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Abstract. Nonlinear dynamical systems involving small populations of
individuals may sustain oscillations in the population densities arising from
discrete changes in population numbers due to random events. By applying
these ideas to nanolasers operating with small numbers of emitting dipoles
and photons at threshold, we show that such lasers should display photon and
dipole population cycles above threshold, which should be observable as a
periodic modulation in the second-order correlation function of the nanolaser
output. Such a modulation was recently reported in a single-mode vertical-cavity
surface-emitting semiconductor laser.
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1. Introduction

Nanolasers, such as semiconductor microcavity lasers [1–3] or plasmonic lasers [4–6], display
cavity volumes of the order of a fraction of a cubic wavelength and thus contain few emitters,
while their lasing threshold is attained with very few photons in the cavity, of the order of
β−1/2 [7] at any given time, where β is the fraction of spontaneous emission funnelled in the
‘useful’ mode. In a nanocavity, β may be close to 1, so that the number of photons at threshold
is very small, typically 1–10. For such small numbers, fluctuations are large (of the order of the
average values), occur only in integral multiples of a base value (corresponding to a change of
a single unit), are asymmetric (as excursions into negative values are impossible) and cause the
nanolaser output to deviate from that predicted by the traditional laser rate equations [8, 9]. The
reason for this deviation is that these real-number differential equations have been developed
for conventional macroscopic lasers, in which the discrete nature of the number of emitters and
photons may be ignored (termed ‘the thermodynamic limit’ [7]) and are therefore inadequate
for describing the operation of nanolasers.

Theoretical methods based on full quantum electrodynamic treatments have been
developed [10] to account for phenomena observed in single-atom or few-atom microlasers
and micromasers, which have been studied experimentally since the 1980s [11–13]. However,
in these systems the emitting atoms are relatively well isolated from their environment, have
sharp optical spectra, and generally couple strongly to the cavity mode. Semiconductor (or
plasmonic) nanolasers, on the other hand, operate at the opposite limit: the emitters (generally
semiconductor quantum dots) are embedded in the cavity material and thus their radiating
dipoles interact extensively with their environment, undergoing very fast dephasing processes.
At the same time, under the strong pumping conditions required for lasing, the emitters are
usually highly excited, containing several electron–hole pairs (dipoles) and producing very
broad emission spectra [14]. These conditions are contrary to the assumptions of the few-atom
microlaser theories, as they preclude strong coupling between the emitters and the cavity mode,
while the incoherent fluctuation processes cause decay of the atomic polarization and rapidly
wash out any phase-related phenomena. In this limit, the full quantum equations reduce to the
traditional laser equations that involve only photon and dipole numbers [7]. However, these
are continuous-variable differential equations that describe the evolution of the mean photon
and dipole populations, but ignore their discrete nature: in each individual realization of the
lasing process only integer values of the photon and dipole numbers may be obtained, a feature
that may be ignored in large lasers but becomes important in nanolasers where these numbers
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are small. As described below, the traditional laser equations can be adapted to the discrete
nature of the photon and dipole populations through discrete simulation methods in which
small increments in time are made, and within each increment a discrete but random number of
constituents is chosen, obeying the statistics of the physical process being modelled.

This procedure is quite similar to that used in modelling small predator–prey or
epidemiological ecosystems [15, 16], where it has been shown that ‘demographic stochasticity’,
that is population fluctuations due to random birth, death, predation or contagion events,
produces cyclical population variations. These cycles are due to the discrete nature of the
individuals in the population and cannot be accounted for through traditional deterministic
models for the populations, based on real-number continuous differential equations, such as
the Lotka–Volterra equations, whose domain of validity corresponds to the cases in which
discretization may be ignored, such as in infinite ecosystems, or when extensive ensemble
averaging is possible.

The traditional method of dealing with fluctuations in lasers consists of inserting randomly
fluctuating Langevin forces in the laser rate equations and linearizing about the steady-
state photon and dipole populations [17]. However, this method is not suitable when small
populations are involved, since in that case the magnitude of the fluctuations is of the same
order as the mean values (and thus linearization is not an adequate approximation) while, at the
same time, the small-population statistics deviate significantly from the Gaussian statistics of
the Langevin forces. Thus, while the traditional treatment may be adjusted so that the variance
of the Langevin forces reproduces the observed variance of the fluctuations, it cannot account
adequately for the higher-order moments of their distribution. In a recent publication [9] we
measured the higher-order intensity fluctuation statistics of a pulsed nanolaser (up to the fourth
order) and, through the implementation of a discrete simulation method, we showed that the
discrete nature of the photon number at threshold induces a jitter in the pulse timing, which
accounts for the observed photon statistics to all orders.

In this paper, we examine a continuously pumped nanolaser and show that the ‘granularity’
of the photon and dipole populations and the ‘discretization noise’ it introduces lead to
large self-sustained oscillations in these populations, often reaching extinction periodically for
the case of photons, even above threshold. While this behaviour is similar to that of small
predator–prey ecosystems, it can also be understood within the traditional laser theory as
arising from the laser’s relaxation oscillations driven by the discrete jumps associated with the
spontaneous and stimulated emission events. The photon population cycles in nanolasers should
be observable as a periodic modulation of g(2)(τ ), the intensity autocorrelation function of the
nanolaser.

Such a periodic modulation has recently been reported by Takemura et al [18] in
experiments involving a single-mode vertical-cavity surface-emitting laser (VCSEL). While
VCSELs are not nanolasers, the sample examined displayed β ≈ 10−4, corresponding to
β−1/2

≈ 100 photons in the cavity at threshold, so that a periodic modulation of g(2)(τ ), albeit
of small amplitude, could be measured in the vicinity of the threshold. The discretization noise
model accounts well for this modulation, thus validating its use in solid-state nanolasers.

2. Discretization noise

We consider an optical cavity with only one ‘useful’ (or reference) mode, while all other modes
are considered as ‘leaks’. The cavity contains an ensemble of N excited emitters (dipoles), each

New Journal of Physics 15 (2013) 033039 (http://www.njp.org/)

http://www.njp.org/


4

emitting photons at a spontaneous rate γ‖. We assume that the emitters interact extensively with
their material environment, so that they undergo very rapid dephasing processes (as is the case,
e.g., in solid-state room-temperature lasers) in a time shorter compared with the characteristic
time of the coupling with the electromagnetic field.

Under these assumptions, the quantum mechanical Maxwell–Bloch equations (or,
equivalently, the Jaynes–Cummings model), which describe the dipole–field interaction, may
be simplified by adiabatically eliminating the emitter polarization, so that the emission kinetics
in such a system is adequately described by the traditional laser rate equations [7]:

dN (t)

dt
= P(t) − γ‖N (t), − βγ‖N (t)s(t), (1)

ds(t)

dt
= − 0cs(t) + βγ‖N (t) + βγ‖N (t)s(t), (2)

where P(t) is the incident pumping rate; s(t) is the number of photons in the lasing (reference)
mode; 1/0c and 1/γ‖ are, respectively, the lifetime of the reference mode (also termed cavity
lifetime) and the dipole lifetime; and β is the fraction of spontaneous emission funnelled into
the reference mode.

These are continuous-variable differential equations that describe the evolution of the
mean photon and dipole populations, but ignore the ‘granularity’, that is the discrete nature
of these populations. In any particular realization of the lasing process, the photon and dipole
populations can assume only integer values, with discrete transitions between the different
population configurations. The physical processes behind these transitions are the excitation of
a dipole through ‘pumping’, the emission of a photon by a dipole inside or outside the reference
mode, or the escape of a photon from the reference mode to the outside. The discrete nature
of the photon and dipole numbers can be taken into account rigorously (and under the same
assumptions of rapid loss of phase memory) through the master equation approach, which
considers the probability of each realization of the discrete photon and dipole populations,
as well as the transitions between the different population configurations [7]. It can therefore
account for the full statistics of the emission process. Within the master equation approach the
discrete transitions between different population configurations can be regarded as probabilistic
partitions of the photon and dipole numbers produced by the processes of pumping, emission
and escape, governed by the statistical parameters of the master equation.

When the master equation is applied to the calculation of the mean photon and dipole
numbers (〈s〉 and 〈N 〉), it yields the traditional laser rate equations (1) and (2), under the
assumption that the fluctuations in the dipole and photon numbers are uncorrelated (〈Ns〉 =

〈N 〉〈s〉) [7, 8], which is a good approximation when the number of photons and dipoles is large
(so that their relative fluctuations are small) or, more precisely, in the ‘thermodynamic limit’,
that is when 1/β → ∞.

Calculation of the laser photon statistics by use of the master equation requires calculating
at each time step a matrix of (Nmax × smax) interdependent probabilities (where the subscript
‘max’ indicates a cut-off value chosen large enough so as to encompass all population values
with a significant probability), a formidable task when the dimensionality of the matrix is larger
than a few tens. Alternatively, the master equation may be solved through stochastic simulation
methods [8, 15], whereby the system evolves from one discrete state to another through a jump
event in each time step, thus describing a trajectory in state space. The average of a large number
of trajectories converges to the solution of the master equation. This greatly simplifies the
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calculation, as each trajectory is calculated independently of the others, and convergence of the
average is reasonably rapid. Beyond the mathematical convenience it offers in the calculation
of the master equation, the calculation of individual trajectories permits a direct visualization of
the time evolution of the system parameters and thus provides physical insight into the ongoing
processes.

The laser rate equations provide a guideline in the calculation of the stochastic state-space
trajectories, since these equations deal with the mean values that may be calculated through the
master equation. Thus, at each step, the mean of the stochastic evolution of a given initial state
must follow the laser rate equations.

To this end, the rate equations (1) and (2) can be solved numerically by combining an
iterative procedure over a time step dt , small compared with 1/0c and 1/γ‖, and a quantum
jump approach to ensure that N and s are integers. The use of a small time step ensures that
this iterative procedure follows well the fine structure of the time evolution of the system, while
at the same time it preserves the correlations between the fluctuations in the photon and dipole
populations. Thus, re-writing the laser rate equations, the discrete evolution of N and s follows
at each iteration step:

N (t + dt) = N (t) + P(t) dt − γ‖(1 + βs(t))N (t) dt, (3)

s(t + dt) = s(t) − 0cs(t) dt + (1 + s(t))βγ‖N (t) dt. (4)

This presentation of the laser rate equations permits us to interpret each increment or decrement
of N and s as resulting from a random drawing from an appropriate distribution, such that its
average is the corresponding expression in these equations. Thus, denoting by PD[µ] a random
number out of a Poisson distribution with mean value µ, and by BD[n, p] a random number
drawn from a binomial distribution of n trials, each of which yields success with probability p,
we can obtain the number of additional dipoles excited by the pumping process during time
step dt as PD[P(t) dt], while Nd(t), the number of dipoles having decayed between t and
t + dt by spontaneous or stimulated emission, is given by Nd(t) = BD[N (t), γ‖(1 + βs(t))dt].
Each photon emitted by these dipoles has a probability (1 + s(t))β/(1 + βs(t)) to be funnelled
in the cavity mode, and thus the number of emitted photons entering the cavity mode is
BD[Nd(t), (1 + s(t))β/(1 + βs(t))]. Finally, the number of photons that escape to the outside
due to cavity losses is drawn from the binomial distribution BD[s(t), 0c dt].

This procedure accounts for the evolution of the photon and dipole populations as integer
numbers. It thus takes account of the ‘discretization noise’ without any need to introduce it in
the continuous-variable laser rate equations externally. Traditionally, noise (including quantum
fluctuations) is re-introduced in the laser equations (1) and (2) by linearizing around a (large)
mean value of the populations and adding a Langevin driving force with Gaussian statistics [17].
However, this approach is valid only in the case of large populations [15], where the relative
fluctuations are small and obey Gaussian statistics thanks to the central limit theorem.

3. Population oscillations in nanolasers

To gain an insight into the effects of discretization noise, we have calculated state-space
trajectories at different pumping powers, by solving equations (3) and (4) numerically
through the above procedure, using the values of β = 0.25, 1/γ‖ = 400 ps and 1/0c = 10 ps
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Figure 1. (left) Evolution of the number of photons s(t) (blue line) and the
number of excited dipoles N (t) (red line) as a function of time for a nanolaser
with β = 0.25, 1/γ‖ = 400 ps and 1/0c = 10 ps for a pumping power of P =

4.5Pth, with Pth = 0c/β, the nominal threshold pumping power. (right) The
corresponding power spectra.

(corresponding to a quality factor of 13 000 at λ = 1.5 µm), which are typical for quantum dot
nanolasers [1–3].

Figure 1 (left) displays the time dependence of the number of intra-cavity photons and
excited dipoles at a pumping power of 4.5Pth, where Pth = 0c/β is the nominal threshold
pumping power. At this pumping power, the mean number of dipoles has reached its pinning
value of 0c/βγ‖ ≈ 160, yet the photon and dipole populations display well-defined oscillations
of the same frequency, as can be seen in the corresponding power spectra (figure 1, right). These
oscillations are synchronized (but in quadrature), in a manner analogous to the population cycles
driven by demographic stochasticity observed in finite predator–prey ecosystems [15].

The synchronization of the photon and dipole population cycles as a function of pumping
power can be studied through the covariance of these two quantities, as can be seen in
figure 2 (left) (black continuous line), where the covariance curve for a low-β laser (red
continuous line) is also given for comparison. Below threshold, the photon and dipole
populations fluctuate randomly and independently of each other, as the presence of less than
one photon (on average) in the cavity produces no change in the dipole emission dynamics
and spontaneous emission outside the cavity mode destroys any correlation between these two
populations. At higher powers, as stimulated emission grows, a larger fraction of the emission
goes into the reference mode, so that any decrease in the dipole population is matched by a
synchronous increase of the intra-cavity photon population, thus producing a strong negative
correlation. The difference between high- and low-β lasers is essentially the speed with which
the rescaled covariance reaches its limiting value of −1. At a given pumping power (normalized
with respect to threshold), a high-β laser has a smaller number of intra-cavity photons, so that its
stimulated emission rate is smaller implying that a smaller fraction of the emission goes into the
reference mode. As a consequence, the rescaled covariance drops more gradually to its limiting
value of −1.

The power dependence of the covariance (figure 2, left) and of the central frequency of
the population oscillations (figure 2, right) are quite similar to those calculated through the
traditional linearized relaxation oscillation theory [19] (figure 2, dotted lines), indicating that
the photon and dipole population cycles in a nanolaser can be understood also as arising
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Figure 2. (left) Covariance of the number of photons s(t) and the number
of excited dipoles N (t) as a function of the pumping power, for β = 0.25
(black line) and β = 0.001 (red line). Dotted curves are calculated through the
relaxation oscillation theory. Curves are rescaled by the pinning value of the
dipoles 0c/βγ‖. (right) Comparison of the photon population cycle frequency
for β = 0.25 (continuous line) with the relaxation oscillation frequency (dotted
line), as a function of pumping power.

from relaxation oscillations driven by the noise due to the granularity of photon emission.
This mechanism is similar to that of the origin of the excess linewidth in semiconductor
lasers [19] and of the excess noise in class-B (i.e. 0c > γ‖) lasers [17], however with an
important difference. In traditional low-β lasers, the (spontaneous and stimulated) emission
events are distributed essentially uniformly in time, corresponding to a white noise spectrum
that gets filtered by the transfer function of the system to produce a damped oscillation. On
the other hand, in high-β lasers, because of the small mean value of the intra-cavity photons,
emission events are more frequent at the top of the photon population cycle, and thus constitute
a periodic driving force that produces a resonant amplification sustaining the photon and dipole
population cycles.

The photon population cycles should be directly observable in the second-order photon
correlation function g(2)(τ ), which is measurable experimentally through a Hanbury-Brown and
Twiss setup. As can be seen in figure 3 (red line), below threshold g(2)(τ ) displays the usual
behaviour for chaotic light. That is, when the two detected photons are in temporal coincidence
it has the value g(2)(0) = 2, while when the two photons are separated by a time interval τ the
value of g(2)(τ ) drops to 1 exponentially as e−0cτ , where 0c is the cavity energy decay rate. This
is the familiar Siegert relation,

g(2)(τ ) = 1 +
∣∣g(1)(τ )

∣∣2
, (5)

where g(1)(τ ) is the first-order correlation function and corresponds to the Fourier transform
of the optical spectrum. On the other hand, above threshold, the presence of photon population
cycles in nanolasers causes the value of g(2)(0) to be larger than 1, in contrast to traditional lasers
which display g(2)(τ ) = 1 for all time intervals τ . At finite time intervals, g(2)(τ ) tends towards
the value of 1, in a damped oscillation fashion dropping periodically below 1 for a few cycles
(see figure 3, black line). This feature arises from the presence of population cycles in nanolasers
(even under constant pumping) and is a deviation from the Siegert relation (equation (5)), which
does not permit g(2)(τ ) values smaller than 1.
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Figure 3. Second-order photon correlation function g(2)(τ ) of a nanolaser
(β = 0.25) undergoing photon population cycles, for P = 0.5Pth (red line) and
P = 4.5Pth (black line). The dashed horizontal line corresponds to g(2)(τ ) = 1,
the value in continuous-wave lasers.

4. Observation of population oscillations

In a recent publication [18], observation of a fast periodic modulation in the photon correlation
g(2)(τ ) was reported for a single-mode vertical-cavity surface-emitting semiconductor laser
displaying a spontaneous emission coupling factor of β ≈ 10−4 (as can be seen in figure 2 of
[18]). The modulation was clearly observable at a pumping current of 2.47 mA, corresponding to
a power of 1% above threshold and ∼150 photons in the lasing mode. However, the modulation
was weaker at a pumping current of 2.72 mA (11% above threshold and ∼1500 photons in
the lasing mode) and was below instrumental sensitivity at currents of 3.00 mA (23% above
threshold and ∼2300 photons in the lasing mode). It was attributed by the authors to relaxation
oscillations excited by (generic) noise in the laser.

We argue that in that experiment the oscillations are driven by discretization noise, as our
model can fit the experimental second-order autocorrelation function g(2)(τ ), with no adjustable
parameters other than the cavity lifetime 1/0c = 3.4 ps and the spontaneous emission lifetime
1/γ‖ = 4 ns extracted from [18]. Figure 4 shows the experimental second-order autocorrelation
function g(2)(τ ) (black points) for a pump current of I = 2.6 mA (corresponding to a pumping
power 6.5% above threshold and ∼1000 photons in the cavity) and the fit using the discretization
noise model is represented as a continuous red line.

A similar fit could be obtained also by using the traditional theory of relaxation oscillations
excited by Langevin forces [18], since in these experiments the number of photons is sufficiently
large (∼1000 photons) that the assumptions of the Langevin approach are valid. However, for
lasers with β > 0.01, in which the threshold involves only a few photons, the fluctuations are
asymmetric (since negative values are not possible), non-Gaussian, and cannot be linearized
(since they are of the same order as the mean values) so that the Langevin approach cannot
be used. In these cases, the numerical approach outlined in this paper is still valid as it deals
directly with the discretization of the photon and dipole numbers and does not involve any
approximation.
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Figure 4. Second-order autocorrelation function g(2)(τ ) as a function of time.
Black dots: experimental data from [18]. Red continuous line: simulation
through the discretization noise model.

5. Population oscillations and noise

For small-β lasers (in which the number of photons at threshold is large), or when the nanolaser
response is averaged over times much longer than the relaxation oscillation period (and thus
corresponds to an ensemble-averaged response), the population cycles arising from granularity
appear as fluctuations around the (mean) steady-state populations. These fluctuations are often
characterized by the Fano factor [17],

F =
σ 2

s

s̄
= s̄(g(2)(0) − 1) + 1, (6)

where σ 2
s is the variance in the photon number of mean value s̄. By analogy to phase transitions,

it is often expected that fluctuations should be maximum at threshold [7, 20], as can be seen in
figure 5 for a low-β laser. However, for class-B lasers (0c > γ‖) with large β, the Fano factor
maximum occurs at powers significantly higher than the stimulated emission threshold (see
figure 5, left), as shown by van Druten et al [17]. While this discrepancy between the laser
threshold and the fluctuation maximum has been interpreted as an indication that such lasers
produce partially chaotic light [21] and become coherent only at pumping powers much higher
than that of the Fano maximum, our results indicate that the increase of the Fano factor is not due
to the presence of a chaotic component in the laser output but arises from the large amplitude of
the photon population cycles that are excited and sustained by discretization noise.

An alternative designation of the magnitude of the fluctuations, useful in engineering, is
the normalized root-mean-square noise (nRMS), which is related to g(2)(0) by

nRMS =

√
σ 2

s

s̄
=

√
g(2)(0) − 1 +

1

s̄
. (7)

As can be seen in figure 5 (right), for traditional low-β lasers and above threshold, the nRMS
noise drops rapidly to very small values. As the signal-to-noise ratio is essentially the inverse of
nRMS, this feature makes the output of low-β lasers an ideal carrier for high-fidelity information
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Figure 5. (left) Power dependence of the Fano factor for β = 0.25 (black line)
and β = 0.001 (red line). (right) Power dependence of the normalized root-mean-
square noise for β = 0.25 (black line) and β = 0.001 (red line). The dotted line
(of logarithmic slope −1) is a guide to the eye.

transmission. For high-β nanolasers, on the other hand, the nRMS noise remains quite high even
at pumping powers much above threshold, because of the presence of population cycles (which
cause a large value for g(2)(0)) and the relatively small value of s̄. As the signal-to-noise ratio
is of the order of 1 even high above threshold, this implies that such lasers are ill-adapted to the
transmission of information, unless particular noise-reducing protocols are implemented taking
into account the population cycles.

6. Conclusion

In conclusion, the output of a continuously pumped high-β nanolaser cannot obey the traditional
(continuous, real number) laser equations, because of the small numbers of intra-cavity photons
and dipoles involved, which bring forth the discrete nature of these small populations. Such
nanolasers should display population cycles for both the intra-cavity photons and the excited
dipoles because of the intrinsic stochasticity of the photon and dipole granularity, analogous to
what is observed in small ecosystems. These cycles can be understood also as resulting from
relaxation oscillations driven synchronously by the sudden and discrete jumps in photon and
dipole numbers, due to the elementary emission processes. The photon population cycles are
observable as a periodic modulation of the second-order correlation function of the laser, as was
recently reported by Takemura et al [18]. The presence of population cycles in high-β nanolasers
may appear as excess noise which may hinder information processing and transmission with
such lasers.
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