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Abstract. For gradiometric three-Josephson-junction flux qubits, we perform
a systematic study on the tuning of the minimal transition frequency, the
so-called qubit gap. By replacing one of the qubit’s Josephson junctions
by a dc superconducting quantum interference device (SQUID), the critical
current of this SQUID and, in turn, the qubit gap can be tuned in situ by a
control flux threading the SQUID loop. We present spectroscopic measurements
demonstrating a well-defined controllability of the qubit gap between zero and
more than 10 GHz. This is important for tuning the qubit into and out of
resonance with other superconducting quantum circuits in scalable architectures,
while still operating it at its symmetry point with optimal dephasing properties.
The experimental data agree very well with model calculations based on the full
qubit Hamiltonian. From a numerical fit, we determine the Josephson coupling
and the charging energies of the qubit junctions. The derived values agree well
with those measured for other junctions fabricated on the same chip. We also
demonstrate the biasing of gradiometric flux qubits near the symmetry point by
trapping an odd number of flux quanta in the gradiometer loop. In this way, we
study the effect of the significant kinetic inductance, thereby obtaining valuable
information for the qubit design.
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1. Introduction

Superconducting quantum circuits are promising for the implementation of solid-state quantum
information systems [1, 2] and the realization of fascinating quantum-optical experiments in
the microwave regime [3–5]. In particular, the coupling of superconducting quantum two-level
systems (qubits) with microwave resonators has been successful [6–8], resulting in the rapid
development of a prospering field called circuit quantum electrodynamics (QED). In circuit
QED, strong [6, 7] and ultrastrong coupling [9–11] of superconducting quantum bits to the
electromagnetic modes of high-quality-factor microwave resonators has been demonstrated.
Circuit QED has also been used to generate non-classical states of light [12, 13], to establish
single artificial atom masing [14], to realize controlled symmetry breaking [15, 16] or to
implement quantum gates and algorithms [17, 18].

Nowadays, the most popular superconducting qubits are the Cooper pair box [6, 19], the
transmon qubit [13, 17, 20], the phase qubit [12, 21, 22], the fluxonium [23] and the persistent
current or flux qubit [7, 24–26]. For the implementation of circuit QED experiments, transmon
and phase qubits have been used most often owing to several reasons. Firstly, the relevant qubit
parameters can be controlled within sufficiently narrow margins in the fabrication process.
Secondly, a controlled coupling/decoupling to a microwave resonator acting as a quantum
bus is possible by a fast change of the qubit’s transition frequency. Thirdly, the coherence
properties of the qubit do not strongly degrade during such operations. Unfortunately, the
original design of the flux qubit [24] consisting of a superconducting loop intersected by three
Josephson junctions (JJ) cannot fulfill these requirements simultaneously. Firstly, although the
flux qubit’s transition frequency ωq can be varied over a wide range by applying an external
magnetic flux, the coherence time of the flux qubit rapidly decreases when tuning the qubit
away from its symmetry point with the minimum transition frequency ωq = 1. Only at its
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symmetry point is the flux qubit well protected from the relevant 1/ f -noise and coherence times
exceeding 1 µs can be reached [1]. Secondly, for the flux qubit, the minimal energy splitting
h̄1 between the ground and excited states depends exponentially on the critical current Ic and
capacitance CJ of the JJ [26] and, therefore, is difficult to control in fabrication precisely. This
does not allow one to fabricate flux qubits with well-defined 1 values, which are, e.g., close
to the resonant angular frequency ωr of superconducting microwave resonators. On the other
hand, flux qubits have specific advantages. Firstly, the anharmonicity of flux qubits, that is, the
separation of the excited state from the third level relative to ωq, is by one or two orders of
magnitude larger than for transmon and phase qubits, allowing for fast qubit operations without
leakage to higher states. Secondly, flux qubits can be coupled ultrastrongly to resonators. The
relative coupling strengths g/ωr > 0.1, where ωr is the resonator frequency and g is the coupling
strength, have been demonstrated [9, 10]. The reason is that the coupling is inductive for the flux
qubit and capacitive for the transmon/phase qubit, respectively. As the inductive and capacitive
coupling is proportional to 80 Irms and 2eVrms, respectively, the ratio of the coupling strengths
is (h/4e2)(Irms/Vrms) = (h/4e2)/Zr ∼ 10. Here, 80 = h/2e is the flux quantum, e the electron
charge, Irms and Vrms the zero-point current and voltage fluctuations in the resonator and Zr the
characteristic impedance of the resonator.

In order to overcome the drawback of a fixed minimum energy splitting h̄1 in
superconducting flux qubits, Orlando et al [26] proposed a modified flux qubit design, which
has subsequently been implemented by Paauw et al [27] and successfully used in several
experiments, either in gradiometric [11, 27, 28] or non-gradiometric design [29–32]. In this
tunable-gap flux qubit, one of the JJ, the so-called α-junction, is replaced by a small loop with
two JJ. This dc superconducting quantum interference device (SQUID) acts as a junction whose
critical current can be controlled by the flux threading the SQUID loop. As a consequence, also
the qubit gap 1 can be tuned in such a configuration. The additional control allows for a fast
variation of the qubit transition frequency ωq, while operating the flux qubit at its symmetry
point where the coherence properties are optimum [11, 27, 28]. In this paper, we report on the
fabrication and systematic study of tunable-gap gradiometric flux qubits, following the design
proposed in [27]. We emphasize that the combination of gradiometric design and a tunable gap is
especially suitable for the experimental realization of exciting proposals [33]. We show that the
energy splitting at the symmetry point can be varied in a controlled way between values close to
zero and 1/2π > 10 GHz. In particular, our analysis extends to the case of multiple flux quanta
trapped in the gradiometer loop. In this way, we obtain detailed insight into important design
parameters and into the tuning mechanism. In section 2, we first introduce the foundations of
fixed-gap and tunable-gap flux qubits required for the analysis of the experimental data. In
particular, we discuss the possibility of flux-biasing gradiometric flux qubits at the symmetry
point by freezing in an odd number of flux quanta during cool down and the effect of the
significant kinetic inductance of the narrow superconducting lines of the qubit loop. After briefly
introducing the experimental techniques in section 3, we present the experimental data and their
analysis in section 4 before concluding the paper with a brief summary in section 5.

2. The flux qubit

In the following, we briefly summarize the foundations of fixed-gap and tunable-gap persistent
current or flux qubits as well as their gradiometric versions. We derive the relevant expressions
used in the evaluation of our experimental data.
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Figure 1. Circuit schematics of (a) the three-Josephson-junction (3-JJ) flux qubit
with α-junction, (b) the simplest 3-JJ flux qubit with the tunable α-junction
realized by a dc SQUID, (c) the gradiometric 3-JJ flux qubit without tunable
α-junction and (d) the gradiometric 3-JJ flux qubit with tunable α-junction. The
α- and ε-lines can be used to change the magnetic frustration of the α- and qubit
loop independently.

2.1. The fixed-gap flux qubit

The simplest version of the flux qubit (cf figure 1(a)) consists of a small superconducting loop
with a diameter of the order of 10 µm intersected by three JJ with lateral dimensions of the
order of 100 nm [24]. While two of these JJ have the same area (typically, AJ ' 0.03 µm2 in
our experiments) and, hence, the same critical current (typically, Ic ' 600 nA), the third JJ, the
so-called α-junction, has a reduced area Aα = αAJ with α ≈ 0.6–0.8, resulting in a reduced
critical current Ic,α = α Ic and a reduced junction capacitance Cα = αCJ. Since α = α0 is fixed
in the fabrication process, the qubit gap 1 is also fixed. Consequently, this version of the flux
qubit is called the fixed-gap flux qubit. For α ≈ 0.6–0.8, the two-dimensional potential energy
landscape of the flux qubit can be simplified. At the symmetry point, where the magnetic flux
through the loop is equal to (n + 1

2)80, with n being an integer, the potential can be reduced
to a one-dimensional double well [26]. The two minima of this potential are associated with
two degenerate persistent current states, corresponding to clockwise and counter-clockwise
circulating persistent currents ±Ip. Due to the finite tunnel coupling of these states their
degeneracy is lifted. The resulting symmetric and anti-symmetric superposition states form
the ground and excited states of the flux qubit separated by the minimal energy splitting h̄1.
Note that our terminology follows the most popular approach based on macroscopic quantum
tunneling [21]; however, interpretations based on the resistively and capacitively shunted
junction model [34–36] have not been ruled out yet. In the basis of the persistent current states
and near the symmetry point, the Hamiltonian describing the flux qubit can be written as [26]

H=
1

2
h̄εσz −

1

2
h̄1σx . (1)

Here, σz and σx are the Pauli spin operators, h̄ε = 2Ipδ8 is the magnetic energy bias and
δ8 = 80[ f − (n + 1

2)] is the deviation of the flux 8 threading the loop from a half-integer
multiple of 80. The quantity f = 8/80 is the magnetic frustration of the qubit loop and n
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an integer. The transition frequency between the ground and excited states can be written as

ωq =

√

ε2 + 12 (2)

and the qubit gap 1 becomes [26]

1 =

√
4EJ Ec(4α2 − 1)

α(1 + 2α)
exp

(
−a(α)

√
4α(1 + 2α)

EJ

Ec

)
. (3)

Here, EJ = h̄ Ic/2e is the Josephson coupling energy, Ec = e2/2C is the charging energy and
a(α) =

√
1 − (1/4α2) − [arccos(1/2α)/2α] with a(α) ' 0.15 for α = 0.7. Obviously, 1 is

determined by the critical current Ic and the capacitance CJ of the JJ as well as by α = α0.
All these parameters are fixed by the fabrication process. Decreasing α from 1 to 0.5 results in
a strong increase of the exponential factor. At the same time, the prefactor (attempt frequency)
decreases from the plasma frequency of the JJ to zero, because the double-well potential
becomes a single well at α = 0.5. Since the exponential factor dominates within the major part
of the interval 0.5 < α < 1, a strong increase of 1 is obtained by reducing α.

It is evident from (1) and (2) that it is possible to tune ωq by varying either ε or 1. Varying
the energy bias ε is simply achieved by changing δ8 via the magnetic field generated by an
external solenoid or a current fed through an on-chip control line. However, δ8 6= 0 causes a
shift of the qubit operation point away from the anti-crossing point with a minimal transition
frequency 1. As the energy of the flux qubit is stationary with respect to small variations of the
applied magnetic flux (∂ωq/∂δ8 = 0) only for f =

(
n + 1

2

)
, any shift away from this symmetry

point makes the flux qubit more susceptible to magnetic flux noise and significantly deteriorates
the coherence properties [37, 38]. Since the fast tuning of ωq of flux qubits is a prerequisite
for numerous circuit QED experiments [39, 40], it is desirable to realize a tuning of ωq by a
variation of 1.

2.2. The tunable-gap flux qubit

According to (2), ωq can be tuned not only by varying ε but also by varying 1. This is
advantageous, since the operation point of the qubit stays at the symmetry point with optimal
coherence properties. Flux qubits with tunable 1 are called tunable-gap flux qubits. As pointed
out by Paauw et al [27], an in situ tunability of 1 is achieved by replacing the α-junction by
a small α-loop containing two JJ (cf figure 1(b)). That is, the α-junction is replaced by a dc
SQUID. Then, the critical current Ic,α of the α-loop and, in turn, the qubit gap 1 can be tuned
by a control flux 8α threading the α-loop. If we choose the area of the junction in the α-loop
to be 0.5α0 AJ, we obtain Ic,α = α Ic with α = α0|cos(π8α/80)|. Successful implementations of
this design have recently been reported [29, 41–43].

The magnitude of Ip can be calculated as [26]

Ip = ±Ic

√
1 −

1

4α2
, (4)

yielding the α-dependent transition frequency

ωq =

√
4I 2

c

[
1 − (1/4α2)

]
δ82/h̄2 + 12(α) (5)

with 1(α) according to (3). We see that for α → 0.5 the persistent current Ip approaches zero.
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2.3. The gradiometric flux qubit

While the replacement of the α-junction by an α-loop allows for a tunable qubit gap 1, applying
any flux to the α-loop at the same time changes the flux threading the qubit loop and hence the
energy bias ε of the flux qubit. This is unintentional and has to be compensated. To keep the
energy bias of the flux qubit constant during variations of 8α, a gradiometric design can be used.
The gradiometric versions of a fixed-gap and a tunable-gap flux qubit are shown in figures 1(c)
and (d), respectively.

For the tunable-gap gradiometric flux qubit of figure 1(d), an applied homogeneous
magnetic field changes 8α, but does not affect the energy bias of the flux qubit, since the
screening currents in the two subloops of the eight-shaped gradiometric loop cancel each other
on the central line. The immediate consequence is that an inhomogeneous magnetic field is
required to adjust the energy bias ε of the flux qubit. This inhomogeneous field can be generated
by feeding a small current through the so-called ε-flux line, which couples asymmetrically to
the qubit loop (cf figure 1(d)). Furthermore, the outer ring of the gradiometric qubit, denoted as
the trapping loop, can be used to trap an integer number of magnetic flux quanta, e.g. by cooling
down below Tc in an applied magnetic field. This allows for a pre-biasing of the qubit near the
symmetry point. We note, however, that the exact amount of flux threading the qubit loop and
the α-loop, respectively, depends on the ratio of the kinetic and geometric inductances. Since
an understanding of this point is important for a controlled design of a gradiometric qubit with
a tunable gap, it is discussed in more detail in section 2.5. Within this work, we investigate both
fixed-gap and tunable-gap gradiometric 3-JJ flux qubits. The former is an ideal model system to
study the principle of flux biasing.

2.4. Flux biasing

In this subsection, we briefly address the flux biasing of gradiometric flux qubits by the trapping
of magnetic flux in its outer loop, the so-called trapping loop (cf figures 1(c) and (d)). Flux
biasing is based on the phase coherence of the superconducting state. The phase θ of the
macroscopic wave function describing the superconducting state is allowed to change only by
integer multiples of 2π along a closed integration path∮

0

∇θ ds= 2πn. (6)

In multiply connected superconductors, this leads to the expression for the fluxoid quantization∮
0

µ0λ
2
LJs · ds+

∫
F
B · dF = n80, (7)

where λL is the London penetration depth, µ0 is the vacuum permeability, 0 is a closed
integration path encircling the area F , J s is the supercurrent density along 0 and B is the
magnetic flux density. The second term on the left-hand side represents the total magnetic flux
8 threading the area F . For superconductors with large cross-sectional area compared to the
London penetration depth λL, the first term vanishes, since one can always find an integration
path deep inside the superconductor where the supercurrent density Js = 0. This leads to the
expression for flux quantization

8

80
≡ ftr = n, (8)
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meaning that the total magnetic flux in a closed superconducting loop such as the trapping loop
is quantized in units of 80.

The phase of the superconducting order parameter changes by 2πn around the closed
trapping loop. Therefore, in the fully symmetric gradiometric qubit designs of figures 1(c) and
(d) the trapping of an odd number (2n + 1) of flux quanta in the trapping loop leads to a phase
difference of (2n + 1)π between the points A and B. This corresponds to a flux bias of (n + 1

2)80,
i.e. a flux bias at the symmetry point. The biasing with trapped flux has the advantage that it
is not affected by the finite noise of current sources required for the biasing with an external
magnetic field. On the other hand, once a specific flux state has been frozen in, it can no longer
be changed without heating the sample above Tc. Therefore, in practice, flux trapping is often
used for pre-biasing at an operation point, while an additional magnetic field is used for making
fast changes around this operation point. In order to enable such flux control the width of the
superconducting line forming the trapping loop has to be made small enough (of the order of
λL) to allow for partial penetration of the applied magnetic field. In this case, the first term
on the left-hand side of (7) becomes relevant. This term is related to the kinetic energy of the
superconducting condensate or, equivalently, the kinetic inductance Lk, whereas the second term
is related to the field energy or, equivalently, the geometric inductance Lg of the trapping loop.

2.5. The effect of the kinetic inductance

We next discuss the influence of the kinetic inductance Lk, which is no longer negligible
compared to the geometric inductance Lg of the trapping loop when the width of the
superconducting lines is reduced to values of the order of λL. In this case the first term on
the left-hand side of (7) is no longer negligible. With the supercurrent Icir = JsS circulating in
the trapping loop, we can rewrite this term as∮

0

µ0λ
2
LJs ds=

µ0λ
2
L

S
Icir` = Lk Icir. (9)

Here, we have introduced the kinetic inductance Lk = µ0λ
2
L(`/S) of the trapping loop, with ` its

circumference and S its cross-sectional area. With 8k = Lk Icir and splitting up the total flux 8

into a part 8ex due to an external applied field and a part 8g = Lg Icir caused by the circulating
current in the trapping loop with geometric inductance Lg, the fluxoid quantization condition (7)
reads as

8k

80
+

8ex

80
+

8g

80
≡ fk + fex + fg = n. (10)

Introducing the parameter β = Lg/Lk, we obtain the expression for the net magnetic frustration
of the trapping loop as

ftr,net = fex + fg =
1

1 + β
fex +

β

1 + β
n. (11)

The net magnetic frustration of the α-loop in first approximation is obtained by multiplying with
the area ratio Aα/Atr of the α- and the trapping loop:

fα,net =
Aα

Atr
ftr,net. (12)

Here, we have neglected effects arising from the fact that the α-loop is not centered in
the trapping loop. If the geometric inductance is negligible (β � 1), the contribution of the
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circulating screening current is negligible and ftr,net ' fex. In this case, the superconducting
lines cannot screen magnetic fields and we can change the magnetic frustration of the α- and the
trapping loop continuously by varying the applied magnetic field. In contrast, if the geometric
inductance is dominant (β � 1), the screening is so strong that we can no longer change the
flux in the loop by varying the applied field. The frustration of the trapping loop is fixed at the
value ftr,net ' n frozen in during cool down. This means that also the frustration of the α-loop
can no longer be changed continuously as desired.

With the net magnetic frustration (12), the critical current of the α-loop is obtained as
Ic,α( fα,net) = α( fα,net)Ic with

α( fα,net) = α0

∣∣cos
(
π fα,net

)∣∣
= α0

∣∣∣∣cos

(
π

Aα

Atr

[
1

1 + β
fex +

β

1 + β
n

])∣∣∣∣ . (13)

For a suitable width of the superconducting lines and, hence, a suitable value of β, we can vary
α both by changing fex via an external magnetic field and by changing the number n of flux
quanta frozen into the trapping loop during cool down. For example, n could be used for pre-
biasing at a specific α value and the external magnetic field provided by a current sent through
an on-chip control line for small variations around this value. The pre-biasing with trapped flux
has the advantage that it is not affected by the noise added by the current source, while the
variations with the on-chip control line can be very fast.

For zero applied magnetic field, (13) reduces to

α( fα,net)| fex=0 = α0

∣∣∣∣cos

(
π

Aα

Atr

β

1 + β
n

)∣∣∣∣ . (14)

This expression applies to the experimental situation, where an odd number (2n + 1) of flux
quanta is frozen into the trapping loop to bias the gradiometric flux qubit at its symmetry point
and no additional external magnetic field is applied. Fixing α0 ' 1 by the fabrication process, we
can change the number of trapped flux quanta to choose α in the desired regime 0.5 < α < 1.
Of course, flux trapping only allows for a step-wise variation of α. For continuous and fast
variations of α, magnetic fields generated by external solenoids or on-chip control lines have to
be used. For a typical value of β ' 0.8, we obtain fα,net ' 0.08 n for fex = 0. This shows that
we need only a small number of trapped flux quanta to significantly modify α. Furthermore,
we obtain ftr,net = 0.55 fex for n = 0, meaning that about half of the applied magnetic flux is
shielded by the trapping loop.

2.6. The gradiometer quality

A perfect gradiometer should be completely insensitive to a homogeneous magnetic field.
However, in reality there are always imperfections such as slight differences of the areas A1 and
A2 of the two subloops of the eight-shaped gradiometer and/or of the geometric inductances Lg1

and Lg2 and kinetic inductances Lk1 and Lk2 of the superconducting lines forming the subloops.
Due to these imperfections there will be a finite imbalance δ fimb of the magnetic frustration of
the two subloops. According to (10), δ fimb can be expressed as

δ fimb = δ fex + δ fg + δ fk =
δ8ex

80
+

δ8g

80
+

δ8k

80

=
8ex

80

δA

A
+

IcirδLg

80
+

IcirδLk

80
. (15)
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With Icir = (n − fex)80/(Lg + Lk) we can rewrite this expression to

δ fimb = fex

(
δA

A
−

δLg + δLk

Lg + Lk

)
︸ ︷︷ ︸

≡1/Qgrad,ex

+ n

(
δLg + δLk

Lg + Lk

)
︸ ︷︷ ︸

≡1/Qigrad,n

. (16)

The total gradiometer quality Q is given by Q−1
= Q−1

grad,ex + Q−1
igrad,n. The first term describes

imbalances of the frustration when a homogeneous external field is applied, and the second
those when an integer number of flux quanta is frozen in. Obviously, the higher the Q the lower
is δ fimb. As shown below, Q values of the order of 500 are feasible.

We note that the ε-flux line shown in figure 1(c) generates different flux densities B in the
two subloops of area Atr,1 ' Atr,2, leading to different amounts of total flux 81 =

∫
Atr,1

B dA and

82 =
∫

Atr,2
B dA. This results in the magnetic frustration

f12 =
81 − 82

80
(17)

by the ε-flux line, which is used to change the energy bias ε of the gradiometric flux qubit.
Correspondingly, the deviation of f12 from the value (n + 1

2) at the symmetry point is

δ f12 = f12 −

(
n +

1

2

)
. (18)

3. Experimental techniques

The flux qubits used in our study are based on Al thin film structures and Al/AlOx /Al
JJ fabricated by electron beam lithography and two-angle shadow evaporation on thermally
oxidized silicon wafers. The details of the fabrication process can be found in [44]. Figure 2
shows optical and SEM micrographs of a sample chip with a tunable-gap gradiometric flux
qubit. The qubit is surrounded by the readout dc SQUID and the control circuitry for the energy
bias (ε-flux line) and the qubit gap 1 (α-flux line). The insets show an enlarged view of the qubit
region as well as SEM images of regular junctions and one of the junctions of the α-loop, which
has a reduced area 0.5α0 AJ with α0 ' 1. The area of the regular junctions is AJ ' 0.03 µm2.

All measurements have been carried out in a dilution refrigerator with a base temperature
of 30 mK. The qubit state is read out via a dc SQUID inductively coupled to the flux qubit
[37, 44]. Qubit transitions between the ground and excited states can be induced by microwave
radiation supplied via an off-chip antenna. The continuous-wave microwave signal applied in
our experiments is strong enough to saturate the qubit, leading to a 50% population of ground
and excited states. The trapping of flux quanta in the trapping loop of the gradiometric qubit
is obtained by cooling down the circuit into the superconducting state in the presence of an
appropriate magnetic field. Moreover, the sample can be heated up above Tc by applying a
suitable heating current to an external heater located near the sample.

4. Experimental results and discussion

4.1. Basic parameters

The critical current density of the JJ is determined to be Jc(30 mK) = 1.5–3.5 kA cm−2 by
measuring the current–voltage characteristics (IVCs) of the readout SQUIDs fabricated on
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Figure 2. Optical micrograph of the sample chip containing a tunable-gap
gradiometric flux qubit with the biasing lines and filter structures. The large
inset shows an enlarged view of the region marked with the blue rectangle: the
gradiometric qubit with readout dc SQUID as well as the α- and ε-flux lines used
for tuning the frustration of the α- and the qubit loop. The two small insets show
scanning electron microscopy (SEM) images of a regular (top) and an α-junction
(bottom). The positions of these junctions are marked with yellow rectangles in
the large inset.

the same chip and by determining the junction area AJ by SEM. The Jc values can be
varied by changing the oxidation process. For Jc = 2 kA cm−2 and the typical junction area of
AJ ' 0.03 µm2, we have Ic ' 600 nA. The specific capacitance of the junctions is derived from
the analysis of resonances in the IVCs of the readout SQUIDs [45]. For junctions with Jc =

2 kA cm−2, we find that C/A = (195 ± 10) fFµm−2, resulting in CJ ' 6 fF for AJ ' 0.03 µm2.
The geometric inductance Lg of the superconducting loops is estimated according to [46]. In
order to estimate the kinetic inductance of the superconducting lines, we use the dirty limit
expression Lk = h̄ρn`/π10S [47, 48], where 10 = 0.18 meV is the zero-temperature energy
gap of Al. The use of this expression is justified, since the mean free path in our 90 nm thick Al
films is limited by the film thickness and therefore is much smaller than the coherence length
ξ ' 1.5 µm of Al. The normal resistivity ρn is determined by suitable test structures fabricated
on the same chip. For the cross-sectional area S = 500 × 90 nm2 of the superconducting line
forming the trapping loop, we obtain a kinetic inductance per unit length of Lk/` ' 1 pH µm−1.

4.2. The fixed-gap flux qubit

We first discuss the properties of fixed-gap, non-gradiometric flux qubits serving as reference
samples. The qubit gap 1 and the persistent current Ip are determined by qubit spectroscopy
[37, 44]. Figure 3 shows typical spectra obtained for two 3-JJ flux qubits with fixed α-junction
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Figure 3. Plot of the transition frequency ωq/2π against δ f = f − (n + 1
2) =

δ8/80 for two fixed-gap flux qubits with (a) α0 = 0.75 and (b) α0 = 0.6. Also
shown is a two-parameter fit of the data (black lines) yielding 1/2π and Ip and
the result of a numerical simulation based on the diagonalization of the full qubit
Hamiltonian. In panel (b) the results of the two-parameter fit and the simulation
are almost indistinguishable.

by sweeping the qubit frustration δ f = f − (n + 1
2) = δ8/80 at a fixed microwave frequency.

The qubit state is read out repeatedly by the readout dc SQUID. Only at those δ f values where
the microwave driving is resonant with the qubit transition frequency ωq, a 50% population
of the excited state is detected. This manifests itself in characteristic peak and dip structures
in the switching current Isw of the readout SQUID at frequency-dependent δ f values. Plotting
these values versus the microwave frequency as shown in figure 3 yields ωq(δ f ). Assuming that
Jc has the same value for all three junctions, the value of α = α0 = Aα/AJ can be determined
from the measured area ratio. Then a two-parameter fit of (5) to the spectroscopy data yields
1 and Ip = h̄ε/2δ8. The spectra in figure 3 are obtained for two flux qubits differing only in
their α0 values. For α0 = 0.75 and 0.6, we obtain 1/2π = 1.39 and 10.76 GHz and Ip = 583
and 283 nA, respectively. Obviously, for α0 values closer to 0.5 (1.0), large (small) 1 and small
(large) Ip values are obtained in agreement with (3) and (4). A consistency check can be made by
calculating the Ip values from (4). Here, the unknown critical current Ic = Jc A is estimated from
the measured junction area and using the Jc value of the junctions of the readout SQUID. We
obtain Ip = 619 and 310 nA in good agreement with the values derived from the spectroscopy
data.

We have also performed numerical simulations based on the diagonalization of the full
qubit Hamiltonian using EJ, Ec and α = Aα/AJ as the input parameters. They are based on the
Jc values derived from the IVCs of the readout SQUID and the measured junction areas. As
shown in figure 3, there is very good agreement between the simulation result and the two-
parameter fit for α = 0.6. However, significant deviations appear for α = 0.75. The reason is
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Figure 4. (a) Circuit schematics of the fixed-gap gradiometric flux qubit with
the readout dc SQUID and ε-flux line. The outer loop of the flux qubit
(broken olive line) forms the trapping loop. (b) SEM image of the implemented
circuit. The inset shows an enlarged view of the α-junction. (c) Plot of the
transition frequency ωq/2π against δ f = f − (n + 1

2) = δ8/80 for a fixed-gap
gradiometric flux qubit with α0 = 0.65. Also shown is the result of a numerical
simulation (red line) based on the diagonalization of the full qubit Hamiltonian
with the listed parameters.

that there are not enough data points around δ8 = 0, where the readout of the qubit state by
the dc SQUID fails. This leads to large uncertainties in 1 for the two-parameter fit. Therefore,
small 1 values tend to have larger error bars. Nevertheless, figure 3 clearly demonstrates that
the numerical simulation describes the experimental data very well.

4.3. The fixed-gap gradiometric flux qubit

We discuss next the properties of fixed-gap gradiometric flux qubits to demonstrate the operation
of the gradiometric qubit design shown in figures 4(a) and (b). The flux qubit is biased close
to its symmetry point by freezing in an odd number (2n + 1) of flux quanta in the trapping
loop during cool down. This results in a phase difference of (2n + 1)π between points A and B,
equivalent to a flux bias of (n + 1

2)80 of the gradiometric flux qubit at its symmetry point. To
change the energy bias ε after cool down, a spatially inhomogeneous magnetic field is required,
which is generated by the current Iε sent through the ε-flux line. The qubit state is read out via
the readout dc SQUID inductively coupled to the trapping loop of the qubit. The operation point
of the readout dc SQUID can be optimized by applying a homogeneous magnetic field (e.g. by
a solenoid) that does not affect the energy bias of the qubit due to its gradiometric design.

Figure 4(c) shows the typical spectroscopy data of a gradiometric flux qubit with α0 = 0.65.
Since we are measuring ωq(δ Iε) and not ωq(δ f ), the only problem in evaluating these data is to
determine the calibration factor

κ ≡
∂δ f

∂δ Iε

, (19)

where δ Iε = Iε − I sym
ε is the deviation of the current Iε sent through the ε-flux line from the value

I sym
ε needed for biasing the qubit at the symmetry point. This is done by calculating ωq(δ f ) by
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Figure 5. (a) Switching current Isw of the readout SQUID of a fixed-gap
gradiometric flux qubit as a function of δ f12 = f12 −

(
n + 1

2

)
recorded for a fixed

microwave frequency of 19.33 GHz. The peak and dip positions mark those δ f
values where ωq/2π = 19.33 GHz. (b) Frustration imbalance δ f12 as a function
of the frustration fex generated by a homogeneous applied magnetic field. Also
shown is the distance between the peak and dip positions in the Isw(δ f12) curves.

numerical simulations using EJ, Ec and α = Aα/AJ as the input parameters. The scaling factor
κ is then obtained by re-scaling the measured ωq(δ Iε) dependence to obtain optimum agreement
with the simulation result. For the sample in figure 4(b), we obtain κ = 0.7 mA−1, meaning that
a current of about 1 mA results in δ f = 1. In general, the agreement between the experimental
data and the simulation was found to be very good. The simulated values for the sample in
figure 4(c) are 1/2π = 5.1 GHz, Ip = 420 nA and α0 = 0.65. Again, we can make a consistency
check by calculating the Ip value according to (4) as discussed above. We obtain Ip = 485 nA in
good agreement with the value derived from the simulation.

We note that we can also trap an even number 2n of flux quanta in the trapping loop. In this
case the phase difference between points A and B is 2πn. This corresponds to a flux bias of the
gradiometric qubit by 2n80/2 = n80 instead of (n + 1

2)80 for an odd number of trapped flux
quanta. That is, the qubit is biased far away from its symmetry point and no qubit transitions
should be observable. This is in full agreement with the experimental observation. We finally
note that Icir = (n − fex)80/(Lg + Lk) is not allowed to exceed the critical current of the trapping
loop. For our samples, this fact limits the number of trapped flux quanta to a maximum value of
10–15.

We also use the simple fixed-gap gradiometric qubit to check the quality of the gradiometer
discussed in section 2.6. Figure 5(a) shows the switching current of the readout SQUID
as a function of δ f12 = f12 −

(
n + 1

2

)
(cf (18)) recorded for a fixed microwave frequency of

19.33 GHz. The peaks and dips in the Isw(δ f12) curves mark the δ f12 positions where the qubit
transition frequency ωq/2π = 19.33 GHz. On varying the number n of trapped flux quanta,
these positions shift due to the imperfect balance of the gradiometer. From the measured
shift we derive Qgrad,n = 943 ± 19. In figure 5(b), δ f12 is plotted against fex generated by a
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homogeneous applied magnetic field. From the measured slope the quality factor Qgrad,ex =

1076 ± 16 is determined. The total quality of the gradiometer is then Q ' 500, corresponding
to a gradiometer imbalance of only 0.2%. This means that the qubit operation point is shifted by
about 2m80 when we apply a homogeneous field generating one 80 in the trapping loop. The
measured quality factors are plausible. For example, the limited precision of the electron beam
lithography process causes a finite precision δA/Atr of the trapping loop area as well as δS/S
of the cross-sectional area and δ`/` of the length of the superconducting lines. The measured
quality factor corresponds to δA ' 0.2 µm2, δS ' 50 nm2 or δ` ' 60 nm. These values agree
well with the values expected for the precision of the fabrication process.

In figure 5(b), we also plot the distance between the peak and dip positions in the Isw(δ f12)

curves. This distance is almost independent of fex. This demonstrates that the qubit potential
is not affected by the homogeneous background field. In total, our results show that the
gradiometric flux qubits can be fabricated in a controlled way and work as expected. The fact
that the qubit operation point is not affected by a homogeneous background field allows us to
integrate these qubits into large-scale circuits where several qubits have to be operated and read
out simultaneously without affecting each other.

4.4. The tunable-gap gradiometric flux qubit

In this subsection, we discuss the results obtained with tunable-gap gradiometric flux qubits as
sketched in figure 1(d). Besides a step-wise variation of α by freezing in an odd number of flux
quanta in the trapping loop, we can make a continuous variation of α by an applied magnetic
field generated by either the current Icoil fed through an external solenoid or the current Iα fed
through the on-chip α-flux line. We first discuss the experiments using a homogeneous magnetic
field of a solenoid placed underneath the sample. The homogeneous magnetic field generates
the frustrations ftr,net and fα,net of the trapping and α-loop, respectively, which are given by (11)
and (12).

Spectroscopy data of a tunable-gap gradiometric flux qubit are shown in figure 6(c). The
different α values were generated by the homogeneous magnetic field of the solenoid, whereas
the flux trapped during cool down was constant at a single flux quantum, i.e. n = 1. We can
fit the data by a two-parameter fit yielding 1 and the slope ∂ωq/∂δ Iε at large ωq values.
Here, δ Iε = Iε − I sym

ε is the deviation of the current Iε sent through the ε-flux line from the
value I sym

ε needed for biasing the qubit at the symmetry point. To derive the persistent current
Ip = (h̄/280)(∂ωq/∂δ f ) from this slope, we have to calibrate the horizontal axis. For this we
need the calibration factor κ ≡ ∂δ f/∂δ Iε (cf (19)), which has already been discussed above.

For the analysis of the 1(α) dependence we need a second transfer function, relating the
coil current Icoil sent through the solenoid to the frustration fα,net of the α-loop. With (11)
and (12) we obtain

ζ ≡
∂ fα,net

∂ Icoil
=

Aα

Atr

1

1 + β

∂ fex

∂ Icoil
. (20)

With this transfer function and the expressions (4) and (13) for Ip and α, respectively, we obtain

∂ωq

∂δ f
=

280 Ip

h̄
=

280 Ic

h̄

√
1 −

[
2α0

∣∣∣∣cos

(
πζ Icoil + π

Aα

Atr

β

1 + β
n

)∣∣∣∣]−2

. (21)
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Figure 6. (a) Circuit schematics of the tunable-gap gradiometric flux qubit with
readout dc SQUID, ε- and α-flux line. The outer loop of the flux qubit (broken
olive line) forms the trapping loop, the inner (gray line) the α-loop. (b) SEM
image of the implemented circuit. (c) Plot of the transition frequency ωq/2π

against δ Iε = Iε − I sym
ε for three different α values for a tunable-gap gradiometric

flux qubit with α0 = 1.10. Also shown is the result of a two-parameter fit.

Using the abbreviations η = 280 Icκ/h̄ and In = (Aα/Atr)(β/1 + β)(n/ζ ) this simplifies to

∂ωq

∂δ Iε

= η

√
1 − [2α0 |cos (πζ [Icoil + In])|]−2. (22)

We can use this expression to fit the measured ∂ωq(Icoil)/∂δ Iε dependence using η, In and ζ as
fitting parameters.

In figure 7(a), the measured ∂ωq/∂δ Iε values are plotted against Icoil together with a fit
by (22). Evidently, the data points are clustered near specific Icoil values. The reason is that
the homogeneous magnetic field produced by Icoil also changes the frustration of the readout
SQUID and that the sensitivity of this SQUID is sufficient only in a limited range of frustration.
Figure 7(a) shows that the expression (22) fits the experimental data well, yielding values for ζ

and In. With these fitting parameters we can calculate α = α0 |cos (πζ [Icoil + In])|. The resulting
curve is also shown in figure 7(a). We note, however, that in this case the fit parameters In and
ζ cannot be used to directly determine β from the expression In = (Aα/Atr)(β/1 + β)(n/ζ ),
because the value of In can be distorted by an additional background magnetic field. Therefore,
we use only differences 1In to determine β (cf (23)). Knowing the α(Icoil) dependence, we
can adjust α to any desired value by adjusting Icoil and then do spectroscopy at these values.
Fitting the spectroscopy data (cf figure 6(c)), we can derive the qubit gap 1 and plot it against
α. The result is shown in figure 7(b) together with the dependence obtained from numerical
simulations based on the full Hamiltonian. The agreement between the experimental data and
the numerical simulation is best for EJ/h = 200 GHz and Ec/h = 1.6 GHz, i.e. EJ/Ec = 125.
We note that the EJ value agrees well with the one estimated independently of the measured
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Figure 7. (a) Plot of the measured ∂ωq/∂δ Iε values against the coil current Icoil

through the solenoid producing the homogeneous magnetic field for a tunable-
gap gradiometric flux qubit. The solid line is a fit to the data using (22) yielding ζ

and In. The broken line shows the calculated α(Icoil) dependence for these fitting
parameters. (b) Plot of the minimal qubit transition frequency 1/2π against
α. The solid line is obtained by numerical simulations based on the full qubit
Hamiltonian using the parameters EJ/h = 200 GHz and Ec/h = 1.6 GHz.

junction areas and the Jc value measured for the junctions of the readout SQUID. This clearly
shows the consistency of the data analysis and demonstrates the good control on the junction
parameters fabricated on the same chip. Knowing the 1(α) and α(Icoil) dependences, we can
adjust the qubit gap in situ by Icoil, while operating the qubit at the symmetry point with optimal
coherence properties. This is a key prerequisite for many applications of flux qubits.

For the sample of figure 7, the qubit gap could be varied between values close to zero
and about 5 GHz. For comparison, the data of a sample with a larger ratio EJ/Ec = 800 are
shown in figure 8. The overall behavior of this sample is very similar but the qubit gap can
be tuned to values above 10 GHz. Moreover, we investigate the tunability of this sample for
different amounts of trapped flux quanta n. In figure 8(c) we plot ∂ωq/∂δ Iε against the coil
current Icoil through the solenoid for three different values of the trapped flux ranging from
n = −3 to +3. Evidently, the general shape of the three curves is very similar as well as the
obtained fitting parameters ζ and η. The shift along the horizontal axis is expected from (22)
and can now be used to calculate β. Starting with the expression In = (Aα/Atr)(β/1 + β)(n/ζ ),
we only use the differences 1In = In,i − In, j . They correspond to the differences 1n = ni − n j

and result in 1In = (Aα/Atr)(β/1 + β)(1n/ζ ). For our sample, we find a mean value of
1In/1n = 0.43 mA, finally yielding

β =

(
1n

1Inζ

Aα

Atr
− 1

)−1

= 0.52. (23)

This value is in reasonable agreement with that derived from the Lg and Lk values which can
be estimated from the qubit geometry, the cross-sectional area of the superconducting lines and
the dirty limit expression of Lk. We note that the result from (23) is more precise because it is
computed directly from the sample. All in all, our results show that the measured data agree
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Figure 8. (a) Plot of the transition frequency ωq/2π against δ Iε = Iε − I sym
ε for

a tunable-gap gradiometric flux qubit with α0 = 0.7. Also shown is the result of
a two-parameter fit. (b) Plot of the measured ∂ωq/∂δ Iε values against the coil
current Icoil through the solenoid producing the homogeneous magnetic field for
n = +3 trapped flux quanta. The solid line is a fit to the data by (22) yielding
ζ and In. The broken line shows the calculated α(Icoil) dependence for these
fitting parameters. (c) Measured values as in panel (b) for three different values
of the number of trapped flux quanta, n = −3, +1, +3, fitted with consistent
parameters. From the horizontal displacement of the different curves we obtain
1In/1n = 0.43 mA. (d) Plot of the minimal qubit transition frequency 1/2π

against α for three different values of trapped flux quanta. The solid line is a
fit of the data based on the full qubit Hamiltonian with the fitting parameters
EJ/h = 800 GHz and Ec/h = 1.0 GHz.

well with the behavior expected from theory. Moreover, the values of EJ and Ec obtained from
fitting the data agree well with those obtained for junctions fabricated on the same chip. This
demonstrates that the gap of gradiometric flux qubits can be reliably tuned over a wide range,
making them attractive for a large number of applications.

We finally address the tuning of 1 by the on-chip α-flux line. Since the maximum current
through this line is limited by its critical current and by heating effects in contacts, only small
variations of the frustration of the α-loop are possible. Therefore, a constant applied magnetic
field or a proper number of trapped flux quanta are used to pre-bias the qubit at a value αb, where
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the slope of the 1(α) dependence is steep. Then, Iα is used to vary α around this value. In our
experiments, a constant applied field is used to set αb. Since the variation of the frustration of
the α-loop is generated by Iα instead of Icoil, we have to use the modified calibration factor

ζ̃ ≡
∂ fα,net

∂ Iα

. (24)

With this factor, we obtain that
∂ωq

∂δ Iε

= η

√
1 −

[
2α0

∣∣cos
(
arccos(αb) + πζ̃ Iα

)∣∣]−2
. (25)

We can use this expression to fit the measured ∂ωq/∂δ Iε versus Iα dependence using ζ̃ as the
fitting parameter. Based on these results, we can calculate α = α0

∣∣cos
(
arccos(αb) + πζ̃ Iα

)∣∣.
Knowing α, we can use the 1 values obtained from two-parameter fits of the spectroscopy
data to obtain the 1(α) dependence. Experimental data for the two samples of figures 7 and 8
are shown in figure 9. In figures 9(b) and (d), we compare the experimental 1(α) curves with
numerical simulations based on the full qubit Hamiltonian with the same EJ and Ec values
as those obtained by tuning α with the coil current (cf figures 7(b) and 8(d)). The very good
agreement between measurement data and calculation demonstrates again the consistency of
our data analysis. All in all, our data clearly show that the qubit gap can be varied in a controlled
way over a wide range by varying the frustration of the α-loop of the gradiometric flux qubits
either by an external solenoid or an on-chip control line.

5. Summary

In summary, we have designed and fabricated gradiometric flux qubits with a fixed and
tunable gap. The characteristic parameters of the qubits have been derived from spectroscopy
measurements. By trapping an odd number of flux quanta in the outer gradiometer loop during
cool down in a constant applied magnetic field, we were able to pre-bias the gradiometric flux
qubits at the symmetry point. We also performed a systematic analysis of the effect of the kinetic
inductance of the narrow superconducting lines forming the qubit loop. The experimental results
are in good agreement with the theoretically expected behavior. The detailed analysis of the
gradiometer imbalance showed that we can fabricate gradiometric qubits with an imbalance as
small as 0.2%. This gradiometer quality is sufficient for most applications.

Since the tunability of the qubit gap of persistent current qubits is a key issue, we have
performed a systematic study on the tuning of the gap of gradiometric flux qubits by external
control parameters. To this end, we have replaced one of the JJ in the qubit loop by a dc SQUID.
This allowed us to tune the critical current of this junction and, in turn, the qubit gap in situ by
a control flux threading the SQUID loop. The control flux was generated by three different
methods: (i) an external solenoid, (ii) a persistent current frozen into the outer gradiometer
loop or (iii) a current sent through an on-chip control line. We have made spectroscopic
measurements, demonstrating a well-defined controllability of the qubit gap between values
close to zero and more than 10 GHz. Our results clearly show that it is possible to vary the qubit
gap over a wide range, as it is desired for tuning in and out of resonance with superconducting
quantum circuits, while operating the qubit at its symmetry point with optimal dephasing
properties. Due to the steep dependence of the qubit gap on the control flux in some parameter
regime, a very fast tuning of the qubit gap with small currents through on-chip control lines is
feasible.
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Figure 9. (a), (c) Plot of the measured ∂ωq/∂δ Iε values against the current Iα

through the α-flux line for two tunable-gap gradiometric flux qubits. The solid
lines are fits to the data by (25) yielding the fitting parameter ζ̃ . (b), (d) Plot of the
minimal qubit transition frequency 1/2π against α of the qubits of (a) and (c).
The solid lines are obtained from numerical simulations based on the full qubit
Hamiltonian using the parameters EJ/h and Ec/h as listed in the subfigures.
The data in (a,b) and (c,d) are obtained for the two samples of figures 7 and 8,
respectively, but with on-chip control of 1 via the α-flux line.

We have compared the experimental data with model calculations based on the full qubit
Hamiltonian. In general, very good agreement between experiment and model calculations is
achieved. Fitting the data allowed us to determine the Josephson coupling and the charging
energies of the qubit junctions. The derived values agree well with those measured for single
junctions or SQUIDs fabricated on the same chip. By the controlled tunability of the flux qubits
a major drawback of this qubit type has been overcome. With their specific advantages such
as their large anharmonicity and their potentially strong coupling to resonators, tunable-gap
gradiometric flux qubits are highly attractive for the implementation of quantum information
circuits or the realization of fundamental quantum experiments.
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