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Abstract. I perform a complete classification of two-dimensional, quasi-one-
dimensional (1D) and 1D topological superconductors which originate from the
suitable combination of inhomogeneous Rashba spin–orbit coupling, magnetism
and superconductivity. My analysis reveals alternative types of topological
superconducting platforms for which Majorana fermions are accessible.
Specifically, I observe that for quasi-1D systems with Rashba spin–orbit
coupling and time-reversal violating superconductivity, such as for instance
due to a finite Josephson current flow, Majorana fermions can emerge even in
the absence of magnetism. Furthermore, for the classification I also consider
situations where additional ‘hidden’ symmetries emerge, with a significant
impact on the topological properties of the system. The latter generally originate
from a combination of space group and complex conjugation operations that
separately do not leave the Hamiltonian invariant. Finally, I suggest alternative
directions in topological quantum computing for systems with additional unitary
symmetries.
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1. Introduction

The breakthrough concept of emergent Majorana fermions (MFs) in artificial topological
superconducting devices, pioneered by Fu and Kane [1], motivated a number of recent
experiments [2, 3] that have already provided the first promising results. The two authors
demonstrated that the helical surface states of a three-dimensional topological insulator
(TI) [4], with proximity induced superconducting gap 1, behave as a time-reversal (T )
invariant topological superconductor (TSC). When a magnetic field is applied perpendicular
to the topological surface, a single MF appears per superconducting vortex. In fact, the latter
mechanism had been discussed earlier by Sato [5] in the context of axion-strings. Shortly after
Fu–Kane proposal, it was recognized that the catalytic presence of spin–momentum locking
could be alternatively provided by spin–orbit interaction, intrinsic to non-centrosymmetric
superconductors (SCs) [6] and Rashba semiconductors [7–10]. In the case of a semiconducting
wire [9, 10], fabricated for instance by InSb, a Zeeman energy µs|B| is sufficient to lead
to MFs localized at the edges. The existence of confined and protected edge MFs is crucial
for applications in topological quantum computing (TQC) [11, 12]. A pair of MFs defines a
topological qubit, which is in principle [13] free from decoherence and protected against noise,
in stark contrast to traditional spin [14] and superconducting qubits [15]. Furthermore, edge
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MFs can also give rise to unique transport signatures [16–19], such as the usual [16, 17] or the
magnetically controlled [18] 4π -Josephson effect.

In the case of a semiconducting wire [9, 10] with proximity induced superconductivity,
the system transits to the topological phase when the criterion µs|B|>

√
µ2 + |1|2 is satisfied

(µ defines the chemical potential). The concomitant requirement of a high Zeeman energy,
which also arises in quasi-one-dimensional (1D) multi-channel [20, 21] analogues of [9, 10],
can impede the nanofabrication of the device or restrict the possible manipulations on the MFs.
In fact, several proposals concerning quantum information processes rely on the application of
strong anti-parallel magnetic fields at the nanoscale level [22], something not easily realizable
in the laboratory. As an answer to these obstacles alternative types of engineered TSCs have
been put forward, which support MFs without the necessary presence of spin–orbit coupling
or the application of a magnetic field [23–28]. In most of these proposals, some kind of
inhomogeneous magnetic order coexists with intrinsic or proximity induced superconductivity.
For some of these models [26, 27] it has been shown that there is a mapping to the case of the
semiconducting wire-based TSC mentioned above.

In this paper I present a complete topological classification of low-dimensional TSCs that
support MFs and originate from the combined presence of inhomogeneous Rashba spin–orbit
coupling v(r), magnetism M(r) and superconductivity 1(r). My primary goal is to shed light
on the topological connection between different existing proposals for engineered TSCs and in
addition to propose alternative advantageous platforms. For my analysis I will consider two-
dimensional (2D), quasi-1D and 1D systems. The quasi-1D case is obtained from the strict
2D case by the inclusion of a confining potential V (r). My study provides new engineered
TSCs that are experimentally accessible. Specifically, I demonstrate that for a heterostructure
consisting of two coupled single channel Rashba semiconducting wires deposited on top of a
Josephson junction fabricated by two conventional SCs, MFs can emerge even in the absence
of magnetic fields or any type of inhomogeneous magnetism. In addition, for the classification I
examine the effects of dimensionality on the robustness of MFs through separating the systems
under investigation into weak and strong engineered TSCs. Furthermore, I illustrate that so far
overlooked discrete symmetries, that I shall refer to as ‘hidden’ symmetries (O), distinguish
models previously considered as topologically equivalent. Generally, hidden symmetries can
be either unitary or anti-unitary and result from a combination of space group, time-reversal
or other internal symmetry operations that when considered separately do not leave the
Hamiltonian invariant (e.g. [29–31]). Here I discuss two examples of hidden symmetries:
(i) a unitary hidden symmetry resulting from the combination of a reflection and a translation
and (ii) an anti-unitary symmetry resulting from the combination of time-reversal and translation
operations. Finally, I also discuss new TQC perspectives that appear when additional unitary
symmetries, including hidden symmetries, are present.

At this point, I give a brief description of how the several sections are organized. In
section 2, I provide a short introduction to MFs and introduce the general Hamiltonian that
describes the systems of interest. In section 3, I shortly review the topological classification
methods with special focus on the situations where additional unitary and anti-unitary
symmetries are present. In section 4, I present an overview of my main results (table 2)
concerning the classification of TSCs when all possible spatial symmetries are broken. I further
discuss how the emergence of hidden symmetries can modify table 2. In section 5, I provide a
detailed analysis and justification of the results presented in section 4. In section 6, I demonstrate
that MFs are accessible in heterostructures consisting of conventional SCs in proximity to A.
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the surface states of a three-dimensional (3D) TI or B. two coupled single channel Rashba
semiconducting wires, when in both cases a Josephson current is injected to the system.
In section 7, I present two specific examples of systems characterized by a hidden symmetry
and study the impact of the latter on the topological properties. In section 8, I discuss how
the presence of hidden symmetries can be useful for developing TQC protocols and suggest
possible candidate systems that could be used for this purpose. Finally, section 9 summarizes
my main results and related conclusions.

2. Majorana fermions and model Hamiltonian

In condensed matter physics MFs are not fundamental particles [32] but excitations of a many-
body system [33, 34]. Essentially, what we define as MFs are the operators γα (α is just
a label) which satisfy {γα, γβ} = δα,β I (I the identity operator) and constitute zero energy
eigenoperators of the Bogoliubov–de Gennes (BdG) Hamiltonian. Since MFs are Hermitian
they can be described by the following general expression:

γα =

∫
dr
[
u∗

↑,α(r)ψ↑(r)+ u∗

↓,α(r)ψ↓(r)+ u↑,α(r)ψ
†
↑
(r)+ u↓,α(r)ψ

†
↓
(r)
]
, (1)

where ψ†
σ (r)/ψσ (r) correspond to the creation/annihilation operators of an electron with

position vector r (here r = (x, y)) and spin projection σ =↑,↓. Notice that MFs require linear
combinations of electronic operators and their Hermitian conjugates. Consequently, in order for
MFs to constitute the only type of accessible eigen-operators of the single-particle Hamiltonian,
we have to restrict ourselves to systems in which the spin-quantization axis is fixed. Notice that
for a system with spin-rotational symmetry, the application of a homogeneous magnetic field
breaks the latter symmetry but the spin-quantization axis can always be redefined. In this case,
MFs are not accessible directly, but only as constituent operators of electronic eigen-operators.
As a matter of fact, MFs can fundamentally appear only in systems with spin–orbit coupling,
spin-triplet superconductivity or magnetism with spatially dependent polarization.

In this work I focus on systems that satisfy the above requirements and are either
microscopically or phenomenologically (for heterostructures) described by the following
Hamiltonian:

H=

∫
dr ψ̂†(r)

[
p̂2

2m
−µ+ V (r)− M(r) · σ +

{v(r), p̂xσy − p̂yσx}

2

]
ψ̂(r)

+
∫

dr
[
ψ

†
↑
(r)1(r)ψ†

↓
(r)+ψ

↓
(r)1∗(r)ψ

↑
(r)
]
, (2)

where ψ̂†(r)= (ψ
†
↑
(r) ψ†

↓
(r)), σ are the spin Pauli matrices, v(r) is the spatially dependent

strength of the Rashba spin–orbit coupling, M(r) corresponds to a magnetic field or a
magnetization profile and 1(r) defines a spatially varying superconducting order parameter.
Notice that in some sense the above Hamiltonian is overcomplete, since it covers all the cases
that we will consider, without implying that all the terms are simultaneously required for
obtaining a TSC. Furthermore, at the level of my topological classification, the origin of the
involved terms is unimportant. However, I have to remark that when I will discuss specific
cases I will concentrate on engineered TSCs, which for instance involve conventional types of
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magnetism and mainly proximity induced superconductivity [35]. This implies that I will not
consider here the cases of unconventional1 density waves [36–40] or SCs [41], although some
of the conclusions could also be applied to these systems.

Since for the situations considered in the present study the spin-quantization is always
fixed, I will employ the following spinor:

9̂†(r)=

(
ψ

†
↑
(r), ψ†

↓
(r), ψ

↑
(r), ψ

↓
(r)
)
, (3)

and use the τ Pauli matrices in order to represent matrices in the Nambu particle–hole space.
With the introduction of the above enlarged spinor the Hamiltonian can be rewritten in the
following compact way:

H=
1

2

∫
dr 9̂†(r)Ĥ( p̂, r)9̂(r), (4)

where Ĥ( p̂, r) corresponds to the BdG Hamiltonian. Notice that the factor of 1/2 is crucial for
avoiding double counting of the degrees of freedom, since the above spinor does not obey to the
usual fermionic commutation relations.

3. Topological classification principles

Before discussing the possible topological phases arising from our model Hamiltonian, I will
briefly review the basics of how to classify topological systems. My goal is to first highlight
a key point which is crucial for classifying TSCs and then demonstrate how this can provide
further topological insight concerning previously studied systems [26, 27]. This key point is
that topological classification of systems following the recently developed methods [42–44],
is conducted for irreducible Hamiltonians, for which one cannot find any unitary operator Ou

satisfying [Ĥ( p̂, r),Ou] = 0. If there is a number of these type of operators, we can block
diagonalize the Hamiltonian and topologically classify each sub-block. Of course, this is not
the only route to study topological properties, since one can also directly construct topological
invariants for reducible Hamiltonians [45]. Nevertheless, studying irreducible Hamiltonians
provides a transparent analysis of the topological classes.

The symmetry class and the related accessible topological phases of an irreducible
Hamiltonian are defined by the possible presence of three specific types of discrete symmetries.
The first two correspond to a generalized time-reversal symmetry effected by the anti-unitary
operator 2 and a charge conjugation symmetry effected by an anti-unitary operator 4. If 2
is a symmetry of the Hamiltonian, it satisfies [Ĥ( p̂, r),2] = 0 ⇒2−1Ĥ( p̂, r)2= +Ĥ( p̂, r)
while in the case of charge-conjugation we instead have {Ĥ( p̂, r),4} = 0 ⇒4−1Ĥ( p̂, r)4=

−Ĥ( p̂, r). If 2 and 4 constitute symmetries of the Hamiltonian at the same time, then the
Hamiltonian additionally satisfies {Ĥ( p̂, r),24} = 0 where the combined 24 operator is
unitary and is termed chiral symmetry operator 5. The inclusion of 5 completes the set of
symmetries that are required for determining the symmetry class of an irreducible Hamiltonian.
In fact, in order to cover all possible symmetry classes, we have to take into account the case
in which a unitary chiral symmetry may exist without the necessary presence of 2 and 4
symmetries.

1 Here, the characterization ‘unconventional’ is assigned to order parameters of density wave or superconducting
phases, that carry finite angular momentum such as p-wave, d-wave, etc.
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Table 1. Symmetry classes of topological SCs supporting MFs ‘fundamentally’,
i.e. the eigen-operators diagonalizing the single-particle Hamiltonian are solely
of Majorana type. For 2 and 4, ±I corresponds to the result of 22 and 42.
For 5, I denotes that the symmetry is present. Conversely, 0 implies that the
corresponding symmetry is broken.

Class 2 4 5 1D 2D 3D

BDI +I +I I Z 0 0
D 0 +I 0 Z2 Z 0

DIII −I +I I Z2 Z2 Z

Another important aspect which has not been pointed out so far in the existing classification
schemes, concerns correlated systems and the role of induced order parameters [46–49] on
the topological properties of a system. Within a mean-field description, it has been shown
that there exist patterns [47, 49] of thermodynamic phases and their corresponding order
parameters, which are bound to coexist at a microscopic level. In fact, Varelogiannis [49],
recently put forward a rule according to which one can predict the induced order parameters
and consequently the complete patterns of thermodynamic/topological phases which can be
decomposed in fundamental coexistence quartets of phases. Although the symmetry properties
of an induced order parameter is strictly determined by the already existing order parameters
and consequently cannot alter the symmetry class, its inclusion can deform the topological phase
diagram by modifying the parameter regime for observing the accessible topological classes.

In this work I am interested in ‘hidden’ unitary discrete symmetry operators satisfying
the property On

u=I , with n ∈ Z. In the simplest case n = 2, we can block diagonalize the
Hamiltonian into two sub-blocks labelled by the eigenvalues ±1 of Ou, leading to a direct sum
of the form Ĥ+( p̂, r)⊕ Ĥ−( p̂, r). Notice that because of the discrete symmetry Ou, both sub-
blocks are constrained to belong to the same symmetry class. However, the two sub-systems
do not necessarily reside in the same topological class. In addition, I also provide an example
of an anti-unitary hidden symmetry Oa. In this case Oa constitutes an additional generalized
time-reversal symmetry which modifies the initial symmetry class of the system, instead of
splitting the latter in a direct sum of identical symmetry classes as for the unitary analogue Ou.
For instance, if a system is initially in class D, then the emergence of an anti-unitary hidden
symmetry Oa with O2

a = +I will change its symmetry to class BDI.
For the cases under consideration, the BdG Hamiltonian enjoys a charge-conjugation

symmetry 4= τxK, where K defines complex conjugation. Since 42
= +I , we obtain only

the following three allowed symmetry classes presented in table 1: BDI, D, DIII or their direct
sums BDI ⊕ BDI, D ⊕ D, DIII ⊕ DIII in the presence of a hidden symmetry Ou, with O2

u = I .
Notice that the classes BDI and DIII are characterized by a time-reversal symmetry 2 with
22

= +I and22
= −I , respectively. In the first case,2 symmetry implies that the Hamiltonian

is real while in the second that there exist a Kramers-type degeneracy leading to doublets of
solutions. Below I examine the minimal cases that can lead to a symmetry class supporting MFs.
For completeness I will also shortly discuss previously studied models.
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Figure 1. Point group symmetries for quasi-1D and strictly 1D geometries of a
topological SC (depicted with blue). In the quasi-1D case, inversion symmetry
along the z-axis, σh, is broken.

4. Results: possible phases of engineered topological superconductors

In the present section I carry out a thorough analysis of the accessible TSC phases that follow
from the Hamiltonian of equation (2). For the strict 2D and 1D cases I will consider that
V (r)= 0. To analyse the quasi-1D case, I will always assume the presence of a confining
potential V (y). For topological computation applications based on edge MFs the quasi-1D
and pure 1D setups are the most relevant. The possible unitary symmetries that can appear for
these systems originate from the point group G and translation operations ta with ta r = r + a.
Let me now focus on the point group symmetries for the quasi-1D and pure 1D geometries,
which I depict in figure 1. The point group for a quasi-1D system confined in the xy-plane is
C2v. This symmetry group includes a C2 π -rotation about the z-axis (r → −r , z → z) and two
σv reflection operations σxz (y → −y) and σyz (x → −x), where the indices correspond to the
mirroring plane. Notice that the reflection symmetry operation σh ≡ σxy (z → −z) is broken in
C2v. In the strict 1D case we are left only with σyz. For random v(r), M(r) and 1(r) all the
aforementioned symmetries are broken. Nevertheless, for special spatial profiles of the latter
functions, a hidden symmetry can emerge, which consists of these basic symmetry operations
or other already broken symmetries such as σh.

In table 2, I present the topological classification for the Hamiltonian of equation (2) where
all possible unitary symmetries are broken due to the spatial dependence of v(r), M(r) and
1(r). I demand that |M(r)| 6= 0 and |1(r)| 6= 0 so as to avoid any gap closings that could
lead to a macroscopic coexistence of different topological phases throughout the volume of
the material. I also have to remark that in the case of a translationally invariant system, we
can transfer to k-space in order to calculate topological invariants. If translational symmetry is
broken, then analysis of the topological properties in coordinate or momentum space exhibits the
same complexity. Of course, there can be also cases where topological properties in combined
(r, k)-space can be relevant [45, 50].

One of the most important results is case 2 in table 2, where the simultaneous presence of
Rashba spin–orbit coupling and inhomogeneous superconductivity can lead to MFs in a quasi-
1D system, without the requirement of a magnetic field. In fact, an r-dependent superconducting
phase originating from a supercurrent falls into this case, constituting an experimentally
prominent route towards MFs. As far as the table is concerned, the possible phases are
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Table 2. Accessible TSC phases supporting MFs due to the combined presence
of inhomogeneous Rashba spin–orbit coupling v(r), magnetization M(r)
and superconducting order parameter 1(r). The presence (absence) of the
aforementioned terms is indicated with X(×). The resulting symmetry class
depends on the behaviour of the magnetic and superconducting Hamiltonian
terms under complex conjugation K, since the Rashba spin–orbit coupling
term always preserves T . For a term that is already present (X), we denote
the case of preserved (broken) complex conjugation as K = I (0). Notice that
symmetry classes that lack a strong topological invariant for the corresponding
dimensionality are shown with italics and correspond to weak TSCs. With the
phrase ‘no-MFs’, I imply that the system belongs to a symmetry class other
than D, BDI and DIII, which cannot fundamentally support MFs. In the presence
of a unitary hidden symmetry Ou with the property On

u = I , a symmetry class
TC splits into n identical sub-classes ⊕nTC. However, the sub-systems do not
have to reside in the same topological class. Note that the identification of the
symmetry class does not necessarily imply that a system can indeed transit to
the topologically non-trivial regime hosting MFs. This depends on the particular
implementation.

Case v(r) M(r) 1(r) 2D quasi-1D 1D

I X × K = I DIII DIII no MFs
II X × K = 0 D D no MFs
III × K = I K = I BDI BDI BDI
IV × K = {0, I, 0} K = {I, 0, 0} D D D
V X K = I K = I D D BDI
VI X K = {0, I, 0} K = {I, 0, 0} D D D

essentially classified by the behaviour of the magnetic and superconducting Hamiltonian terms
under K.

5. Analysis of the possible topological phases in the absence of unitary symmetries

In this section I provide the detailed topological classification for the cases presented in table 2.
Notice that for the present discussion the spatial dependence of the terms involved is considered
random, unless explicitly stated.

5.1. Cases I and II

In the following paragraph I will focus on the cases I and II that are characterized by the presence
of inhomogeneous Rashba spin–orbit coupling v(r) and superconducting order parameter1(r).
The TSCs belonging to these cases are described by the following Hamiltonian:

Ĥ( p̂, r)=

[
p̂2

2m
−µ+ V (r)

]
τz +

{
v(r), p̂xτzσy − p̂yσx

}
2

−1<(r)τyσy −1=(r)τxσy. (5)
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The Rashba spin–orbit coupling term is odd under inversion symmetry along the z-axis σh, while
it is even under the usual time-reversal symmetry T . If the superconducting term is also invariant
under T or equivalently K, since we are dealing with a scalar superconducting order parameter,
then 1(r)=1<(r) and the full Hamiltonian is characterized by the generalized time-reversal
symmetry 2= iσyK that coincides with T .

Two-dimensional (2D) system. In the 2D case, the particular system belongs to the symmetry
class DIII and is related to the model of [1]. Since 2 satisfies 22

= −I, with I the identity
operator, we expect boundary MF Kramers doublets. Class DIII possesses a strong Z2

topological invariant in 2D. The presence of 2 also leads to a chiral symmetry with 5= τxσy .
In the case where the superconducting order parameter has an additional imaginary component,
T is broken and the system transits to class D. Class D has a strong Z invariant in 2D and
consequently this system constitutes a strong TSC in both cases.

In order to analyse the symmetry properties in a more transparent manner, I will
consider without any loss of generality, the following form for the superconducting order
parameter 1(r)=1ei J ·r . The particular profile, constitutes the simplest representative of
T violating superconductivity and can be viewed either as the result of the spontaneous
formation of a Fulde–Ferrell [51] phase with modulation wave-vector J or the consequence
of the application of a supercurrent J . The Fulde–Ferrell phase is a special case of pair
density waves (see also [52]) that have been also recently considered [24] as potential TSCs
leading to MFs. On the other hand, the application of supercurrents was previously discussed
in [53]. In the latter implementations a supercurrent was viewed as an additional knob
for tuning the topological phase diagram, without though being a necessary ingredient for
obtaining a TSC.

At this point we proceed with gauging away the superconducting phase ϕ(r)= J · r via
the minimal coupling p̂ → p̂ + h̄∇ϕ(r)τz/2 = p̂ + h̄ Jτz/2, leading to

Ĥ′( p̂, r)=
h̄

2m
J · p̂ I +

[
p̂2

2m
+
(h̄ J/2)2

2m
−µ+ V (r)

]
τz +

{
v(r), p̂xτzσy − p̂yσx

}
2

+
v(r)h̄

2

×
(
Jxσy − Jyτzσx

)
−1τyσy. (6)

It is straightforward to confirm that for J=0 the system belongs to class DIII because T is
preserved while for finite J the system lies in class D.

Quasi-one-dimensional (1D) system. In order to investigate the quasi-1D and 1D cases I set
v(r)= v(x). Furthermore for the quasi-1D case I additionaly switch on a confining potential
V (r)= V (y). The presence of the confining potential lowers the symmetry of the system,
permitting anisotropic coefficients for the Rashba terms p̂xτzσy and p̂yσx , instead of a common
v(x). For my analysis I will keep the coefficients equal since the only crucial requirement for my
study is that they are both non-zero. To achieve confinement, I consider the case of a harmonic
potential V (y)= mω2 y2/2. This term is translationally invariant along the x-direction and even
under C2, σxz and σyz. Another option for the confining potential is the infinite wall potential
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V (|y|> L y)= +∞. For the choice of the harmonic confining potential, the Hamiltonian reads

Ĥ( p̂x , x, â, â†)=
h̄

2m

(
Jx p̂x + Jy

√
mωh̄

2

â − â†

i

)
I +

[
p̂2

x

2m
+
(h̄ J/2)2

2m
−µ+ h̄ω

(
â†â +

1

2

)]
τz

+
{v(x), p̂x}

2
τzσy − v(x)

√
mωh̄

2

â − â†

i
σx +

v(x)h̄

2

(
Jxσy − Jyτzσx

)
−1τyσy,

(7)

where I introduced the quantum harmonic oscillator’s bosonic creation (annihilation) operator
â† (â). By introducing the eigenfunctions |n〉 of the number operator N̂= â†â, I obtain the matrix
Hamiltonian

Ĥ( p̂x , x)=
h̄

2m

(
Jx p̂x I + Jy h̄λy

)
+

(
p̂2

x

2m
−µλJ

z

)
τz +

{v(x), p̂x}

2
τzσy − v(x)h̄λyσx +

v(x)h̄

2

×
(
Jxσy − Jyτzσx

)
−1τyσy, (8)

that is defined in spin, Nambu and N̂ spaces with

〈n|λJ
z |s〉 = δn,s

[
µ−

(h̄ J/2)2

2m
− h̄ω

(
n +

1

2

)]
/µ and

〈n|λy|s〉 =

√
mω

2h̄

√
n + 1δn,s−1 −

√
nδn,s+1

i
. (9)

Since the form of the Hamiltonian is identical to the 2D case and K−1λyK = −λy (similarly to
p̂y), the quasi-1D model also belongs to the DIII class2 for J = 0 and to class D for J 6= 0.

1D system. For studying the strictly 1D system, I apply the dimensional reduction method to
the 2D model of equation (6) and set p̂y = Jy = 0, that yields

Ĥ′( p̂x , x)=
h̄

2m
Jx p̂x I +

[
p̂2

x

2m
+
(h̄ Jx/2)

2

2m
−µ

]
τz +

{v(x), p̂x}

2
τzσy +

v(x)

2
h̄ Jxσy −1τyσy.

(10)

We observe that for this model we retain our freedom to redefine the spin-quantization axis and
as a result the above Hamiltonian does not support MFs in a fundamental manner. If we rotate
the spin-quantization axis from y to z, we can rewrite the above Hamiltonian using the usual
two-component Nambu spinor ψ̂†

N (x)= (ψ
†
↑
(x), ψ↓(x)), since the four-component formalism

becomes redundant in this case. In this formalism the eigenoperators are electronic and their
decomposition into MF operators can serve as an equivalent but not necessary description.
For instance, if Jx = 0, the Hamiltonian in the latter formalism belongs to class AIII which
is characterized by a Z topological invariant in 1D. In this case, the system can support zero-
energy edge electronic eigenoperators which can be decomposed into edge MFs. In this sense,
MFs are not fundamental in the 1D case.
2 The 2D and quasi-1D systems always belong to the same symmetry class. Here due to some specific spatial
dependences of certain parameters, the symmetry of the quasi-1D system can be enhanced, leading to a different
symmetry class. However, this is an artefact of the choices made here for simplifying the discussion. It is assumed
that we may always add terms in the quasi-1D Hamiltonian which ensures that all the possible unitary symmetries
are broken.
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5.2. Cases III and IV

In this section I consider TSC phases that do not involve spin–orbit coupling. This implies that
at least two components of an inhomogeneous magnetization field must be present in order to
lock the spin-quantization axis, since the latter constitutes a prerequisite for obtaining MFs. For
this kind of systems, the Hamiltonian reads

Ĥ( p̂, r)=

[
p̂2

2m
−µ+ V (r)

]
τz − M(r) ·

(
τzσx , σy, τzσz

)
−1<(r)τyσy −1=(r)τxσy. (11)

For the specific type of TSCs, the magnetization field M(r) is odd under the usual time-reversal
symmetry T . However, its behaviour under complex conjugation K is not fixed. If My(r)= 0
then M(r) preserves K. This leads to the following two possibilities depending also on the
behaviour of the superconducting order parameter under K. In the first possibility the magnetic
and superconducting terms are simultaneously invariant underK and a generalized time-reversal
symmetry appears with 2= K accompanied by a chiral symmetry 5= τx .

2D system. In 2D, the system belongs to the BDI class that however is not characterized
by a strong topological invariant for this dimensionality. Consequently, the specific system
corresponds to a weak TSC, since under special circumstances one could define weak invariants.
The second possibility involves the breaking of K by either one of the terms. In the latter case,
the Hamiltonian belongs to class D which has a strong Z topological invariant in 2D.

Quasi-1D system. For the particular study I will consider for convenience that 1(r)=1ei J ·r .
As previously, I gauge away the superconducting phase and obtain the equivalent model

Ĥ′( p̂, r̂)=
h̄

2m
J · p̂ I +

[
p̂2

2m
+
(h̄ J/2)2

2m
−µ+ V (r)

]
τz − M(r) ·

(
τzσx , σy, τzσz

)
−1τyσy.

(12)

For effecting confinement I will employ once again a harmonic oscillator’s potential V (y)=

mω2 y2/2 and we also have M(r)= M(x, â + â†). Following the same steps as in cases I and II,
I obtain the Hamiltonian

Ĥ′( p̂x , x)=
h̄

2m

(
Jx p̂x I + Jy h̄λy

)
+

(
p̂2

x

2m
−µλJ

z

)
τz − M̂(x) ·

(
τzσx , σy, τzσz

)
−1τyσy, (13)

where M̂(x) is a real matrix defined in |n〉 space. If J = 0 and M̂y(x)= 0, K is a symmetry of
the Hamiltonian and the system belongs to class BDI (see footnote 2). Instead, if M̂y(x) 6= 0,
the system belongs to class D. For the special case where M(r) does not depend on the y-
coordinate, i.e. M(r)= M(x), M̂(r) becomes diagonal and can be divided into an infinite
number of sub-spaces labelled by n yielding

Ĥ′

n( p̂x , x)=

[
p̂2

x

2m
−µ+ h̄ω

(
n +

1

2

)]
τz − M(x) ·

(
τzσx , σy, τzσz

)
−1τyσy, (14)

which leads to the total symmetry class ⊕nBDI. If M(x) violatesK we obtain a direct sum ⊕nD.
By allowing a finite J we also violateK. Specifically, if J = (Jx , 0), that corresponds to the case
1(r)=1(x), the system resides in the class ⊕nD. However, if J = (0, Jy) the system belongs
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to class D (see footnote 2), due to the simultaneous presence of λy and λJ
z in the Hamiltonian

of equation (13), that do not allow the decomposition in n-sectors. In table 2 the general case
where M and 1 depend on both coordinates is presented.

1D system. By dimensional reduction on the Hamiltonian of equation (12) we obtain the
following pure 1D model:

Ĥ′( p̂x , x)=
h̄

2m
Jx p̂x I +

[
p̂2

x

2m
+
(h̄ Jx/2)

2

2m
−µ

]
τz − M(x) ·

(
τzσx , σy, τzσz

)
−1τyσy. (15)

If My(x)= 0 and Jx = 0, K is conserved and the system belongs to class BDI. Instead, if one of
the previous terms is non-zero, the Hamiltonian is not real any more and it falls into symmetry
class D [25].

5.3. Cases V and VI

In the last part of this section I complete the possible cases by considering the situation where
all the terms of equation (2) are present. The latter equation in combined Nambu and spin spaces
reads

Ĥ( p̂, r)=

[
p̂2

2m
−µ+ V (r)

]
τz +

{
v(r), p̂xτzσy − p̂yσx

}
2

− M(r) ·
(
τzσx , σy, τzσz

)
−1<(r)τyσy −1=(r)τxσy. (16)

When magnetism and Rashba spin–orbit coupling coexist, the accessible topological phases
constitute an overlap of the previously examined separate cases. Therefore here we will
investigate what are the consequences of the addition of magnetism in cases I and II for
different dimensionalities. Earlier, we observed that when magnetism is not present, there are
two possible scenarios depending on the behaviour of the superconducting order parameter
under K.

2D and quasi-1D systems. For the specific cases, if 1(r)=1<(r) the system resides in the
symmetry class DIII being invariant under T . If M(r) is introduced, T will be broken and
the system will transit to class D. If 1(r) is complex, the system is already in class D, and
consequently the inclusion of magnetism leads to no additional effects.

1D system. For pure 1D systems the presence of a magnetic order is crucial and leads to new
TSC phases. The 1D descendant of the above Hamiltonian reads

Ĥ( p̂x , x)=

(
p̂2

x

2m
−µ

)
τz +

{
v(x), p̂x

}
2

τzσy − M(x) ·
(
τzσx , σy, τzσz

)
−1<(x)τyσy −1=(x)τxσy. (17)

From table 2 we immediately observe that no MFs emerge fundamentally in the absence of
magnetism. As mentioned earlier, the reason is that the presence of the spin–orbit coupling term
τzσy alone, cannot lock the spin-quantization axis. Nevertheless, the addition of a perpendicular
magnetization field remedies this problem and can lead to TSC phases with MFs. If 1(x) and
M(x) are invariant under K, the Hamiltonian is characterized by a generalized time-reversal
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symmetry 2= K and a chiral symmetry 5= τx which permits an integer number of MFs per
edge [21]. The translationally invariant version of this model

Ĥ( p̂x)=

(
p̂2

x

2m
−µ

)
τz + v p̂xτzσy − M ·

(
τzσx , σy, τzσz

)
−1τyσy (18)

corresponds to the celebrated MF-wire proposal [10] which currently under intense
experimental investigation [2] and concerns a Rashba semiconducting wire in the presence of a
Zeeman field and proximity induced superconductivity. The systems transits to the topologically
non-trivial phase when the criterion

|M|>
√
µ2 +12 (19)

is satisfied. Finally, if 1=(x) or (and) My(x) 6= 0 then K is broken and the system belongs to
class D with a Z2 invariant allowing for a single MF per edge.

6. Topological superconductivity based on spin–orbit coupling and supercurrents in the
absence of magnetism

In case II, I showed that a quasi-1D system characterized by Rashba spin–orbit coupling and
T -breaking superconductivity belongs to symmetry class D, which can in principle support
MFs, without any kind of magnetism. In this paragraph I explicitly demonstrate that this
scenario is feasible and experimentally accessible. Here I will consider a heterostructure
consisting of conventional SCs in proximity to A. the surface of a 3D TI and B. a double-
Rashba semiconducting wire setup, which constitutes the simplest example of a quasi-1D
semiconductor. In both cases, the additional presence of a finite supercurrent, will be crucial
for engineering topological superconductivity.

6.1. Topological superconductor (TSC) in a heterostructure consisting of a topological
insulator and conventional SCs

The respective Hamiltonian describing the TI surface states in the presence of induced pairing
reads

Ĥ( p̂, r)= −µτz + v
(

p̂xτzσy − p̂yσx

)
−1<(r)τyσy −1=(r)τxσy, (20)

which is derived from equation (5) by considering v(r)= v, V (r)= 0 and m → +∞. In fact,
the latter model can be linked to a previous proposal [1]. Notice that I permitted a particle–hole
asymmetric bulk TI by allowing a finite chemical potential, which additionally ensures that the
system resides in class D. Nevertheless, for the rest of the discussion, I will for simplicity set
µ= 0. The latter special case, enhances the symmetry of the system leading to the following
symmetry class transition D → BDI, due to the emergence of a chiral symmetry with matrix σz,
without though affecting our analysis concerning the emergence of MFs. At this point I include
a finite supercurrent along the y-axis by considering 1(r)=1(y)=1eiJ y . Furthermore, I
assume that J y is small which allows us to make the approximation 1(y)'1+ i1J y. Under
these assumptions the Hamiltonian becomes

Ĥ( p̂, y)= v
(

p̂xτzσy − p̂yσx

)
−1τyσy −1J yτxσy. (21)

New Journal of Physics 15 (2013) 105027 (http://www.njp.org/)

http://www.njp.org/


14

Figure 2. A heterostructure consisting of conventional SCs deposited on top of
the surface of a 3D TI. The presence of a superconducting Josephson junction
of supercurrent J = (0, J ), in combination with a π -superconducting phase
domain wall, along x = 0, traps a MF at r = (0, 0).

By squaring the BdG Hamiltonian operator, we obtain

Ĥ2( p̂, y)= (v p̂)2 +12 + (1J )2 y2 + vh̄1Jτxσz. (22)

The above Hamiltonian can be diagonalized in the y, p̂y space by introducing the eigenstates
|n〉 of a quantum harmonic oscillator with frequency ω = 2v1J providing

Ĥ2
n( p̂x)= (v p̂x)

2 +12 + vh̄1J (2n + 1)+ vh̄1Jτxσz. (23)

Notice that the presence of the supercurrent leads to confinement parallel to its direction. Since
we are interested in the low energy regime, we can restrict to the eigenstates of τxσz with
eigenvalue −1 and n = 0. In fact, for the latter eigenstates, the term vh̄1J (2n + 1)+ vh̄1Jτxσz

becomes zero, rendering these solutions as Majorana bound state solutions in the absence of
(v p̂x)

2 +12. With this in mind, I project the following part v p̂xτzσy −1τyσy of equation (21)
onto these degenerate lowest energy states, leading to the effective Hamiltonian:

Ĥeff( p̂x)= v p̂xκy +1κx , (24)

where κ correspond to Pauli matrices defined in the truncated basis spanned by the Majorana
bound states |n = 0; τx = −1; σz = +1〉 and |n = 0; τx = +1; σz = −1〉. The latter results are in
absolute agreement with the SC–TI–SC heterostructure model considered in [1] and related
studies concerning graphene-based hybrid devices [54], following a different approach. Fu and
Kane [1], considered a tri-junction of SC–TI–SC systems in order to implement a C3 vortex at
the meeting point which can host a MF. In fact, the SC–TI–SC setup has been recently under
experimental investigation [3] revealing possible signatures of MFs. Here, for the detection
of MFs, I propose the situation of a π -phase domain wall for the SC gap 1 along the x-
axis (figure 2), in analogy to the Jackiw–Rebbi model [55]. However, in the present case the
bound states will be of the Majorana type. Note that the equivalent description of the SC–TI–SC
heterostructure proposed in [1], using supercurrents as in the present discussion, had not been
so far realized, leaving alternative accessible MF setups unexplored. According to the analysis
above, a prominent system for hosting MFs is a quasi-1D Rashba semiconductor in proximity to
a conventional SC. As I demonstrate in the next paragraph, the presence of a Josephson current
flow parallel to the direction where confinement is imposed, will lead to the appearance of
edge MFs.
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Figure 3. A heterostructure consisting of two coupled single channel wires
deposited on top of two conventional SCs interfaced by a weak link permitting
the flow of a Josephson current. The supercurrent flow is directed transversely
to the wires’ axis and is sufficient to generate edge MFs that are ‘shared’ by the
two wires.

6.2. TSC in a heterostructure consisting of two coupled Rashba semiconducting wires and
conventional SCs

In this subsection I will focus on quasi-1D Rashba semiconducting platforms. Due to the quasi-
1D character of the system, a finite number of channels are generally allowed, which should
be taken into full consideration for the MF analysis. Nevertheless, in order to demonstrate the
possibility of MFs, based solely on supercurrents, I will here consider the simplest example of a
quasi-1D Rashba semiconductor, which consists of two coupled single channel wires (figure 3).
Note that double-wire setups [56] have been recently considered in the context of T -invariant
TSCs. However, in our case T will be broken. The relevant Hamiltonian reads

H=

∫
dx
∑
n=±

{
ψ̂†

n (x)

(
p̂2

x

2m
−µ+ v p̂xσy

)
ψ̂n (x)+

[
1eni δϕ2 ψ

†
↑,n(x)ψ

†
↓,n(x)+ h.c.

]}
+
∫

dx
{

t
⊥
ψ̂†

+(x)ψ̂−
(x)+ iV

⊥
ψ̂†

+(x)σxψ̂−
(x)+1

⊥

[
ψ

†
↑,+(x)ψ

†
↓,−(x)

+ψ†
↑,−(x)ψ

†
↓,+(x)

]
+ h.c.

}
, (25)

where n = ± labels the two parallel single-channel wires placed at distance L y , while t⊥,
V⊥, 1 and 1⊥ correspond to inter-wire hopping, inter-wire spin–orbit coupling, intra-wire
superconductivity and inter-wire superconductivity, respectively. Moreover, I also introduced
a finite supercurrent Jy ∼ δϕ flowing from one wire to the other, by incorporating a phase in the
intra-wire superconducting gap that has an opposite sign on the two wires. Notice that the inter-
wire superconducting term is unaffected by the presence of the supercurrent for the particular
direction of flow. For a compact description, I will introduce the spinor

9̂†(x)=

(
ψ

†
↑,+(x), ψ

†
↓,+(x), ψ

†
↑,−(x), ψ

†
↓,−(x), ψ↑,+(x), ψ↓,+(x), ψ↑,−(x), ψ↓,−(x)

)
, (26)

and additionally employ the κ Pauli matrices that act on the sub-space spanned by the two wire
indices n = ±. The BdG Hamiltonian of equation (25) reads

Ĥ( p̂x)=

(
p̂2

x

2m
−µ

)
τz + t⊥τzκx + v p̂xτzσy − V

⊥
κyσx −1ei δϕ2 τzκzτyσy −1

⊥
τyκxσy. (27)
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It is straightforward to confirm that the above Hamiltonian is characterized by a chiral symmetry
with matrix τxκx and a concomitant generalized time-reversal symmetry 2= κxK. Due to the
property22

= I , the system resides in class BDI which in 1D is characterized by aZ topological
invariant, allowing an integer number of topologically protected MFs per edge [21, 57]. For the
rest I will consider µ= 0 which can be always experimentally achieved by properly gating the
device and does not affect our analysis. It is instructive to study the energy spectrum for px = 0
when the supercurrent is zero, which reads

Eδϕ=0(px = 0)= ±

√
t2
⊥

+

(
1

⊥
±

√
V 2

⊥
+12

)2

. (28)

We observe that the spectrum is two-fold degenerate and the only possibility for a gap closing at
px = 0, which would imply the presence of MFs, can occur only if t⊥ = 0 and1

⊥
=
√

V 2
⊥

+12.
However, even if we consider t⊥ = 0, for every realistic case 1>1⊥. Consequently, in the
absence of a supercurrent, the system cannot support MFs. In order to shed light on how
the presence of a finite supercurrent can lead to MFs, I will perform a gauge transformation,
Ĥ′( p̂x)≡ e−i δϕ4 τzκzĤ( p̂x)ei δϕ4 τzκz , in order to remove the superconducting phase and obtain an
expression similar to equation (6). Furthermore, I will consider δϕ = π − 2ε where ε is
considered small and I will keep terms linear in ε. Under these conditions, the Hamiltonian
of equation (27) becomes

Ĥ′( p̂x)=
p̂2

x

2m
τz + t⊥κy + εt⊥τzκx + v p̂xτzσy + V⊥τzκxσx − εV

⊥
κyσx −1τyσy −1

⊥
τyκxσy. (29)

Notice that in the presence of a supercurrent for which ε = 0, the inter-wire spin–orbit coupling
term V

⊥
κyσx is converted completely into an inter-wire Zeeman term V⊥τzκxσx , which is

polarized perpendicular to the intra-wire spin–orbit coupling term v p̂xτzσy and is crucial for
the appearance of MFs in this double-wire setup. For ε = 0, the reconstructed energy spectrum
for px = 0 reads

Eδϕ=π(px = 0)= ±

[
1±

√
t2
⊥

+ (V⊥ ±1⊥)
2

]
. (30)

We observe that there is no degeneracy at px = 0, which implies that we obtain a single MF
per gap closing. For the above spectrum there can be two gap closings at px = 0 occurring
for 1=

√
t2
⊥

+ (V⊥ ±1⊥)2 marking the related topological phase boundaries. According to the
latter analysis and by additionally calculating the related Z topological invariant, following [21],
I find that the system resides in the topologically non-trivial phase with a single edge MF when
the criterion

√
t2
⊥

+ (V⊥ −1⊥)2 <1<
√

t2
⊥

+ (V⊥ +1⊥)2 is satisfied.
To illustrate the appearance of MFs in a transparent way, I will consider first the following

special case ε = t⊥ = 0, where the Hamiltonian of equation (29) enjoys a unitary symmetry
generated by the matrix κx which implies that the two wires are mirror symmetric. The particular
mirror symmetry allows for the block diagonalization of the Hamiltonian in the following
manner:

Ĥ′

κ( p̂x)=
p̂2

x

2m
τz + v p̂xτzσy + κV⊥τzσx − (1+ κ1

⊥
)τyσy, (31)

where κ = ±1 correspond to the eigenvalues of κx . The Hamiltonian of each block is essentially
the Hamiltonian of the strictly 1D wire TSC discussed in [9, 10], which belongs to class BDI,
and supports a single MF per edge when the following criterion is satisfied V⊥ >1+ κ1⊥.
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Consequently, the system resides: a. in the topologically trivial phase for V⊥ <1−1⊥, b. in the
topologically non-trivial phase with a single MF for |V⊥ −1|<1⊥ and c. in the topologically
non-trivial phase with two MFs for V⊥ >1+1⊥. It is desirable to study the fate of the MFs
when the additional chiral symmetry (with matrix τx ) is broken and a symmetry class transition
BDI ⊕ BDI → BDI occurs for the Hamiltonian of equation (31), due to a finite ε. For this
purpose, I construct the following low energy effective model:

Ĥ′

eff( p̂x)= v p̂xρy + (V⊥ −1)ηzρx −1⊥ρx (32)

by projecting the Hamiltonian of equation (31) onto the following gap closing related Majorana
bound state solutions:

|1〉 = |τx = +1; κx = +1; σz = +1〉, |2〉 = |τx = −1; κx = +1; σz = −1〉,

|3〉 = |τx = −1; κx = −1; σz = +1〉, |4〉 = |τx = +1; κx = −1; σz = −1〉. (33)

For the latter procedure I neglected the quadratic in momentum kinetic term ∼ p̂2
xτz since I

focus on momenta about px = 0, while I made use of the η (acting on κx = ±1 blocks) and ρ

Pauli matrices. The spectrum of the effective model has the following form:

Eδϕ=π(px)= ±

√
(vpx)2 + (V⊥ −1±1⊥)

2, (34)

owing the anticipated gap closings at V⊥ =1±1⊥, which provide the topological phase
boundaries. At this point, I assume that ε is small. By adding the corresponding term −εV⊥κyσx

as a perturbation to the above effective model, I finally obtain

Ĥ′

eff( p̂x)= v p̂xρy + (V⊥ −1)ηzρx −1⊥ρx + εV⊥ηyρx . (35)

The inclusion of ε modifies crucially the energy spectrum, which now reads

Eδϕ 6=π(px)= ±

√
(vpx)2 +

[√
(V⊥ −1)2 + (εV⊥)2 ±1⊥

]2
. (36)

We directly observe that there is only one possible gap closing and consequently only one
accessible topological phase supporting a single MF per edge. This can be naturally understood
by taking into consideration that the two MFs, previously existing for the topologically non-
trivial phase with V⊥ >1+1⊥, hybridize and give rise to a finite energy fermionic solution.
Note that the chiral symmetry breaking effects are non-perturbative. In fact, we may observe
the effect of an infinitessimal ε by rewriting the energy spectrum in the following form:

Eδϕ 6=π(px)= ±

√
(vpx)2 + (|V⊥ −1| ±1⊥)

2. (37)

We notice that an infinitessimal ε will merge the previous three distinct phases of zero,
one or two MFs into the following two: (a) a topologically trivial superconducting phase
for |V⊥ −1|>1⊥ and (b) a topologically non-trivial phase with a single MF per edge for
|V⊥ −1|<1⊥.

In order to make a connection to the related experimental setup, I will consider InSb
wires for which we have vh̄ = 0.2 eV Å, m = 0.015me and 1= 250µeV. Furthermore,
t⊥ ' h̄2/(2mL2

y) and V⊥ ' vh̄/L y . By assuming a constant value for 1⊥ ∼1/5 = 50µeV,
equation (30) and also the computation of the related topological invariant provide that the
system resides in the topologically non-trivial phase with a single MF per edge for 109< L y <

131 nm. In this regime we expect a zero-bias anomaly peak in the tunnelling spectra, which
could constitute a sharp signature of MF physics.
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7. Examples of topological phases with hidden symmetries

In this section I will demonstrate two examples where unitary or anti-unitary hidden symmetries
occur for some of the TSC phases presented in table 2 and demonstrate what are the concomitant
modifications of the initial symmetry class.

7.1. Cases I and II in the presence of a single unitary hidden symmetryOu

Let us now investigate the consequences of the emergence of a ‘hidden’ symmetry due to
the special form of the Rashba spin–orbit coupling term. As a case study I will focus on the
topological properties of the following quasi-1D Hamiltonian, introduced in equation (8) of
case I:

Ĥ( p̂x , x)=
h̄

2m

(
Jx p̂x I + Jy h̄λy

)
+

(
p̂2

x

2m
−µλJ

z

)
τz +

{v(x), p̂x}

2
τzσy − v(x)h̄λyσx

+
v(x)h̄

2

(
Jxσy − Jyτzσx

)
−1τyσy. (38)

Here we will restrict to the special situation where tπ/Qv(x)= v(x +π/Q)= −v(x). We may
readily observe in which manner this property leads to an emergent unitary symmetry. The terms
of the Hamiltonian that do not contain v(x) are invariant under arbitrary translations and under
the action of σh, which in our formalism is represented as σh = iτzσz in spin-space. Since all the
terms with coefficient v(x) are odd under σh, the full Hamiltonian is invariant under the action
of Ou = σhtπ/Q . The appearance of a hidden symmetry Ou leads to an additional generalized
time-reversal symmetry 2̃=OuT and a concomitant chiral symmetry 5̃=Ou5, when J = 0.
The emergence of Ou modifies the symmetry class of the system by splitting the symmetry
classes DIII and D found earlier, into DIII ⊕ DIII and D ⊕ D, respectively. Note that point group
symmetry protected phases are currently under intense investigation [58] and a topological
classification of systems with reflection symmetry has also appeared [59]. A simple example
for v(x +π/Q)= −v(x) is v(x)= 2vQcos(Qx + θ) with Q = 2q. Here, θ is considered pinned
to a constant value. The modulated spin–orbit coupling term can be viewed as an unconventional
spin triplet density wave [36], similar to the Rashba spin–orbit density wave proposed in [60] as
a potential candidate for the so called ‘hidden order’, which appears in the non-superconducting
regime of the phase diagram of the heavy fermion compound URu2Si2.

The simultaneous presence of the momentum operator p̂x and coordinate x does not
allow for a direct and transparent inspection of further topological properties of the system.
Nonetheless, it is also possible in principle to obtain through some kind of ‘deformation’
procedure (in the topological sense) a model defined solely in momentum space that shares the
same symmetries and topological properties with the original model. In order for this mapping to
be meaningful and offer a direct computation of topological invariants, translational symmetry
must be somehow restored. The presence of a periodic v(x)= 2vQcos(Qx + θ) term, leads to
the formation of a band structure with a Brillouin zone of length Q since t2π/Qv(x)= v(x).
The property tπ/Qv(x)= −v(x) gives rise to a sub-lattice structure that will eventually lead to
the two sub-blocks of the Hamiltonian that become relevant in the presence of Ou. Since we
are not interested in the full band structure, but mainly in removing the x-dependence of the
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Hamiltonian, we may expand the field operator in the following fashion:

ψ̂(x)' e+iqxψ̂+q(x)+ e−iqxψ̂−q(x), (39)

where ψ̂±q(x) are slowly varying fields leading to the Hamiltonian

Ĥq( p̂x)=
h̄

2m

(
Jx p̂x I + Jy h̄λy

)
+

h̄

2
ṽ Jxρz +

[
p̂2

x

2m
+
(h̄q)2

2m
−µλJ

z

]
τz + ṽ p̂xτzρz

+vQ p̂x

(
cos θτzρxσy − sin θτzρyσy

)
− vQ h̄

(
cos θρxλyσx − sin θρyλyσx

)
+
vQ h̄

2
Jx

(
cos θρxσy − sin θρyσy

)
−
vQ h̄

2
Jy

(
cos θτzρxσx − sin θτzρyσx

)
−1τyσy, (40)

with ṽ = h̄q/m. The above Hamiltonian acts on the enlarged spinor

9̂†
q (x)=

(
ψ

†
+q↑
(x), ψ†

+q↓
(x), ψ†

−q↑
(x), ψ†

−q↓
(x), ψ

−q↑
(x), ψ

−q↓
(x), ψ+q↑

(x), ψ+q↓
(x)
)
, (41)

with the ρ Pauli matrices acting on ±q space. Notice that terms with ρx or ρy carry momentum
Q. By expanding the field operator in this manner, we managed to end up with a coordinate
independent Hamiltonian. This approximation allows us to readily study topological aspects
in momentum space which for the specific case is an easier task compared to the required
analysis in coordinate space. Nonetheless, it is not a priori ensured that the coordinate and
momentum pictures are topologically equivalent. If they do, this approximation constitutes a
suitable deformation procedure for mapping x to kx space topology.

In order to confirm if these systems belong to the same symmetry class, we have to study
the emerging symmetries for the latter model. In this basis the expression for the generalized
time-reversal symmetry operator simplifies to 2= iσyK = iρxσyK′, where K′ is a complex
conjugation operator not acting on Q or q. The presence of ρx effects complex conjugation
operation K in q space, since q → −q is equivalent to K = ρxK′. Furthermore, within the
specific framework tπ/Q = −iρz. Notice that (−iρz)

2
= −I , i.e. similar to the behaviour of

rotation operators for a spin-1/2. This is a direct consequence of the fact that the spinor contains
the wave-vector q which is half of the wave-vector Q = 2q. We may directly confirm that
[Ĥq( p̂x), σhtπ/Q] ≡ [Ĥq( p̂x), τzρzσz] = 0. When J = 0, the Hamiltonian is invariant under 2
and the presence of Ou = σhtπ/Q leads to the additional time-reversal symmetry 2̃=Ou2=

iτzρyσxK′. The emerging chiral symmetries for this model read 5= τxσy and 5̃= τyρzσx . As
expected, in this case the system belongs to the symmetry class DIII ⊕ DIII. Furthermore, if
J 6= 0 then 2 is broken and the system transits to the symmetry class D ⊕ D. To explicitly
demonstrate the sub-block structure of the Hamiltonian and the direct sum of symmetry classes,
I effect the unitary transformation

3=
I + ρzσz

2
+ τx

I − ρzσz

2
, (42)

which transforms the Hamiltonian as follows Ĥrot
q ( p̂x)=3†Ĥq( p̂x)3. This particular unitary

transformation block diagonalizes the matrix τzρzσz, representing the hidden symmetry
operation Ou, into 3†τzρzσz3= τz. The transformed Hamiltonian is block diagonal and can
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be labelled by the eigenvalues of τz, τ = ±1, yielding

Ĥrot
q,τ ( p̂x)=

h̄

2m

(
Jx p̂x + Jy h̄λy

)
I +

h̄

2
ṽ Jxρz + τ

[
p̂2

x

2m
+
(h̄q)2

2m
−µλJ

z

]
ρzσz + τ ṽ p̂xσz

+vQ

(
τ p̂x cos θ + h̄λy sin θ

)
ρyσx + vQ

(
τ p̂x sin θ − h̄λy cos θ

)
ρxσx

+
vQ h̄

2

[(
Jx cos θ +τ Jy sin θ

)
ρxσy −

(
Jx sin θ −τ Jy cos θ

)
ρyσy

]
+ τ1ρzσx . (43)

I have to remark that the above topological classification conclusions hold for a bulk system. In
order to observe the two sets of edge MFs one must introduce boundaries that preserve the Ou

symmetry. The usual method followed in order to investigate the bulk-boundary correspondence
of a translationally invariant topologically non-trivial system, is to consider an infinite well
potential. In the present case the preservation of Ou requires a specific behaviour under the
translation operation tπ/Q . As long as the approximation of equation (39) is well justified and
an infinitely steep boundary potential is imposed, the system is characterized by an emergent
translational invariance and the two sets of edge MFs should manifestly appear. However, if the
boundary potential Vb(x) is not infinitely steep but develops gradually within a certain region l,
then the preservation of theOu symmetry depends crucially on the wave-vector qb ∼ 1/ l. If qb is
comparable to q, then the Fourier components Vqb have to be included in the bulk Hamiltonian
of equation (40), contributing with terms proportional to τzρx , ρx , τzρy and ρy that break the
hidden symmetry. In this case, we may only observe only a single set of edge MFs.

Nonetheless, the situation discussed here does not only constitute an example of mere
academic interest, even if in the case where boundary effects can break the hidden symmetry.
Although the presence of protected boundary modes [4, 61] is considered to be the hallmark
of topologically non-trivial phases, it does not constitute the unique route for diagnosing
topological order. In fact, fingerprints of topological non-trivial phases can be also found in
manifestations of the bulk system. Consequently, we can obtain information concerning the
presence of the ‘hidden’ symmetry irrespective of the presence of boundaries. One example
is the polar Kerr effect [62] that characterizes class D chiral p-wave SCs. This experiment can
provide a direct evidence of topological order by solely probing the bulk response. Similar chiral
phenomena emerge in non-superconducting systems. In the latter, apart from a similar polar
Kerr effect [38, 63], an anomalous thermoelectric Nernst response [39, 64] and a topological
Meissner effect [40] constitute additional smoking gun signatures of quantum anomalous Hall
phases (class A). In fact, topological response survives also in finite temperatures, though
exhibiting no quantization phenomena. Evenmore, the bulk magnetic response [65] of a
quantum spin Hall insulator (class AII) can provide alternative routes for confirming the
transition to the topologically non-trivial phase.

7.2. Cases III and IV with a single anti-unitary hidden symmetryOa

Here I will investigate the consequences of the emergence of an anti-unitary hidden symmetry
Oa on the symmetry class of the 1D model of equation (15) that was obtained for cases III and
IV. In this way I will be in a position to make a connection to previous studies [26, 27]. The
Hamiltonian of equation (15) for Jx = 0, has the following form:

Ĥ( p̂x , x)=

(
p̂2

x

2m
−µ

)
τz − M(x) ·

(
τzσx , σy, τzσz

)
−1τyσy. (44)
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Figure 4. Engineered topological SC consisting of a metal with spin-spiral
magnetic order M(x)= (2M Q

x cosQx, 0,−2M Q
z sinQx) placed on top of a bulk

conventional SC. The magnetic order is invariant under the combined action of
time-reversal symmetry T followed by a π/Q translation operation, tπ/Q . The
presence of the anti-unitary hidden symmetry Oa = tπ/QT leads to the class
BDI⊕BDI, compared to class BDI when it is absent.

First I will focus on the case III, which belongs to class BDI with 2= K, if M(x) is random
and My(x)= 0. I demonstrate that the topological properties of the system change with the
emergence of a hidden symmetry. I now assume that tπ/Q M(x)= M(x +π/Q)= −M(x). For
this special case, the Hamiltonian is invariant under the anti-unitary hidden symmetry Oa =

tπ/QT . Since tπ/Q is unitary and T anti-unitary, the particular symmetry constitutes an additional
generalized time-reversal symmetry 2̃=Oa. In order to gain more insight, I will consider
the simple spin-spiral magnetization profile Mx(x)= 2M Q

x cosQx and Mz(x)= −2M Q
z sinQx

which is depicted in figure 4. Prior studies [26, 27] have focused on the special case M Q
x = M Q

z .
By expanding the field operator as in equation (39) we obtain

Ĥ( p̂x)=

[
p̂2

x

2m
+
(h̄q)2

2m
−µ

]
τz + ṽ p̂xτzρz − M Q

x τzρxσx + M Q
z τzρyσz −1τyσy. (45)

Within this framework we have 2= K = ρxK′ and 2̃=Oa = tπ/QT = −iρziσyK =

−iρziσyρxK′
= iρyσyK′. Remember that K′ does not act on q and Q. We readily observe that

for both generalized time-reversal symmetries we have 22
= 2̃2

= +I leading to the symmetry
class BDI⊕BDI. Note that in [26, 27] it was shown that, up to a spatially dependent unitary
transformation, the model of equation (44) is equivalent to the MF-wire model of equation (18)
with the latter belonging to the symmetry class BDI. However, as we showed here the particular
system in the general case M Q

x 6= M Q
z belongs to class BDI ⊕ BDI. It is straightforward to

demonstrate that the two pictures agree with each other. By performing the transformation
Ĥrot( p̂x)=3†Ĥrot( p̂x)3 with 3= (ρzσz + σy)(ρy + ρz)/2 we obtain

Ĥrot( p̂x)=

[
p̂2

x

2m
+
(h̄q)2

2m
−µ

]
τz + ṽ p̂xτzρy + M Q

x τzρz − M Q
z τzρzσz −1τyρyσz. (46)

As anticipated, the above Hamiltonian is block diagonal and if we introduce the eigenstates
σ = ±1 of σz in the rotated frame, we obtain

Ĥrot
σ ( p̂x)=

[
p̂2

x

2m
+
(h̄q)2

2m
−µ

]
τz + ṽ p̂xτzρy +

(
M Q

x − σM Q
z

)
τzρz − σ1τyρy. (47)
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Figure 5. Exchanging MFs in real space leads to a protected single topological
qubit rotation termed braiding. In qubit space, this corresponds to a gate
operation where the qubit states pick up a relative π/2 phase.

Remarkably, each of the above block Hamiltonians is identical to the MF-wire Hamiltonian of
equation (18) with effective chemical potential µ− (h̄q)2/2m, spin–orbit coupling strength ṽ,
Zeeman field M Q

x − σM Q
z and superconducting order parameter σ1. Each of the blocks will be

in the topologically non-trivial phase when the criterion

|M Q
x − σM Q

z |>

√[
µ− (h̄q)2/2m

]2
+12 (48)

is satisfied in complete analogy to equation (19). We observe that the two sub-systems are not
necessarily in the topologically non-trivial phase, at the same time. Evenmore, if we consider
M Q

x =M Q
z as in prior studies [26, 27], only one of the sub-systems can be in the topologically

non-trivial phase. In this case, the system effectively behaves as a class BDI TSC and this is
in accordance with the previous analytical findings. Note that as long as the translationally
invariant Hamiltonian is a good approximation and the boundary potential builds up spatially
within a length much smaller that 1/q , the hidden symmetry will be preserved and the multiple
edge MFs are expected to be observed when M Q

x 6= M Q
z .

8. New topological quantum computing perspectives in a TSC with unitary
discrete symmetries

For the cases that we considered in this work, hidden symmetry involved a specific behaviour
under translations. However, this type of symmetry is fragile and can be completely broken
when boundaries are introduced. Nevertheless, one could look for alternative, robust and
tunable, hidden symmetries that are related to some internal degree of freedom such as a valley,
orbital or band index.

Let us now discuss new routes that open up for TQC when we consider the additional
presence of a hidden unitary discrete symmetryOu. Generally, two edge MFs γa and γb combine
into a zero-energy fermion d = (γa + iγb)/

√
2 that leads to a doubly degenerate ground state |1〉

and |0〉. These two states correspond to many-body ground states where the zero-energy fermion
is occupied or not, respectively. The Hilbert space spanned by these two degenerate states
defines a topological qubit which is in principle [13] protected by decoherence due to the non-
local binding of the MFs. The fundamental and in fact the only allowed topologically protected
single qubit operation which we may perform is called braiding [11, 12] and corresponds to
exchanging the two MFs in real space figure 5. After braiding is effected the states |1〉 and |0〉

become eiπ/4
|1〉 and e−iπ/4

|0〉, picking up a relative π/2 phase. For a counterclockwise rotation,
braiding corresponds to the transformation γa → +γb and γb → −γa while for a clockwise
rotation we obtain the inverse transformation γa → −γb and γb → +γa [12].
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Figure 6. Allowed topologically protected operations for two topological qubits
± corresponding to the ±1 eigenvalues of a unitary hidden symmetry operator
Ou satisfying O2

u = I. The standard braiding operations A and B describe single
qubit operations. C and D correspond to operations in the joint qubit space. In
operation C, the ± pairs of MFs are braided in the same direction while in case
D in the opposite.

For a system that supports a single MF per edge, the emergence of a unitary discrete
symmetry Ou with O2

u = I , can lead to an additional MF per edge. The two MFs per edge
are labelled by the ±1 eigenstates of Ou, leading to the following four edge MFs γa± and
γb±. With the latter, we can define two zero-energy fermions d± = (γa± + iγb±)/

√
2 and two

topological qubits with states {|1+〉, |0+〉} and {|1−〉, |0−〉}. The accessible protected non-Abelian
operations that we may perform within this four-fold degenerate Hilbert space are restricted by
the simultaneous conservation of fermion parity andOu. Essentially, the possible operations are
combinations of simultaneous or separate clockwise and counterclockwise braiding operations
in each of the topological qubit spaces. Specifically, we have the following four operations:

A : {|1+〉, |0+〉, |1−〉, |0−〉} → {eiπ/4
|1+〉, e−iπ/4

|0+〉, |1−〉, |0−〉}, (49)

B : {|1+〉, |0+〉, |1−〉, |0−〉} → {|1+〉, |0+〉, eiπ/4
|1−〉, e−iπ/4

|0−〉}, (50)

C : {|1+〉, |0+〉, |1−〉, |0−〉} → {eiπ/4
|1+〉, e−iπ/4

|0+〉, eiπ/4
|1−〉, e−iπ/4

|0−〉}, (51)

D : {|1+〉, |0+〉, |1−〉, |0−〉} → {eiπ/4
|1+〉, e−iπ/4

|0+〉, e−iπ/4
|1−〉, e+iπ/4

|0−〉}, (52)

presented in figure 6. The operations A and B correspond to braiding operations effected
only on the + or the − topological qubits. These are single qubit operations. In contrast,
if we effect braiding simultaneously in both qubits spaces we have two options. Either the
direction of braiding is the same or opposite. These two possible topologically protected
operations in the joint qubit space are described by the C and D configurations. The above set of
protected operations do not suffice for performing universal TQC due to the Ising nature of the
MFs [11, 66]. Nevertheless, the presence of the additional topological qubit on the same wire can
be useful for performing braiding operations. So far, several methods for performing braiding
have been proposed, including networks of topological wires [1, 67] where neighbouring MFs
can be controllably coupled in order to perform a MF exchange. In the present case, the
additional Ou protected MFs can constitute a reservoir of MFs that could reduce the number of
complementary wires that one needs for performing adiabatic operations using these protocols.
In addition, the presence of the extra pair of MFs can be also prominent for creating phase

New Journal of Physics 15 (2013) 105027 (http://www.njp.org/)

http://www.njp.org/


24

gate operations. A standard theoretical proposal [11] for implementing a phase gate for two
separated MFs, prescribes to bring the MFs to a finite distance in order to let them hybridize
into a finite energy fermionic state. Due to the time evolution of the finite energy state, a phase
gate operation will be implemented on the topological qubit when the MFs reseparate. In the
presence of a hidden symmetry Ou, one does not have to change the distance of the MFs any
more. By controllably switching off the hidden symmetry Ou, one hybridizes the two MFs of
the same edge, for instance γa±, so to end up with a single MF. Depending on the details of the
hidden symmetry breaking and restoration procedures, one may retrieve a phase gate operation.
Of course a detailed investigation of these possibilities is required.

The alternative TQC routes described above depend delicately and crucially on the
robustness of this hidden symmetry. As we have already mentioned, it is desirable to find
a system that has a hidden symmetry related to a degree of freedom such as a band index.
For example, in the case of a two-band topological SC where only intraband matrix elements
appear in the Hamiltonian, the system splits into two irreducible sub-systems similarly to the
situation described above. As a matter of fact, multiband systems such as the Fe-based high-
Tc SCs [68], offer a promising way out. The latter materials are supposed to exhibit intra-
band superconductivity (usually a four-band [69] or a five-orbital [70] picture is adequate) and
consequently we may obtain a number of disconnected sub-systems. If we manage to render
each of these superconducting sub-systems topological, we will be in a position to apply the
TQC protocols discussed in the previous paragraph. Recently, a proposal concerning topological
superconductivity based on iron-based SCs has been put forward [71]. However, in that work
an iron-based SC was used to induce superconductivity by proximity effects on a Rashba-
semiconductor. Instead, the situation that I envisage involves intrinsic multiband topological
superconductivity in the iron pnictide SC itself.

9. Conclusion

I have performed a detailed analysis of the accessible TSC phases that can occur
from the combination of inhomogeneous Rashba spin–orbit coupling, magnetic order and
superconductivity. By exploring the landscape of the possible topological phases I proposed
new systems prominent for realizing MFs, based on Rashba spin–orbit coupling and T
violating superconductivity, without the demand for any kind of magnetic order. Specifically,
I explicitly demonstrated the emergence of MFs in a platform consisting of two coupled single
channel Rashba semiconducting wires deposited on top of a Josephson junction fabricated
by conventional SCs. Moreover, I pinpointed the significance of emergent unitary and anti-
unitary hidden symmetries and revealed the topological implications that they lead to. Finally,
I discussed alternative TQC pathways that open up in the presence of a unitary hidden
symmetry and suggested that Fe-based multiband SCs could be a potential candidate for these
implementations.
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