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Abstract. In this study we have computed the pair correlation functions in the
two-dimensional Hubbard model using a quantum Monte Carlo method. We
employ a new diagonalization algorithm in the quantum Monte Carlo method
which is free from the negative sign problem. We show that the d-wave pairing
correlation function is indeed enhanced slightly for the positive on-site Coulomb
interaction U when doping away from the half-filling. When the system size
becomes large, the pair correlation function Pd increases for U > 0 compared
to the non-interacting case, while Pd is suppressed for U > 0 when the system
size is small. The enhancement ratio Pd[U ]/Pd[U = 0] will give a criterion on
the existence of superconductivity. The ratio Pd[U ]/Pd[U = 0] increases almost
linearly ∝ L when the system size L × L is increased. This increase is a good
indication of the existence of a superconducting phase in the two-dimensional
Hubbard model. There is, however, no enhancement of pair correlation functions
in the half-filled case, which indicates the absence of superconductivity without
hole doping.
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1. Introduction

Strongly correlated electron systems have been studied intensively in relation to high-
temperature superconductivity. High-temperature superconductors [1–4] are known to be a
typical correlated electron system. In recent years, the mechanism of superconductivity in high-
temperature superconductors has been extensively studied using various two-dimensional (2D)
models of electronic interactions. Among them the 2D Hubbard model [5] is the simplest and
most fundamental model. This model has been studied intensively using numerical tools, such
as the quantum Monte Carlo (QMC) method [6–21] and the variational Monte Carlo (VMC)
method [22–33].

The QMC method is a numerical method employed to simulate the behavior of correlated
electron systems. It is well known, however, that there are significant issues associated with the
application of the QMC method. The most important one is that the standard Metropolis (or
heat bath) algorithm is associated with the negative sign problem. In past studies, workers have
investigated the possibility of eliminating the negative sign problem [16, 17, 19, 21].

In this paper, we adopt an optimization scheme which is based on the diagonalization
quantum Monte Carlo (QMD) method [21] (a bosonic version was developed in [34]), as well
as the Metropolis quantum Monte Carlo method (called the Metropolis QMC in this paper). In
general, and as in this study, the ground-state wave function is defined as

ψ = e−τHψ0, (1)

where H is the Hamiltonian and ψ0 is the initial one-particle state such as the Fermi sea. In the
QMD method this wave function is written as a linear combination of the basis states, generated
using the auxiliary field method based on the Hubbard–Stratonovich transformation, that is,

ψ =

∑
m

cmφm, (2)

where φm are basis functions. In this work, we have assumed a subspace with Nstates basis
wave functions. From the variational principle, the coefficients {cm} are determined from
the diagonalization of the Hamiltonian, to obtain the lowest energy state in the selected
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subspace {φm}. Once the cm coefficients are determined, the ground-state energy and other
quantities are calculated using this wave function. If the expectation values are not highly
sensitive to the number of basis states, we can obtain the correct expectation values using an
extrapolation in terms of the basis states in the limit Nstates → ∞.

Whether the 2D Hubbard model can account for high-temperature superconductivity is
an important question in the study of high-temperature superconductors. In correlated electron
systems, there is an interesting phenomenological correlation between the maximum Tc and the
transfer integral t :

kBTc ' 0.1t/(m∗/m), (3)

where m∗/m indicates the mass enhancement factor and teff ≡ t/(m∗/m) is the effective
transfer integral. By adopting t ∼ 0.5 eV [35] and m∗/m ∼ 5, this formula applies to high-
Tc cuprates with Tc ∼ 100 K. As the electron becomes heavier, Tc is lowered (in accordance
with the lowering of Tc in the underdoped region). We can choose t ∼ 0.1 eV and m ∗ /m ∼ 2
for iron pnictides to give Tc ∼ 50 K. This formula strongly suggests that high-temperature
superconductivity originates from the electron correlation and not from the electron–phonon
interaction.

Most of the QMC method results do not support superconductivity, although the results
of the VMC method with the Gutzwiller ansatz indicate the stable d-wave pairing state
for large U . The computations of the pair-field susceptibility suggest the existence of the
Kosterlitz–Thouless transition in the 2D Hubbard model indicating superconducting transition
in real three-dimensional systems [36, 37]. The perturbative and random phase approximation
(RPA) calculations also support superconductivity with anisotropic pairing symmetry [38–42].
In contrast, the pair correlation functions obtained by a QMC method [18] are extremely
suppressed for the intermediate values of U . This result suggests that superconductivity
is impossible in the 2D Hubbard model. The objective of this paper is to compute pair
correlation functions and clarify this discrepancy using a new QMC method by employing the
diagonalization scheme [21]. We show that the pair correlation function is indeed enhanced at
doping.

2. The Model and the wave function

2.1. Hamiltonian

The Hamiltonian is the Hubbard model containing on-site Coulomb repulsion and is written as

H = −

∑
i jσ

ti j(c
†
iσc jσ + h.c.)+ U

∑
j

n j↑n j↓, (4)

where c†
jσ (c jσ ) is the creation (annihilation) operator of an electron with spin σ at the j th site

and n jσ = c†
jσc jσ . Note that ti j is the transfer energy between the sites i and j . ti j = t for the

nearest-neighbor bonds and ti j = −t ′ for the next-nearest-neighbor bonds. For all other cases
ti j = 0. U is the on-site Coulomb energy. The number of sites is N and the linear dimension
of the system is denoted as L , i.e. N = L2. The energy unit is given by t and the number of
electrons is denoted as Ne.
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2.2. Quantum Monte Carlo (QMC) method—Metropolis algorithm

In a QMC simulation, the ground-state wave function is

ψ = e−τHψ0, (5)

where ψ0 is the initial one-particle state represented by a Slater determinant. For large τ , e−τH

will project out the ground state from ψ0. We write the Hamiltonian as H = K + V , where K
and V are the kinetic and interaction terms of the Hamiltonian in equation (4), respectively. The
wave function in equation (5) is written as

ψ = (e−1τ(K +V ))mψ0 ≈ (e−1τK e−1τV )mψ0 (6)

for τ =1τm. Using the Hubbard–Stratonovich transformation [6, 43], we have

exp(−1τUni↑ni↓)=
1

2

∑
si =±1

exp(2asi(ni↑ − ni↓)−
1

2
U1τ(ni↑ + ni↓)) (7)

for (tanh a)2 = tanh (1τU/4) or cosh (2a)= e1τU/2. The wave function is expressed as a
summation of the one-particle Slater determinants over all the configurations of the auxiliary
fields s j = ±1. The exponential operator is expressed as [43]

(e−1τK e−1τV )m =
1

2Nm

∑
{si (`)}

∏
σ

Bσ
m(si(m))B

σ
m−1(si(m − 1)) · · · Bσ

1 (si(1)), (8)

where we have defined

Bσ
` ({si(`)})= e−1τKσ e−Vσ ({si (`)}) (9)

for

Vσ ({si})= 2aσ
∑

i

si niσ −
1

2
U1τ

∑
i

niσ , (10)

Kσ = −

∑
i j

ti j(c
†
iσc jσ + h.c.). (11)

The ground-state wave function is

ψ =

∑
n

cnφn, (12)

where φn is a Slater determinant corresponding to a configuration {si(`)} (i = 1, . . . , N ; `=

1, . . . ,m) of the auxiliary fields:

φn =

∏
σ

Bσ
m(si(m)) . . . Bσ

1 (si(1))ψ0

≡ φ↑

nφ
↓

n . (13)

The coefficients cn are constant real numbers: c1 = c2 = · · · . The initial stateψ0 is a one-particle
state. The matrix of Vσ ({si}) is a diagonal matrix given as

Vσ ({si})= diag (2aσ s1 − U1τ/2, . . . , 2aσ sN − U1τ/2). (14)
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The matrix elements of Kσ are

(Kσ )i j =

{
−t, i, j are nearest neighbors,
0 otherwise.

(15)

φσn is an N × Nσ matrix given by the product of the matrices e−1τKσ , eVσ and ψσ
0 . The inner

product is thereby calculated as a determinant [17],

〈φσ` φ
σ
n 〉 = det(φσ†

` φ
σ
n ). (16)

The expectation value of the quantity Q is evaluated as

〈Q〉 =

∑
`n〈φ`Qφn〉∑
`n〈φ`φn〉

. (17)

P`n ≡ det(φσ` φ
σ
n ) det(φ−σ

` φ−σ
n ) can be regarded as the weighting factor to obtain the Monte Carlo

samples. Since this quantity is not necessarily positive definite, the weighting factor should be
|P`n|; the resulting relationship is

〈Qσ 〉 =

∑
`n

P`n〈Qσ 〉`n/
∑
`n

P`n

(18)
=

∑
`n

|P`n|sign (P`n)〈Qσ 〉`n/
∑
`n

|P`n|sign (P`n),

where sign(a)= a/|a| and

〈Qσ 〉`n =
〈φσ` Qσφ

σ
n 〉

〈φσ` φ
σ
n 〉

. (19)

This relation can be evaluated using a Monte Carlo procedure if an appropriate algorithm, such
as the Metropolis or heat bath method, is employed [43]. The summation can be evaluated using
appropriately defined Monte Carlo samples,

〈Qσ 〉 =

1
nMC

∑
`n sign (P`n)〈Qσ 〉`n

1
nMC

∑
mn sign (P`n)

, (20)

where nMC is the number of samples. The sign problem is an issue if the summation of
sign(P`n) vanishes within statistical errors. In this case, it is indeed impossible to obtain definite
expectation values.

2.3. QMC method—diagonalization algorithm

Quantum Monte Carlo diagonalization (QMD) is a method for the evaluation of 〈Qσ 〉 without
the negative sign problem. The configuration space of the probability ‖ Pmn ‖ in equation (20)
is generally very strongly peaked. The sign problem lies in the distribution of Pmn in the
configuration space. It is important to note that the distribution of the basis functions φm

(m = 1, 2, . . .) is uniform since cm are constant numbers: c1 = c2 = · · · . In the subspace {φm},
selected from all configurations of auxiliary fields, the right-hand side of equation (17) can be
determined. However, the large number of basis states required to obtain accurate expectation
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values is beyond the current storage capacity of computers. Thus, we use the variational
principle to obtain the expectation values.

From the variational principle,

〈Q〉 =

∑
mn cmcn〈φm Qφn〉∑

mn cmcn〈φmφn〉
, (21)

where cm (m = 1, 2, . . .) are variational parameters. In order to minimize the energy

E =

∑
mn cmcn〈φm Hφn〉∑

mn cmcn〈φmφn〉
(22)

the equation ∂E/∂cn = 0 (n = 1, 2, . . .) is solved for,∑
m

cm〈φn Hφm〉 − E
∑

m

cm〈φnφm〉 = 0. (23)

If we set

Hmn = 〈φm Hφn〉, (24)

Amn = 〈φmφn〉 (25)

the eigenequation is

Hu = E Au (26)

for u = (c1, c2, . . .)
t. Since φm (m = 1, 2, . . .) are not necessarily orthogonal, A is not a diagonal

matrix. We diagonalize the Hamiltonian A−1 H and then calculate the expectation values of
correlation functions with the ground state eigenvector; in general A−1 H is not a symmetric
matrix.

In order to optimize the wave function, we must increase the number of basis states {φm}.
This can be simply accomplished through random sampling. For systems of small sizes and
small U , we can evaluate the expectation values from an extrapolation of the basis of randomly
generated states. The number of basis states is about 2000 when the system size is small. For
systems 8 × 8 and 10 × 10, the number of states is increased up to about 10 000.

In QMC simulations an extrapolation is performed to obtain the expectation values for the
ground-state wave function. The variance method has been proposed in variational and QMC
simulations, where the extrapolation is performed as a function of the variance. An advantage
of the variance method is that linearity is expected in some cases [19, 44]:

〈Q〉 − Qexact ∝ v, (27)

where v denotes the variance defined as

v =
〈(H − 〈H〉)2〉

〈H〉2
(28)

and Qexact is the expected exact value of the quantity Q.

3. Pair correlation functions

In this section, we present the results obtained by the QMC and QMD methods.
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(a) (b)

Figure 1. Pair correlation functions Dyy(`) and Dyx(`) for 4 × 3, U = 4 and
Ne = 10 obtained by the diagonalization QMC method (a) and the Metropolis
QMC method (b). The squares are the exact results obtained by the exact
diagonalization method. In (a) the data fit using a straight line using the least-
square method as the variance is reduced. We started with Nstates = 100 (the first
solid circles) and then increase up to 2000.

3.1. Comparison of the two methods

The pair correlation function Dαβ is defined by

Dαβ(`)= 〈1†
α (i + `)1β(i)〉, (29)

where 1α(i), α = x, y, denote the annihilation operators of the singlet electron pairs for the
nearest-neighbor sites:

1α(i)= ci↓ci+α̂↑ − ci↑ci+α̂↓. (30)

Here α̂ is a unit vector in the α(= x, y)-direction. We consider the correlation function of
d-wave pairing:

Pd(`)= 〈1d(i + `)†1d(i)〉, (31)

where

1d(i)=1x(i)+1−x(i)−1y(i)−1−y(i), (32)

i and i + ` denote sites on the lattice.
We show how the pair correlation function is evaluated in QMC methods. We show the

pair correlation functions Dyy and Dyx on the lattice 4 × 3 in figure 1. The boundary condition
is open in the four-site direction and is periodic in the other direction. An extrapolation is
performed as a function of 1/m in the QMC method with Metropolis algorithm and as a
function of the energy variance v in the QMD method with diagonalization. We keep 1τ a
small constant ' 0.02–0.05 and increase τ =1τm, where m is the division number m of the
wave function ψ in equation (5). In the Metropolis QMC method, we calculated averages over
5 × 105 Monte Carlo steps. The exact values were obtained by using the exact diagonalization
method. The two methods give consistent results as shown in the figures. All the Dyy(`) and
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(a) (b)

Figure 2. Pair correlation function Dyy(`) as a function of the energy variance
v in (a) and 1/m in (b) for 30 × 2, U = 4 and Ne = 48. We used (a) the
diagonalization QMC method and (b) the Metropolis QMC method. We set the
open boundary condition. From the top, `= (1, 0), (2, 0), (5, 0), (4, 0), (3, 0) and
(6, 0).

Dyx(`) are suppressed on 4 × 3 when U is increased. In general, the pair correlation functions
are suppressed in small systems.

In figure 2, we show the inter-chain pair correlation function Dyy(`) as a function of
1/m (b) and the energy variance (a) for the ladder model 30 × 2. We use the open boundary
condition. The boundary condition is not important for our purpose to check the consistency
between QMC and QMD methods. The number of electrons is Ne = 48, and the strength of the
Coulomb interaction is U = 4. 1y(i) indicates the electron pair along the rung, and Dyy(`) is
the expectation value of the parallel movement of the pair along the ladder. The results obtained
by the two methods are in good agreement except for `= (1, 0) (nearest-neighbor correlation).

3.2. Pair correlation in the two-dimensional Hubbard model

We present the results for pair correlation in the 2D Hubbard model. In this section, we show
the results using the diagonalization QMC method because the Metropolis QMC method has
a negative sign problem. We first examine the 8 × 8 lattice. The Pd was estimated by an
extrapolation as a function of the variance v, as shown in figure 3, where the computations
were carried out on an 8 × 8 lattice with U = 3, t ′

= −0.2 and Ne = 54. The extrapolation was
successfully performed for 8 × 8.

We consider the half-filled case with t ′
= 0; in this case the antiferromagnetic correlation is

dominant over the superconductive pairing correlation and thus the pairing correlation function
is suppressed as the Coulomb repulsion U is increased. Figure 4(a) exhibits the d-wave pairing
correlation function Pd on an 8 × 8 lattice as a function of the distance. The Pd is suppressed due
to the on-site Coulomb interaction, as expected. Its reduction is, however, not so considerably
large compared to previous QMC studies [18] where the pairing correlation is almost annihilated
for U = 4. We then turn to the case of less than half-filling. We show the results on 8 × 8 with
electron number Ne = 54. We show Pd as a function of the distance in figure 4(b) (Ne = 54). In
the scale of this figure, Pd for U > 0 is almost the same as that of the non-interacting case, and is

New Journal of Physics 15 (2013) 033012 (http://www.njp.org/)

http://www.njp.org/


9

Figure 3. Pair correlation function Pd as a function of the energy variance v on
an 8 × 8 lattice. U = 3, t ′

= −0.2 and the electron number is Ne = 54. We have
shown Pd(`)= 〈1d(i + `)†1(i)〉 for `= (m, n)− i and i = (1, 1), where (m, n)
are shown in the figure.

(a) (b)

Figure 4. Pair correlation function Pd as a function of the distance R = |`| on an
8 × 8 lattice for (a) the half-filled case Ne = 64 and (b) Ne = 54. We set t ′

= 0.0
and U = 0, 3 and 4 for (a) and t ′

= −0.2 and U = 0, 4 and 6 for (b). To lift
the degeneracy of electron configurations at the Fermi energy in the half-filled
case, we included a small staggered magnetization ∼10−4 in the initial wave
function ψ0.

enhanced slightly for large U . Our results indicate that the pairing correlation is not suppressed
and is indeed enhanced by the Coulomb interaction U , and its enhancement is very small.
Figure 5 represents Pd as a function of U for Ne = 54, 50 and 64. We set t ′

= 0 for Ne = 50
and t ′

= −0.2 for Ne = 54 so that we have the closed shell structure in the initial function. In
the system of this size, the effect of the inclusion of t ′

6= 0 is small. Figure 6 shows Pd on a
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Figure 5. Pair correlation function Pd as a function of U on an 8 × 8 lattice.
t ′

= −0.2 for Ne = 54 (diamonds), and t ′
= 0 for Ne = 50 (squares) and Ne = 64

(circles). We have shown Pd(`)= 〈1d(i + `)†1(i)〉 for `= (m, n)− i and i =

(1, 1), where (m, n) are shown in the figure.

Figure 6. Pair correlation function Pd as a function of the distance R = |`|

on a 10 × 10 lattice for Ne = 82 and t ′
= −0.2. The strength of the Coulomb

interaction is U = 0, 3 and 5.
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Figure 7. Enhancement ratio of the pair correlation function Pd|U/Pd|U=0 as a
function of the linear system size L for U = 4 and 2. The electron density ne is
about 0.8: ne ∼ 0.8 for squares. The data for U = 4 and ne ∼ 0.18 are also shown
by circles.

10 × 10 lattice. This also indicates that the pairing correlation function is enhanced for U > 0.
There is a tendency that Pd is easily suppressed as the system size becomes small. We estimated
the enhancement ratio compared to the non-interacting case Pd(`)|U/Pd(`)|U=0 at |`| ∼ L/2
for ne ∼ 0.8 as shown in figure 7. This ratio increases as when system size is increased. To
compute the enhancement, we picked the sites, for example on an 8 × 8 lattice, `= (3, 2),
(4, 0), (4, 1), (3, 3), (4, 2), (4, 3), (5, 0), (5, 1) with |`| ∼ 4–5 and evaluate the mean value. In our
computations, the ratio increases almost linearly, indicating a possibility of superconductivity.
This indicates Pd(`)∼ L Pd(`)∼ `Pd(`) for `∼ L . Because Pd(`)|U=0 ∼ 1/|`|3, we obtain
Pd(`)∼ `Pd(`)∼ 1/|`|2 for |`| ∼ L . This indicates that the exponent of the power law is 2.
When U = 2, the enhancement is small and is almost independent of L . In the low-density case,
the enhancement is also suppressed being equal to 1. In figure 8, the enhancement ratio is shown
as a function of the electron density ne for U = 4. A dome structure emerges even in small
systems. The square in figure 8 indicates the result for the half-filled case with t ′

= −0.2 on an
8 × 8 lattice. This is the open shell case and causes difficulty in computations as a result of the
degeneracy due to partially occupied electrons. The inclusion of t ′ < 0 enhances Pd compared
to the case with t ′

= 0 on an 8 × 8 lattice. Pd is, however, not enhanced over the non-interacting
case at half-filling. This also holds for a 10 × 10 lattice where the enhancement ratio ∼1. This
indicates the absence of superconductivity at half-filling.

4. Summary

The quest for the existence of superconducting transition in the 2D Hubbard model remains
unresolved. Pair correlation functions had been calculated by using QMC methods, and their
results were negative for the existence of superconductivity in many works. The objective of this
paper was to reexamine this question by elaborating a sampling method of the QMC method.
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Figure 8. Enhancement ratio of the pair correlation function Pd|U/Pd|U=0 as a
function of the electron density ne. We adopt t ′

= −0.2 and U = 4. For the half-
filled case, the diamonds are for t ′

= 0 on an 8 × 8 lattice (solid diamond) and a
6 × 6 lattice (open diamond). The square is for t ′

= −0.2 on 8 × 8 and 10 × 10
where there is no enhancement.

We have calculated the d-wave pair correlation function Pd for the 2D Hubbard model
by using the QMC method. In the half-filled case Pd is suppressed for the repulsive U > 0,
and when doped away from half-filling Ne < N , Pd is enhanced slightly for U > 0. It is
noteworthy that the correlation function Pd is indeed enhanced and increases as the system
size increases in the 2D Hubbard model. The enhancement ratio increases almost linearly ∝ L
when the system size is increased, which is indicative of the existence of superconductivity. Our
criterion is that when the enhancement ratio as a function of the system size L is proportional
to a certain power of L , superconductivity will be developed. This ratio depends on U and is
reduced when U is decreased. The dependence on the band filling shows a dome structure as a
function of the electron density. In the 10 × 10 system, the ratio is greater than 1 in the range
0.3< ne < 0.9. This does not immediately indicate the existence of superconductivity. The size
dependence is important and is needed to obtain the doping range where superconductivity
exists. Let us also mention the superconductivity at half-filling. Our results indicate the absence
of superconductivity in the half-filling case because there is no enhancement of pair correlation
functions. This is consistent with the results for an anisotropic triangular lattice [45].

We have compared two methods: diagonalization QMC and Metropolis QMC. For small
systems, the results obtained by two methods are quite consistent. When the system size is large,
Pd(`) is inevitably suppressed and almost vanishes if we use the Metropolis QMC method.
Pd(`) decreases as the division number m increases in this method. We wonder whether this
excessive suppression of Pd(`) is true. In fact, the correlation function Dyy for the ladder
Hubbard model obtained by the Metropolis QMC also shows a similar behavior when the size
is increased, in contrast to the enhanced Dyy indicated by the density-matrix renormalization
(DMRG) method [46]. The results of the diagonalization QMC are consistent with those of
DMRG [21]. There is a possibility that this has some relation with the negative sign.
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