
k j

)
− 4J cosh ξ cos (q) + const., (A.11)

where q = Re[k1] = Re[k2] and ξ = Im[k1] = −Im[k2], with k1 and k2 belonging to the k − 3

string. For the k − 3 string it is possible to prove (see [30, p 134]) that

cosh ξ =

√
1 +

U 2

16J 2 cos2 (q)
. (A.12)
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Figure A.1. The pair size (ξ−1) as a function of U .

From the form of the wavefunction associated with the k − 3 string, ξ describes the
(exponential) spatial decay of the pair, and thus ξ−1 can be interpreted as the size of the pair.

In the strongly interacting limit we have

−4J cosh ξ cos q → U − 4J 2/ |U | − 4J 2/ |U | cos (2q) + O

(
1

U 2

)
, (A.13)

which is coherent with the strong-coupling calculation leading to the Heisenberg Hamiltonian
for the Hubbard Hamiltonian in the strong-coupling limit (modulo a U → −U mapping).

The spectrum is thus composed of a lower band (k − 3+ single ks solutions) and a
higher band (single ks and single 3 solutions). Intuitively, the former corresponds to a pair
in an unpaired background Fermi sea, whereas the latter corresponds to scattering states. The
down particle which is kicked in our simulations, with a view to the collective nature of
the excitations in 1D systems, can be considered as composed of both kinds of elementary
excitations, appropriately weighted by the presence of the trapping potential.

We now aim at describing the dynamics that we observed numerically through the
evaluation of the effective mass for the pairs

mdoublon =

(
∂2 E

∂κ2

)−1
∣∣∣∣∣
κ=0

(A.14)

=
1

J

√
1 +

U 2

16J 2
, (A.15)

where E is defined by equation (A.10).

A.2. The frequency of the non-interacting particle in the combined harmonic trap
and lattice potential

The idea is to compare the oscillation frequency from the numerical data to that given by the
non-interacting particle in a combined lattice and harmonic trap potential. As a reminder, the
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formula for the centre-of-mass position was given by

〈x〉 = δ exp

[(
δ

aho

)2

sin2 (V/8t)

]
cos

[
V

(√
2

V meff
−

1

4

)
t −

δ2

2a2
ho

sin

(
V t

4

)
+

π

2

]
. (A.16)

Neglecting the exponential prefactor time dependence, we can write the centre-of-mass
oscillation frequency as

ωCOM =
d�

dt
, (A.17)

where

� = V

(√
2

V meff
−

1

4

)
t −

(
δ

aho

)2

sin

(
V t

4

)
+

π

2

with δ = [ (1−cos k)

V meff
−

1
16 −

√
V/J

256 ]1/2, leading to

ωCOM = V

[(√
2

meffV
−

1

4

)
−

√
V/J

4

(
1 − cos k

meffV
−

1

16
−

√
V/J

256

)]
. (A.18)

The comparison between ωCOM and the numerical data is obtained by performing a discrete
Fourier transform of 〈n↑n↓〉(t) for different values of U and N↑. For N↑ = N↓ = 1, i.e. no bath,
the agreement is perfect: higher interaction energies correspond to lower values of the oscillation
frequency, in agreement with the increase of the effective mass.

References

[1] Mahan G D 2010 Many Particle Physics (Berlin: Springer) (softcover reprint of the hardcover 3rd edn of
2000)

[2] Kondo J 1964 Prog. Theor. Phys. 32 37
[3] Lee P A and Wen X-G 2006 Rev. Mod. Phys. 78 17
[4] Ketterle W, Inouye S, Andrews M R, Stenger J, Miesner H J and Stamper-Kurn D M 1998 Nature 392 151
[5] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[6] Schirotzek A, Wu C-H, Sommer A and Zwierlein M W 2009 Phys. Rev. Lett. 102 230402
[7] Nascimbène S, Navon N, Jiang K J, Tarruell L, Teichmann M, McKeever J, Chevy F and Salomon C 2009

Phys. Rev. Lett. 103 170402
[8] Sommer A, Ku M and Zwierlein M W 2011 New J. Phys. 13 055009
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