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Abstract. Identical particles exhibit correlations even in the absence of
inter-particle interaction, due to the exchange (anti)symmetry of the many-
particle wavefunction. Two fermions obey the Pauli principle and anti-bunch,
whereas two bosons favor bunched, doubly occupied states. Here, we show
that the collective interference of three or more particles leads to much more
diverse behavior than expected from the boson–fermion dichotomy known
from quantum statistical mechanics. The emerging complexity of many-particle
interference is tamed by a simple law for the strict suppression of events in the
Bell multiport beam splitter. The law shows that counting events are governed
by widely species-independent interference, such that bosons and fermions can
even exhibit identical interference signatures, while their statistical character
remains subordinate. Recent progress in the preparation of tailored many-particle

5 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

New Journal of Physics 14 (2012) 093015
1367-2630/12/093015+20$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:tichy@phys.au.dk
http://www.njp.org/
http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0


2

states of bosonic and fermionic atoms promises experimental verification and
applications in novel many-particle interferometers.
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1. Introduction

The symmetrization postulate enforces the (anti)symmetrization of the bosonic (fermionic)
many-particle wavefunction [1] and thereby severely restricts the set of accessible states for
indistinguishable particles. When one postulates that each microscopic state is populated with
equal probability [2], the resulting statistical physics of bosons, fermions and distinguishable
particles significantly differs, as directly observed in two-point correlation functions. The latter
reveal bunching of bosons [3, 4] and the opposed anti-bunching of fermions [5–7], which
can also be directly compared in a single setup [8]. The differences between the species
is often ascribed to a rather universal character and is said to be rooted in many-particle
interference [7–9]. However, the states that are prepared in such many-body experiments are
thermal, such that only the statistical behavior of bosons and fermions is probed and no coherent
many-particle interference crystallizes out, as we will explain further down.

As a prominent example of such many-particle interference, and in only ostensible
agreement with the statistical behavior of many bosons, two single photons exhibit the
Hong–Ou–Mandel [10] effect: two indistinguishable photons that fall simultaneously onto the
input modes of a beam splitter with reflectivity 1/2 always bunch and leave the setup together.
Fermions behave in the opposite way; the Pauli principle enforces them to anti-bunch and to
choose distinct output modes [11]. Also for more than two photons, bosonic effects boost the
probability to find all particles in one output mode [12–15]. Many-particle interferences thus
seem to boil down to a behavior that is familiar from statistical physics.

Here we falsify this popular view and show that scattering events with many particles and
many modes give rise to much richer many-particle interference phenomena than intuitively
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expected from few-particle interference and quantum statistical mechanics. The behavior of
bunched bosons and anti-bunched fermions, which was also presumed to dominate many-
particle interference [16], is widely insufficient for understanding the coherent behavior of
many particles, since interference overshadows the overall picture. In particular, bosonic and
fermionic interference effects are not necessarily opposed to each other, but fermions can
experience fully destructive interference in the very same way bosons do. Only when the
purity of the initial state is destroyed do many-particle interference patterns vanish, and smooth,
familiar, bosonic or fermionic behavior is recovered.

We establish our results by theoretically comparing the scattering of distinguishable
particles to bosons and fermions in a setup with many modes. Particles are initially prepared
in n input modes; they then scatter off a common potential, such that each particle ends in
a coherent superposition of the n output modes. The probability for a counting event, i.e. for
an event with a certain number of particles in each output mode, then reflects many-particle
interference of bosons and fermions, when contrasted with distinguishable particles, for which
usual combinatorial laws apply. Our system of n input and n output modes can be realized with
multiport beam splitters for photons [17] or by an appropriate sequence of tunneling couplings
in experiments with ultracold atoms in optical lattices [18, 19]. The distinguishability of the
particles can be achieved by misaligning the path lengths for photons or by populating different
internal hyperfine states for cold atoms. Given the recent breakthroughs in the control and
measurement of single optically trapped atoms [18, 20–22], the experimental verification of
the coherent collective behavior of many particles, which we will show to heavily contrast with
the familiar established statistical effects, is within reach.

2. Framework

2.1. Single-particle evolution

For our focus on many-particle interference, we exclude any interparticle interaction. The many-
particle behavior can then be inferred from the single-particle time evolution by appropriately
summing the emerging many-particle amplitudes or probabilities. Under the action of the
single-particle time-evolution operator Û , an input state |φa

j 〉 evolves into a superposition of
output states |φb

k 〉,

Û |φa
j 〉 =

n∑
k=1

U j,k |φb
k 〉 (1)

where a (b) refers to input (output) modes, and j (k) is the respective mode number; the first
(second) index of any scattering matrix refers to the input (output) mode. The probability

p j,k = |U j,k|
2 (2)

for a particle in the j th input mode to reach the kth output mode contains all occurring
double-slit-like single-particle interference. For identical particles, it is useful to work in second
quantization: the creation operators â†

j and b̂†
j for particles in the input and output modes,

respectively, inherit the relationship (1),

â†
j →

n∑
k=1

U j,k b̂†
k, (3)
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which is valid for both fermions and bosons. The behavior of many-particle states is governed
by the (anti)commutation relations for the creation and annihilation operators for (fermions)
bosons.

2.2. Particle arrangements

Initially, N particles are prepared in the n input modes, with r j particles in the j th mode,
i.e.

∑n
j=1 r j = N . We denote such an arrangement of particles in the modes by a unique input

mode occupation list Er = (r1, . . . , rn) of length n. For distinguishable particles, the specification
of the particle arrangement leaves the freedom to distribute the (labeled) particles among the
input modes in several different ways. Without restriction of generality, we choose the initial
state

|9 in
〉D =

n
⊗
j=1

(
r j

⊗
k=1

|φa
j 〉

)
, (4)

in the first-quantization formalism. For bosons and fermions, the specification of a mode
occupation list Er fully specifies the initial quantum state,

|9 in
〉F/B =

n∏
j=1

(â†
j)

r j√
r j !

|0〉 , (5)

in the second-quantization formalism, where |0〉 denotes the vacuum.
After time evolution according to (1) and (3), respectively, the number of particles in each

output mode is measured. Events are characterized by the corresponding particle arrangement
defined by the output mode occupation list Es = (s1, s2, . . . , sn), where again

∑n
j=1 s j = N .

It is convenient to define for each (input or output) arrangement Eq an alternative notation
Ed( Eq), the mode assignment list. The list is of length N , with entries that specify the origin or
destination of each particle. It is constructed by concatenating q j times the mode number j :

Ed( Eq) =
n
⊕
j=1

q j

⊕
k=1

( j) = (1, . . . , 1︸ ︷︷ ︸
q1

, 2, . . . , 2︸ ︷︷ ︸
q2

, . . . , n, . . . , n︸ ︷︷ ︸
qn

). (6)

The relationship between mode occupation and mode assignment lists is exemplified in figure 1.
Particle arrangements with cyclic symmetry will play an important role in our subsequent

treatment. For any integer m that divides n, we define an arrangement Eq of N particles to be m-
periodic if it consists of p = n/m repetitions of a pattern Ek of length m, with

∑m
j=1 k j = N/p.

The mode occupation list thus reads as

Eq = (k1, k2, . . . , km︸ ︷︷ ︸, k1, . . . , km︸ ︷︷ ︸, . . . , k1, . . . , km︸ ︷︷ ︸︸ ︷︷ ︸
p=n/m

), (7)

while the mode assignment list Ed( Eq) satisfies

∀ j : d j+N/p( Eq) = d j( Eq) + m, (8)

where we identify dN+ j ≡ d j and d j ≡ d j + n. For example, the arrangement Eq =

(2, 1, 0, 5, 0, 2) exhibits no periodicity, and m = n = 6, p = 1; the strongest symmetry is
exhibited by an arrangement with ∀ j : q j = r1, such as, e.g., Eq = (4, 4, 4, 4, 4), for which
p = n = 5, m = 1.
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U1,1U1,2U4,3

σ = (1, 2, 3) σ = (1, 3, 2)

U1,1U1,3U4,2

σ = (2, 3, 1)

U1,2U1,3U4,1

A1

A2

A3

(a) (b)

Figure 1. Many-particle paths and single-particle analogy. (a) The mode
occupation list of the initial (upper) arrangement reads Er = (2, 0, 0, 1); the
equivalent mode assignment list is Ed(Er ) = (1, 1, 4), see equation (6). The final
arrangement is characterized by Es = (1, 1, 1, 0) and Ed(Es ) = (1, 2, 3). While there
can be up to 3! = 6 paths in total, the permutation of two particles in the
same mode leaves a path invariant, such that there are 3!/2 = 3 inequivalent
paths here. Each one corresponds to a permutation σ of Ed(Es ), and connects
the arrangements. The many-particle (path) amplitudes are the corresponding
products of single-particle amplitudes, given here below the respective paths.
They are summed for all possible permutations in equations (10) and (14) to
give the full transition probability and amplitude, respectively. (b) Single-particle
analogy: a single particle can pass through three slits, which correspond to three
distinct complex amplitudes. Again, the initial and final states are connected
through three single-particle paths.

2.3. Transition probabilities

Signatures of many-particle interference appear in the transition probability,

PD/B/F(Er , Es; U ), (9)

for an input arrangement Er , to an output arrangement Es, given the single-particle evolution U .
Bosons (B) and fermions (F) can thus be compared to distinguishable particles (D).

For the latter, the probability to find the final arrangement Es is obtained combinatorially by
taking into account all possibilities to distribute the particles among the output modes, given the
single-particle probabilities p j,k in equation (2):

PD(Er , Es; U ) =

∑
σ∈SEd(Es )

N∏
j=1

pd j (Er ),σ ( j), (10)

where SEd(Es ) denotes the permutations of the output mode assignment list Ed(Es ). We define the
N × N matrix

M j,k = Ud j (Er ),dk(Es ), (11)

such that

PD(Er , Es; U ) =
1∏n

j=1 s j !
perm(|M |

2), (12)
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where the absolute square is understood to be taken component-wise and perm(|M |
2) denotes

the permanent of |M |
2 [23, 24]. Each summand in (10) represents one way to distribute the

particles among the output modes with sk particles in the kth mode. Each possibility corresponds
to a many-particle path as illustrated in figure 1(a).

For indistinguishable particles, all many-particle paths contribute coherently to the final
state, and their amplitudes need to be summed, such that

PB/F(Er , Es; U ) =

∏
j s j !∏
j r j !

∣∣∣∣∣∣
∑

σ∈SEd(Es )

sgnB/F(σ )

N∏
j=1

Ud j (Er ),σ ( j)

∣∣∣∣∣∣
2

, (13)

where sgnB(σ ) = 1 and sgnF(σ ) = sgn(σ ) allows for the fermionic anti-commutation relation.
The transition amplitudes for bosons (fermions) can be re-written as the permanent
(determinant) of M :

PB(Er , Es; U ) =
1∏

j r j !s j !
|perm(M)|2 , (14)

PF(Er , Es; U ) = |det(M)|2, (15)

in close analogy to (12).

2.4. Single-particle analogy

An analogy between coherent and incoherent many-particle processes with the corresponding
single-particle phenomena is suggestive: consider a single particle that can pass through M
distinct slits to fall onto a chosen point on a screen, as sketched in figure 1. If the time evolution
is coherent, i.e. if the path taken by the particle is not observed, the amplitudes of the M paths
are summed, just like in equation (13). The probability to observe the particle reflects changes in
the relative phases of the superimposed path amplitudes. Since the phases that are accumulated
between each slit and the observation point can be, in principle, adjusted independently, fully
destructive or strongly constructive interference can be induced. If the time evolution, instead,
occurs in an incoherent way, because, e.g., the path information has leaked to the environment,
the respective path probabilities need to be added and the dependence on the accumulated
phases vanishes, similarly to equation (10).

In the many-particle situation, we deal with a total of

N D
arr = N B

arr =

(
N + n − 1

n − 1

)
=

(N + n − 1)!

(n − 1)!N !
(16)

distinct particle arrangements for bosons or distinguishable particles, and

N F
arr =

(
n

N

)
=

n!

N !(n − N )!
, (17)

fermionic arrangements, i.e. the number of possible counting events rapidly grows with the
number of particles and modes. Again, the variation of the phases that are accumulated by
the particles can be monitored by the many-particle event probabilities PB/F given in (13). In
contrast to the single-particle scenario, the up to N ! different many-particle amplitudes that
enter (13) are not independently adjustable, since they are all given by products of single-particle
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matrix elements U j,k . Therefore, the behavior of many-particle scattering systems of moderate
size (N ≈ n ≈ 10) already presents a challenge, which is aggravated by the large number of
events (16) and (17).

The aforementioned scaling argument also immediately exposes the main challenge for the
exploitation of many-particle interference: for fermions, the Pauli principle implies that N 6 n,
and M , given in (11), is a submatrix of U . Transitions are thus suppressed when M is singular,
according to equation (15) that relates the transition amplitude to the determinant of M . For
bosons, the permanent of M governs the behavior, for which no analogous criterion for its
vanishing exists [25]. For distinguishable particles, we face the permanent of a positive matrix
in equation (12), which can be approximated efficiently [26]. The design of a setup that exhibits
strong and controlled many-particle interference is thus, in general, much more involved than
in the single-particle case.

3. Suppression law

A systematic assessment of many-particle interference becomes possible by imposing
symmetries on the scattering setup. We therefore focus on the Bell multiport beam splitter [27],
which is described by an unbiased scattering matrix in the sense that all single-particle
probabilities are equal, |Uk,l |

2
= pk,l = 1/n [28]. The scattering matrix describes a discrete

Fourier transformation(
U Fou

n

)
j,k

=
1

√
n

ei 2π
n ( j−1)(k−1). (18)

The phase that a particle acquires thus depends on the input and the output mode, and can
only assume a multiple of 2π/n. In this setup, we expect a large visibility in the sense that
fermionic/bosonic probabilities strongly differ from their counterparts with distinguishable
particles, since many amplitudes of equal modulus but of different phase are added in
equation (13). For distinguishable particles, equation (10) gives a purely combinatorial
expression

PD(Er , Es; U Fou) =
N !

nN
∏n

j=1 s j !
, (19)

i.e. events occur with probabilities according to a multinomial distribution [23], which
generalizes the binomial distribution found for a two-mode beam splitter [29].

For bosons and fermions, the evaluation of the transition amplitude (13) is, in general, not
significantly simpler for the highly symmetric matrix (18) than for the general case [30]. As a
result of (U Fou)−1

= (U Fou)∗, we can, however, exploit an input–output symmetry:

PB/F(Er , Es; U Fou
n ) = PB/F(Es, Er; U Fou

n ). (20)

Additionally, arrangements that can be related to each other by a cyclic permutation or by
reversing the mode order are equivalent, i.e. the application of these transformations to the
initial or final state does not change any event probability.

Combining the symmetry properties of the Fourier matrix (18) for m-periodic
(i.e. cyclically symmetric) initial or final arrangements, as introduced in equations (7) and (8),
we can formulate a sufficient criterion for the occurrence of fully destructive interference and
thus for the strict suppression of a transition Er ↔ Es, which very considerably generalizes the
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results for N bosons that are prepared in Er c = (1, 1, . . . , 1) and transmitted through an N -port
beam splitter [16, 31].

For bosons, given an m-periodic initial state Er , the final states Es are suppressed when the
sum of the elements of their mode assignment list, Ed(Es ), multiplied by the period length of the
initial state, m, cannot be divided by n, i.e.

mod

m
N∑

j=1

d j(Es ), n

 6= 0 ⇒ PB(Er , Es; U Fou) = 0. (21)

For fermions, the anti-commutation relation leads to behavior that depends on the parity of
the number of particles:

• Nodd, or N/p even:

mod

m
N∑

j=1

d j(Es ), n

 6= 0 ⇒ PF(Er , Es; U Fou) = 0. (22a)

• N even and N/p odd:

mod

m
N∑

j=1

d j(Es ), n

 6=
n

2
⇒ PF(Er , Es; U Fou) = 0, (22b)

where n is even provided that N is even and N/p is odd. The proof for the suppression law is
given in the appendix. Intuitively speaking, equations (21) and (22) formalize the observation
that amplitudes of equal modulus but different phase annihilate each other when they are
distributed in an equally spaced way on a circle around the origin in the complex plane.

The suppression laws (21) and (22) circumvent the inherent complexity of expression (13):
even for very large particle numbers, the suppression of an event can be predicted easily, whereas
the computation of the permanent (14) is computationally hard and thus practically not feasible
for combinations of large N and n. For fermions, the determinant (15) is computationally less
expensive than the permanent, but the suppression law (22) still offers a significant speedup: the
evaluation of the determinant (15) by the LU decomposition of the matrix into a lower and an
upper triangular matrix [32] scales with N 3, while (22) scales linearly with N . The suppression
law also encompasses several other criteria for the suppression of bosonic events in the literature
as special cases [16, 29, 31, 33, 34]. It does not give, however, a necessary criterion: it is possible
to arrange amplitudes in the complex plane such that they cancel each other, while they do not
lie on a circle.

Formally, the suppression of events given a cyclically symmetric initial state can be
interpreted as the manifestation of periodicity of the initial state in its Fourier transformation,
given by equation (18). Very distinct initial states that share the same periodicity exhibit the
same strict suppression among the final states. This reflects their shared periodicity, whereas the
information on the exact constitution of the arrangement is contained in the unsuppressed states.
The single-particle transformation that corresponds to the Fourier matrix can also be seen as the
transformation to the quasi-momentum basis [35], and the quasi-momentum distribution can be
probed [36] to characterize the phase of a gas.
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4. Scattering of bosons

With a scenario of N = 6 bosons in an n = 6 mode setup, we exemplify the impact of
many-particle interference and of the suppression law (21). An overview of the system is
given in figure 2, where the quantum enhancement, i.e. the bosonic probability PB(Er , Es; U Fou

6 )

(equation (14)) divided by the classical probability PD(Er , Es; U Fou
6 ) (equation (19)), is displayed.

Constructive many-particle interference thus leads to a quantum enhancement larger than
unity (reddish colors), whereas a value smaller than unity (bluish colors) indicates destructive
interference. Fully suppressed events are marked in black (green) when they are (not) predicted
by the suppression law (21).

The arrangements are ordered according to their occupancy, such that final (initial)
arrangements with many particles in a few modes are found on the left (upper) part of the
plot. Arrangements that can be related to each other via cyclic permutation or inverse are
omitted (they lead to identical transition probabilities), such that 50 arrangements remain. Initial
states with a period (marked with a red arrow) lead to many fully suppressed transitions due to
the suppression law, whereas the remaining unsuppressed events are, consequently, typically
enhanced.

A coarse-grained trend emerges: events with a few, highly occupied modes (on the
left side) tend to be enhanced; events for which the particles are well distributed over the
modes (on the right side) are rather suppressed. A closer look reveals that this average
trend has many exceptions: suppressed transitions can be found within the events with
many particles in a few modes, and enhanced transitions with many occupied modes
appear; fully destructive interference occurs within the highly and within the sparsely
occupied arrangements. In general, the behavior of an event is sensitive to the exact state
preparation and to the final state configuration: shuffling one particle into a neighboring
mode often turns constructive interference into destructive, and vice versa. Similarly, the
interference pattern shown in figure 2 strongly depends on the phases of the matrix (18).
Phase variations immediately impact on all transition amplitudes besides singular cases
when only one many-particle path is possible, such as for the initial or final state
(6, 0, 0, 0, 0, 0).

4.1. Mixed initial states and the emergence of bosonic behavior

The interference effects in figure 2 are sensitive to the loss of indistinguishability of the
particles. When the latter is no longer ensured, the interference capability of the many-particle
wavefunction is jeopardized, such that the resulting transition probabilities eventually approach
those for distinguishable particles [37].

The interference pattern also depends on the coherence of the many-particle wavefunction,
i.e. on the purity of the initial state and on the coherence of the time evolution. In order to see
this, we consider a state in which the individual particles are still fully indistinguishable, while
they are prepared in a mixture of all possible nonequivalent arrangements (i.e. arrangements
that cannot be related to each other via cyclic symmetry),

ρmix =
1

N B
arr

∑
Er

|9(Er )〉 〈9(Er )| , (23)

New Journal of Physics 14 (2012) 093015 (http://www.njp.org/)

http://www.njp.org/


10

r

s

r

(0,0,0,0,0,6)
(0,0,0,0,1,5)
(0,0,0,1,0,5)
(0,0,1,0,0,5)
(0,0,0,0,2,4)
(0,0,0,2,0,4)
(0,0,2,0,0,4)
(0,0,0,0,3,3)
(0,0,0,3,0,3)
(0,0,3,0,0,3)
(0,0,0,1,1,4)
(0,0,0,1,4,1)
(0,0,1,0,1,4)
(0,0,1,0,4,1)
(0,0,1,1,0,4)
(0,1,0,1,0,4)
(0,0,0,1,2,3)
(0,0,0,1,3,2)
(0,0,0,2,1,3)
(0,0,1,0,2,3)
(0,0,1,0,3,2)
(0,0,1,2,0,3)
(0,0,1,3,0,2)
(0,0,2,0,1,3)
(0,0,2,1,0,3)
(0,1,0,2,0,3)
(0,0,0,2,2,2)
(0,0,2,0,2,2)
(0,2,0,2,0,2)
(0,0,1,1,1,3)
(0,0,1,1,3,1)
(0,1,0,1,1,3)
(0,1,0,1,3,1)
(0,1,1,0,1,3)
(0,1,1,1,0,3)
(0,0,1,1,2,2)
(0,0,1,2,1,2)
(0,0,1,2,2,1)
(0,0,2,1,1,2)
(0,1,0,1,2,2)
(0,1,0,2,1,2)
(0,1,1,0,2,2)
(0,1,1,2,0,2)
(0,1,2,0,1,2)
(0,1,2,0,2,1)
(0,1,2,1,0,2)
(0,1,1,1,1,2)
(0,1,1,1,2,1)
(0,1,1,2,1,1)
(1,1,1,1,1,1)

10 20 30 40 50

10

20

30

40

50

10 20 30 40 50

Final arrangement

In
iti

al
 a

rr
an

ge
m

en
t

10-2 7200 0 1
PB(r, s;UFou6 )
PD(r, s;UFou6 )

Figure 2. Many-boson interference in a setup with N = 6 bosons and
n = 6 modes. The color coding indicates the quotient of the probability for
bosons, PB(Er , Es; U Fou), equation (14), to the classical probability PD(Er , Es; U Fou),
equation (19), as a function of the input state Er and of the output state Es. The
input and output configurations are arranged in the same order. Black fields
denote transitions that are suppressed due to the suppression law (21), while
green fields represent suppressed events that are not predicted by the law. One
can identify the periodic initial and final states (marked with red arrows) as the
black horizontal and vertical structures. For the initial states Er = (0, 0, 3, 0, 0, 3)

and Er = (0, 1, 2, 0, 1, 2), the same final arrangements Es are suppressed, since
the suppression law only depends on the period length of the initial state. As
an exception, the transition Er = (0, 1, 2, 0, 1, 2) to Es = (0, 2, 0, 2, 0, 2) is sup-
pressed, whereas for Er = (0, 0, 3, 0, 0, 3), it is not. This is rooted in the period
of Es = (0, 2, 0, 2, 0, 2), m = 2, and 2

∑
j d j((0, 1, 2, 0, 1, 2)) = 50 6= 0 mod 6,

New Journal of Physics 14 (2012) 093015 (http://www.njp.org/)

http://www.njp.org/


11

Figure 2. (Continued) i.e. the transition is suppressed owing to the reverse of the
law, which is obtained by exchanging the input and output states. The behavior
of Er = (0, 0, 3, 0, 0, 3) and (0, 1, 2, 0, 1, 2) for the remaining, unsuppressed
transitions differs strongly. The first line (marked by a blue arrow) corresponds
to the initial state Er = (0, 0, 0, 0, 0, 6), which does not exhibit any interference
effects, since all particles are initially in the same single-particle state and
no competing many-particle paths with different phases arise. A hierarchy of
initial states can be observed for the final state Es = (0, 0, 0, 0, 0, 6) (outmost left
column): the more spread out the particles are in the input modes, the stronger
the enhancement of the final state due to bosonic bunching.

where N B
arr is the total number of arrangements given by equation (16). The probability for a

final arrangement Es for ρmix amounts to

P(ρmix, Es ) =
1

N B
arr

∑
Er

P(Er , Es; U Fou
6 ) = 〈P(Er , Es; U Fou

6 )〉Er , (24)

i.e. to the transition probability averaged over the nonequivalent initial states Er . The interference
effects that govern the behavior for each pure initial state Er are averaged out for Eρmix, and all
final arrangements become approximately equally probable; we expect

〈P(Er , Es; U Fou
6 )〉Er ≈ PE(Es, U Fou

6 ) :=
1

N B
arr

. (25)

We verify this statistical argument by comparing the event probability for distinguishable
particles, PD(Es; U Fou), the probability for bosons prepared in the arrangement Er c =

(1, 1, 1, 1, 1, 1), the estimated probability PE and the probability given the mixed initial state
ρmix in figure 3. When the particles are prepared in Er c, i.e. in a pure state, the system
exhibits interference, and the resulting event probabilities strongly differ from the combinatorial
value (19) for distinguishable particles. In comparison with the latter, events with many
particles per mode (left side) are enhanced, events with many occupied modes (right side)
are rather suppressed in the equiprobable distribution PE given in equation (25). Finally, the
probability distribution for the state ρmix, equation (24), matches PE very well, which confirms
the approximation (25). Due to the mixed preparation of the particles, no interference pattern
can crystallize for ρmix, and only average, bosonic behavior remains.

In other words, we recover the well-known statistical behavior of bosons when the purity
of the initial state is destroyed, while the behavior of distinguishable particles emerges when the
indistinguishability of the particles is lost.

5. Boson–fermion comparison

When we restrict ourselves to the initial and final states with at most one particle per mode,
which we name Pauli states in the following, we can compare distinguishable particles, bosons
and fermions.

In any setup with two particles, exactly two two-particle paths contribute to the total
transition amplitude between any initial and any final Pauli state, which is reflected by the two
terms in the sum (13). The two amplitudes are summed for bosons and subtracted for fermions,
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Figure 3. Behavior of pure and mixed states of N = 6 bosons that are scattered
in an n = 6 mode setup. We show the probability for final arrangements Es,
arranged in the same order as in figure 2, for distinguishable particles, PD

(blue circles, dotted line, equation (19)), for the equiprobable distribution
PE = 1/N B

arr (black squares, solid line, equation (25)), for the mixed state
of bosons ρmix (equation (23)) to which all possible initial arrangements
contribute with the same weight, i.e. 〈PB(Er , Es; U Fou

n )〉Er (red diamonds, dash-
dotted line, equation (24)), and for bosons that are prepared in the initial state
Er c = (1, 1, 1, 1, 1, 1), PB(Er c, Es; U Fou

6 ) (green triangles, dotted line). Since we
group each arrangement Es together with its cyclically permuted and mirrored
counterparts, PE(Es ) is not a constant, but it reflects the multiplicity of equivalent
arrangements. The trend to favor arrangements with large populations is visible
by comparing the probability for distinguishable particles PD to the estimate PE,
which favors multiply occupied states. The exact calculation for bosons in Er c,
however, does not exhibit this trend at all, and the picture is dominated by many-
particle interferences. Only when the mean over the initial states is performed,
as in equation (23), do we lose many-particle interference and recover a clear
bosonic bunching tendency, reflected by the values of ρmix.

which leads to antipodal behavior. For three or more particles, however, more paths contribute
to the amplitude in (13), and no dichotomy is observed.

Indeed, when we focus on the Fourier matrix (18), the very same transitions are predicted
to be suppressed for an odd number of bosons and fermions, according to equations (21)
and (22a). This emphasizes that our criterion for destructive interference does not rely on the
(anti)commutativity of (fermionic) bosonic operators, but rather on the coherent superposition
of many-particle paths.

At first sight, it seems that the suppression law for even particle numbers and odd
N/p (22b) predicts antipodal behavior of bosons and fermions. For exactly two particles,
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any arrangement with cyclic symmetry has indeed m = n/2, p = 2, and transitions that are
suppressed for bosons are enhanced for fermions, and vice versa. In general, transitions with

Q := mod

m
n∑

j=1

d j(Es ), n

 ∈ {0, n/2} (26)

are only suppressed for one species and not necessarily for the other. For large n, however, most
transitions naturally lead to values of Q different from 0 and n/2. Consequently, fermions and
bosons also share many suppressed events for even particle numbers, unless N = 2.

5.1. Mean bosonic and fermionic behavior

Despite the similarities between fermionic and bosonic interference, a mean trend for the
probability to yield a Pauli state appears: since events other than Pauli states are strictly
forbidden for fermions, the average probability for Pauli states is enhanced with respect to
distinguishable particles. For bosons, events with higher occupation are favored, and Pauli states
are rather suppressed.

In a Bell multiport with n = 12 modes and N = 4 particles, we find this tendency:
the probability for a Pauli state amounts to 1/864 for distinguishable particles, according to
equation (19). The average fermionic probability is enhanced; it amounts to the inverse of the
number of available states, equation (17), (N F

arr)
−1

= 1/495. For bosons, events with multiple
occupation are privileged; the average probability for a Pauli state becomes ≈7.50 × 10−4,
which is close to the inverse of the number of accessible states, (N B

arr)
−1

= 1/1365 ≈ 7.33 ×

10−4.
From this general trend, however, no systematic statement can be inferred for the individual

transitions, which are displayed in figure 4: no anti-correlation between fermionic and bosonic
behavior is visible, and the correlation coefficient between the enhancement or suppression of
fermionic/bosonic events amounts to only −0.05. The enhancement of a fermionic transition
does not imply the suppression of the corresponding bosonic transition.

Decreasing the particle density, i.e. increasing the number of modes n for a constant
number of particles N , has no impact on the strength of interference effects: fully suppressed
and highly enhanced transitions remain, and so does the general impact of many-particle
interference. In turn, the difference between the average bosonic/fermionic behavior fades
away when the number of modes is increased: the quotient of bosonic to fermionic accessible
states, N B

arr/N F
arr, given by equations (16) and (17), approaches unity for n → ∞, and the

average statistics then resembles the combinatorial distribution of distinguishable particles.
This reflects the absence of the Fermi pressure [2] and of bosonic behavior for low-density
systems.

5.2. Mixed initial states

Just like for the case of six bosons discussed above, the transition amplitudes for fermions and
bosons that are prepared in Pauli states depend on the initial pure preparation of the particles:
given a fully mixed state analogous to (23), but restricted to Pauli states, the resulting event
probability approaches a constant value that does not depend strongly on the final arrangement.
Since the indistinguishability of the particles is not jeopardized by the mixedness of the initial
state, the Pauli principle prevails for fermions and so does the average privilege of multiply
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Figure 4. Many-boson (a) and many-fermion (b) interference of N = 4 particles
in an n = 12-mode setup. The color code reflects the quotient of the event
probability for bosons (a) and fermions (b), divided by the average probability to
find a Pauli state. The arrangements are given by their mode assignment list; the
order of the final arrangements is the same as that for the initial arrangements.
Three of the 29 inequivalent states possess a cyclic symmetry. The arrangements
with elementary mode occupation lists Ek = (0, 0, 0, 0, 1, 1) and (0, 0, 0, 1, 0, 1)

have period length m = 6, such that the same transitions are predicted to be
suppressed for bosons and fermions; equations (21) and (22a) apply. In contrast,
the arrangement based on Ek = (0, 0, 1) has period length m = 3. Since N/p = 1,
(22b) applies.

occupied states for bosons. The probability for any final state then approaches the inverse of
the number of states, (N F/B

arr )−1, which were given in equations (16) and (17). The behavior of
bosons and fermions is compared in figure 5, where the loss of interference due to the mixedness
of the initial state is apparent.

In analogy to the bosonic case, the loss of the purity of an initial state of fermions leads to
the loss of interference pattern, while the quantum statistical behavior persists. Only when the
indistinguishability of fermions is jeopardized does the impact of the Pauli principle also fade
away.

6. Conclusions and outlook

The coherent many-particle evolution of noninteracting identical particles is governed by
many-particle interference, with consequences that go far beyond the bosonic (fermionic)
(anti)bunching encountered in incoherent environments. The latter phenomena can be
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Figure 5. Many-boson and many-fermion scattering of pure and mixed states.
The probabilities for final arrangements Es are arranged in the same order as in
figure 4. Bosons (green triangles, dotted line) are compared to fermions (brown
circles, dashed line) for the initial state Ed(Er p) = (1, 4, 7, 10) that corresponds to
the very last line in figure 4. An average is taken over all nonequivalent initial
states, which results in the black squares for fermions and red diamonds for
bosons. It approaches the inverse of the total number of states for fermions (blue
solid line) and bosons (red solid line), respectively.

understood from the postulate that assigns every micro-state the same realization probability [2]
when the specific constraints to bosons and fermions are respected. The (anti)symmetrization,
however, establishes also a many-particle coherence property that leads to the encountered
interference effects, which seldom reproduce the familiar statistical behavior.

Although any many-particle interference setup can be treated by equation (13), the analysis
becomes rather tedious when the numbers of particles and modes are not both small, which
is due to the computational complexity inherent in equations (14) and (15) and also due
to the large number of accessible states, equations (16) and (17). For Bell multiport beam
splitters, we can circumvent these difficulties by exploiting the available symmetries, which
allows the systematic confrontation of many-boson to many-fermion scattering. Since for
any number of particles N and any number of modes n with a nontrivial greatest common
divisor, i.e. GCD(N , n) > 1, nontrivial periodic states of the form (7) can be found, numerous
applications of the suppression laws are possible. We thus have a constructive recipe for many-
particle large-visibility setups at our hands, since events that exhibit destructive interference can
be found for arbitrary system sizes, whereas the explicit evaluation of (13) becomes prohibitive
already for moderate particle and mode numbers. This provides a powerful characterization
toolbox for the indistinguishability of many particles, for the purity of their initial state
preparation and for the many-particle coherence of the time evolution—which are all imperative
properties for quantum technologies.
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The interference patterns shown in figures 2–5 are specific to the Bell multiport, but also
exemplary for any other scattering scenario. Our results suggest a forceful distinction between
quantum statistical effects, i.e. the (anti-)bunching of uncontrolled (fermions) bosons in a
thermal state [8] or in the mixed state (23), and many-particle interference, i.e. the coherent
conspiration of many-particle paths. The former are the consequence of the interplay between
the kinematic constraints and the statistical uncertainty, whereas the latter are jeopardized
by such uncertainty. A many-particle path picture is also applicable in the incoherent case
[8, 9]. However, one then only distils average, incoherent statistical behavior that can also be
understood from the equal a priori probability postulate [2].

To name a further difference, quantum statistical effects fade away with decreasing
particle density, in contrast with many-particle interference. So far, the relevant literature
has concentrated mainly on the evolution of two-particle states [10] and on two-point
correlation functions [5, 8], for which these phenomena appear to be synonymous: the
Hong–Ou–Mandel [10] effect is in ostensible agreement with the bunching behavior of thermal
bosons [3], and also reflects a strong boson–fermion dichotomy [11]. As we have shown,
this ostensibly intuitive picture needs to be abandoned immediately as soon as more than two
particles are considered.

The loss of purity in the initial state leads to deterioration of interference effects and
to recovery of average bosonic or fermionic behavior, while the loss of mutual particle
indistinguishability leads to the combinatorial behavior of distinguishable particles. In general,
decoherence is thus a more diverse and complex phenomenon in the many-particle domain
than in the single-particle realm. It remains to be studied how decoherence processes affect
many-particle interference: we speculate that different mechanisms deteriorate the interference
pattern in different ways, such that one recovers—in the limit of strong decoherence—either the
behavior of fully distinguishable particles [37, 38] or bosonic/fermionic statistical behavior.
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Appendix. Proof of the suppression laws

For bosons and fermions, by inserting the definition of the Fourier matrix (18), we can rewrite
the transition amplitudes (14) and (15) as sums of amplitudes with unit modulus:

PB/F(Er , Es; U Fou) =
1∏n

k=1 rk!sk!

1

nN

∣∣∣∣∣∣
∑
σ∈SN

sgnB/F(σ )exp

i
2π

n

N∑
j=1

dσ( j)(Er ) · d j(Es )

∣∣∣∣∣∣
2

, (A.1)

where sgnB(σ ) = 1 and sgnF(σ ) = sgn(σ ), and we omitted a constant phase 2π/n(N −∑
j(d j(Er ) + d j(Es ))) in the exponent, since it is independent of σ .
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A.1. Bosons

With the definition

2(Er , Es, σ ) =

N∑
j=1

dσ( j)(Er ) · d j(Es ), (A.2)

the probability PB(Er , Es; U Fou) in (A.1) becomes proportional to∣∣∣∣∣∑
σ∈SN

exp

(
i
2π

n
2(Er , Es, σ )

)∣∣∣∣∣
2

. (A.3)

In other words, the natural number 2(Er , Es, σ ) is the total phase that is acquired by the many-
particle wavefunction (in multiples of 2π/n), when one specific many-particle path defined by
σ , from the initial state Er to the final state Es, is realized. Since 2(Er , Es, σ ) is a natural number,
the sum in (A.3) contains only nth roots of unity,

PB(Er , Es; U Fou) ∝

∣∣∣∣∣
n−1∑
k=0

ck ei 2π
n k

∣∣∣∣∣
2

, (A.4)

with ck ∈ N,
∑n−1

k=0 ck = N ! and where the value of ck corresponds to the number of
permutations σ for which mod (2(Er , Es, σ ), n) = k [30]:

uk(Er , Es ) = {σ |2(Er , Es, σ ) = k mod n},
(A.5)

ck = |uk|,

where x = y mod k means that there is an integer number l such that x = lk + y. Hence, the
sets uk group all many-particle paths that acquire the same phase, 2πk/n. Since all moduli of
involved probabilities are equal, these paths possess the same amplitude. It is helpful to define

Q(m, Es ) = mod

(
m

N∑
l=1

dl(Es ), n

)
, (A.6)

and an operation 0 on the permutations σ ,

0(σ)(k) =

(
σ(k) +

N

p

)
mod n, (A.7)

which shifts the permutation σ by the number of particles in each period repetition, N/p. Due
to the m-periodicity of the initial state Er , which implied (8), the value of the total acquired
phase 2(Er , Es, σ ) acquires the constant Q(m, Es ) when the above transformation is applied on a
permutation σ ,

2 (Er , Es, 0(σ )) =

N∑
j=1

d0(σ( j))(Er )d j(Es ). (A.8)

Using (8) and (A.7), we find that

2 (Er , Es, 0(σ )) =

N∑
j=1

d j(Es )dσ( j)(Er ) + m
N∑

j=1

d j(Es )

= 2 (Er , Es, σ ) + Q(m, Es ) mod n. (A.9)
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Thus, if Q(m, Es ) 6= 0, the repeated application of 0 gives us a bijection between all pairs of
ub+a·Q(m,Es ) for b ∈ {0, . . . , n − 1} and a ∈ {0, . . . , n − 1}. Therefore, we have

∀b ∈ {0, . . . n − 1}, ∀a ∈ {0, . . . , n − 1} : cb+aQ(m,Es ) = cb. (A.10)

Since only index values mod n are relevant, all equalities that can be inferred from (A.10) are
contained by the following n equalities:

∀b ∈

{
0, . . . ,

n · Q(m, Es )

LCM (Q(m, Es ), n)
− 1

}
,

(A.11)

∀a ∈

{
0, . . . ,

LCM (Q(m, Es ), n)

Q(m, Es )
− 1

}
: cb+aQ(m,Es ) = cb,

where LCM(x, y) denotes the least common multiple of x and y. Since

LCM (x, y)GCD(x, y) = xy, (A.12)

b can effectively take GCD(Q(m, Es ), n) =: g distinct values, and each cb is equal to n/g − 1
other coefficients cb+aQ(m,Es ). By setting the summation index k in (A.4) to k = b + aQ(m, Es ),
the sum (A.4) can be rewritten as

PB(Er , Es; U Fou) ∝

∣∣∣∣∣
(

g−1∑
b=0

cb ei 2π
n b

)(
n/g−1∑

a=0

ei 2π
n Q(m,Es )·a

)∣∣∣∣∣
2

, (A.13)

where we exploited explicitly (A.10), such that the sum factorizes into two parts. The sum over
a is a truncated geometric series,

l−1∑
j=0

x j
=

1 − x l

1 − x
, (A.14)

with l = n/g and x = ei 2π
n Q(m,Es ). Since x is an nth root of unity and x 6= 1 (since we assumed

Q(m, Es ) 6= 0), (A.14) vanishes and so does (A.13).

A.2. Fermions

In order to adapt the suppression law for fermions, we need to include the signature of the
respective permutation in the sum of the amplitudes (A.1). In analogy to (A.4), we find that

PF

(
Er , Es; U Fou

)
∝

∣∣∣∣∣∣
∑
σ∈SE

N

ei 2π
n 2(Er ,Es,σ )

−

∑
σ∈SO

N

ei 2π
n 2(Er ,Es,σ )

∣∣∣∣∣∣
2

, (A.15)

where we split the sum (A.1) into even permutations SE
N and odd permutations SO

M . We now
need to consider the sets of even (E) and odd (O) permutations with 2(Er , Es, σ ) = k,

uE(O)

b (Er , Es ) = {σ |2(Er , Es, σ ) = b mod n, sgn(σ ) = +1(−1)}, (A.16)

separately. Their respective cardinality is denoted by cE(O)

b = |uE(O)

b |. We also need to infer the
action of 0 on the parity of the permutations.
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A.2.1. Odd particle number N or even N/p. For odd particle numbers N , the application of 0

on a permutation σ does not change its parity: any cyclic permutation on a set of odd size (here
the set of indices {1, . . . , N }, of size N ) is itself an even permutation because it is composed of
the even number N − 1 of (odd) elementary transpositions.

The parity of a permutation also remains unchanged under the application of 0 when the
number of particles N is even and N/p is also even. The application of 0 on a permutation
corresponds to an N/p-fold cyclic shift that is composed by N/p (odd) elementary shifts. Its
parity is therefore even, since N/p is even.

In these two cases, we find that, as for bosons but now independently for even and odd
permutations:

∀b ∈ {0, . . . n − 1} : cE
b+Q = cE

b , cO
b+Q = cO

b . (A.17)

The symmetry property of (A.10) is therefore inherited independently by the even and the odd
permutations. The formulation and consequence of the suppression law consequently remain
unchanged: formally, it states that the even and odd parts of the sum (A.15) both vanish.

A.2.2. Even particle numbers N and odd N/p. For even N and odd N/p, the application of
0 onto a permutation σ changes its signature, and we find that

∀b ∈ {0, . . . n − 1} : cE
b+Q = cO

b , cO
b+Q = cE

b . (A.18)

The signatures of the permutations are thus interchanged, and our suppression law in
formulation (21) is no longer valid. By a case-by-case analysis, we can explore the consequences
of (A.18):

• The condition mod(Q, n) = 0 is sufficient for the full suppression of the respective
transition. In this case, ∀b : cE

b = cO
b and each amplitude cE

b ei 2π
n b has an amplitude −cO

b ei 2π
n b

equal in magnitude, but opposite in sign. A transition between Er and Es that is not necessarily
suppressed for bosons becomes so for fermions.

• A transition with mod(Q, n) = n/2 is not necessarily suppressed, since cE
b = cO

b+ n
2
, such

that two amplitudes cE
b and cO

b+ n
2

do not cancel—as they do for bosons where they lie on
opposite sides of the origin in the complex plane—but instead they enhance each other.

• For all other values of mod(Q, n), i.e. values that are neither zero nor n/2, the respective
transitions are again necessarily suppressed, since (A.13) turns into

PF(Er , Es; U Fou) ∝

∣∣∣∣∣
(

g−1∑
r=0

(
cE

b − cO
b

)
ei 2π

n b

)(
n/g−1∑

a=0

(−1)a ei 2π
n Q(m,Es )·a

)∣∣∣∣∣
2

, (A.19)

where the sum over a can again be represented as a truncated geometric series and vanishes
since n is even by assumption.
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