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Abstract. We show that weak antilocalization by disorder competes with
resonant Andreev reflection from a Majorana zero mode to produce a zero-
voltage conductance peak of order e2/h in a superconducting nanowire. The
phase conjugation needed for quantum interference to survive a disorder
average is provided by particle–hole symmetry—in the absence of time-
reversal symmetry and without requiring a topologically nontrivial phase. We
identify methods of distinguishing the Majorana resonance from the weak
antilocalization effect.
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1. Introduction

Weak localization (or antilocalization) is the systematic constructive (or destructive)
interference of phase conjugate series of scattering events. In disordered metals it is time-
reversal symmetry that provides for phase conjugation of backscattered electrons and protects
their interference from averaging out to zero [1, 2]. A magnetic field breaks time-reversal
symmetry, changing the disorder-averaged conductance by an amount δG of order e2/h.
The sign of δG distinguishes weak localization (δG < 0, conductance dip) from weak
antilocalization (δG > 0, conductance peak).

Andreev reflection at a superconductor provides an alternative mechanism for phase
conjugation due to particle–hole symmetry. No time-reversal symmetry is needed, so weak
(anti)localization can coexist with a magnetic field and is only destroyed by a bias voltage
[3, 4]. The resulting zero-bias anomaly in the conductance of a normal-metal–superconductor
(NS) junction is obscured in zero magnetic field by the much larger effects of induced
superconductivity, which scale with the number of transverse modes N in the junction. These
order Ne2/h effects are suppressed by a magnetic field; only the order e2/h effect from weak
(anti)localization remains [5].

In a superconducting nanowire, there is an altogether different origin of zero-bias
anomalies in a magnetic field, namely the midgap state that appears at the NS interface following
a topological phase transition [6–8]4. Resonant Andreev reflection from the zero mode gives a
2e2/h conductance peak at zero voltage [9]. The first reports [10–12] of this signature of a
Majorana fermion are generating much excitement [13]. There is an urgent need to understand
the effects of disorder in order to determine whether it may produce low-lying resonances that
obscure the Majorana resonance [14–18].

These recent developments have motivated us to investigate the interplay of Majorana
zero modes and weak (anti)localization. Earlier studies of weak (anti)localization at an NS

4 Two reviews of the search for Majorana fermions in superconductors are given in [8].
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Figure 1. A bias voltage V0 applied to the normal metal (N) drives a current I
into the grounded superconductor (S). Electrons and holes (e, h) are scattered
by disorder or a tunnel barrier in N and converted into each other by Andreev
reflection at the NS interface, as described by the scattering matrices SN and rA.
Particle–hole symmetry ensures that the phase shifts accumulated by e and h
along a closed trajectory cancel, irrespective of whether time-reversal symmetry
is broken or not. Such phase conjugate series of scattering events permit weak
(anti)localization to persist in a magnetic field.

junction [3, 4, 19–21] did not consider the possibility of a topologically nontrivial phase
with Majorana fermions. Calculations of the local density of states near a zero mode [22–24]
address the same physics of midgap quantum interference that we do, but cannot determine the
conductance.

This paper consists of two parts. Firstly, in section 2 we give a simple model of a disordered
NS interface that allows us to obtain analytical results for δG with and without Majorana zero
modes. We then turn in section 3 to a numerical simulation of a Majorana nanowire and compare
the conductance peak due to weak antilocalization (in the topologically trivial phase) with that
from a Majorana zero mode (in the nontrivial phase). The two effects can appear strikingly
similar, but in the concluding section 4 we will discuss several ways in which they may be
distinguished.

Before we present our findings, we wish to emphasize that it is not the purpose of this
work to diminish the significance of experiments reporting the discovery of Majorana fermions
in superconductors. In contrast, we feel that existing [10–12] and forthcoming experiments will
gain in significance if possible alternative mechanisms for zero-voltage conductance peaks in a
magnetic field are identified and understood, so that they can be ruled out. Weak antilocalization
was so far overlooked as one such mechanism.

2. Analytical theory

For the analytical calculation we consider a superconducting wire that supports Q topologically
protected zero modes at the interface with a normal metal (see figure 1). The stability of
Majorana zero modes depends crucially on the fundamental symmetries of the system [25].
At most a single zero mode is topologically protected if both time-reversal symmetry is broken
(by a magnetic field) and spin–rotation symmetry is broken (by spin–orbit coupling), so that
only particle–hole symmetry remains. This is called symmetry class D with Q ∈ {0, 1}. If the
wire is sufficiently narrow (relative to the spin–orbit coupling length), an approximate chiral
symmetry [26]5 stabilizes up to N zero modes. (The integer N is the number of propagating

5 Chiral symmetry of the Hamiltonian is expressed by H 7→ −H upon exchange e ↔ h of the electron and hole
degrees of freedom. It is broken by spin–orbit coupling of transverse momentum, unlike the more fundamental
particle–hole symmetry H 7→ −H∗.
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electronic modes through the wire in the normal state, counting both spin and orbital degrees of
freedom.) This is called symmetry class BDI with Q ∈ {0, 1, 2, . . . , N }.

2.1. Scattering matrix

We construct the scattering matrix of the NS junction at the Fermi level by assuming a spatial
separation of normal scattering in N and Andreev reflection in S. Within the excitation gap there
is no transmission through the superconductor. The matrix rA of Andreev reflection amplitudes
from the superconductor is then a 2N × 2N unitary matrix. Mode mixing at the NS interface
can be incorporated into the scattering matrix SN of the normal region, so we need not include
it in rA. It has the block form [27, 28]

rA =

(
0 3

3∗ 0

)
, 0 =

M⊕
m=1

(
cosαm 0
0 cosαm

)
⊕ ∅Q ⊕ 1ζ ,

(1)
3 =

M⊕
m=1

(
0 −i sinαm

i sinαm 0

)
⊕ 1Q ⊕ ∅ζ .

We have defined ζ = 0 if the difference N − Q is even and ζ = 1 if N − Q is odd, so that
N − Q − ζ ≡ 2M is an even integer. The Andreev reflection eigenvalues ρm = sin2αm that are
not pinned at 0 or 1 are twofold degenerate [29]6.

The symbols 1n,∅n denote, respectively, an n × n unit matrix or null matrix for n > 1. The
empty set is intended for n = 0. To make the notation more explicit, we give some examples of
the direct sums,

11 ⊕ ∅1 =

(
1 0
0 0

)
, 12 ⊕ ∅1 =

1 0 0
0 1 0
0 0 0

 ,

(2)
12 ⊕ ∅0 =

(
1 0
0 1

)
, 11 ⊕ ∅0 = 1, 10 ⊕ ∅1 = 0.

The normal region has a scattering matrix

SN =

(
s0 0
0 s∗

0

)
, s0 =

(
r ′ t ′

t r

)
. (3)

The electron and hole blocks (with N × N reflection and transmission matrices r, r ′, t, t ′) are
each other’s complex conjugate at the Fermi level. The off-diagonal blocks of SN vanish, because
the normal metal cannot mix electrons and holes. The matrix s0 is unitary, s0s†

0 = 1, without
further restrictions in class D. In class BDI, chiral symmetry requires that s0 = sT

0 is also a
symmetric matrix.

To separate the mixing of modes from backscattering, we make use of the polar
decomposition

s0 =

(
U 0
0 V

) (
−

√
1 − T

√
T

√
T

√
1 − T

) (
U ′ 0
0 V ′

)
. (4)

6 The Béri degeneracy of the Andreev reflection eigenvalues ρm 6= 0, 1 is a consequence of particle–hole
symmetry, which is an anti-unitary symmetry that squares to +1. This distinguishes it from the more familiar
Kramers degeneracy, resulting from an anti-unitary symmetry that squares to −1. For a self-contained proof of
Béri degeneracy, see appendix B of [30].
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The matrices U, V,U ′ and V ′ are N × N unitary matrices and T = diag (T1, T2, . . . , TN ) is a
diagonal matrix of transmission eigenvalues of the normal region. In class BDI, chiral symmetry
relates U ′

= U T, V ′
= V T.

2.2. Conductance

We combine SN and rA to obtain the matrix rhe of Andreev reflection amplitudes (from electron
e to hole h) of the entire system. This calculation is much simplified in the case of ζ = 0, ρm = 1
(m = 1, 2, . . . ,M) that all modes at the NS interface are Andreev reflected with unit probability.
For this case 0 = 0, N − Q = 2M , we obtain

rhe = t ′∗3∗(1 − r3r∗3∗)−1t, 3= σ⊕M
y ⊕ 1Q. (5)

The notation σ⊕M
y signifies the 2M × 2M matrix constructed as the direct sum of M Pauli

matrices.
The Andreev reflection matrix determines the conductance

G = G0 Tr rher
†
he, G0 = 2e2/h. (6)

Substitution of the polar decomposition (4) gives the compact expression

G/G0 = Tr TMTM†,

M= (1 −�∗
√

1 − T �
√

1 − T )−1�∗, �= V ′3V ∗.
(7)

This is the zero-temperature conductance at the Fermi level, in the limit of zero bias voltage.
Away from the Fermi level particle–hole symmetry is broken, so the electron and hole blocks
in SN are distinct unitary matrices se and sh. If the bias voltage V0 remains small compared
to the excitation gap, we can keep the same rA. The finite-voltage differential conductance
G̃ = dI/dV0 is then given by

G̃/G0 = Tr ThM̃TeM̃†,

M̃= (1 −�∗

h

√
1 − Te�e

√
1 − Th)

−1�∗

h,

�e = V ′

e3V ∗

h , �h = V ′

h3V ∗

e .

(8)

The electron matrices are evaluated at energy eV0 above the Fermi level and the hole matrices
at energy −eV0 below the Fermi level. Chiral symmetry remains operative away from the Fermi
level; hence V ′

e = V T
e , V ′

h = V T
h ⇒�h =�†

e in class BDI. We will apply equation (8) to voltages
large compared to the Thouless energy, when the electron and hole matrices may be considered
to be statistically independent.

2.3. Random matrix average

Isotropic mixing of the modes by scattering in the normal region means that the unitary matrices
in the polar decomposition (4) are uniformly distributed in the unitary group U(N ). We can
calculate the average conductance for a given set of transmission eigenvalues by integration
over U(N ) with the uniform (Haar) measure. A full average would then still require an average
over the Tn’s, but if these are dominated by a tunnel barrier they will fluctuate a little and the
partial average over the unitary matrices is already informative.
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The calculation is easiest if all Tn’s have the same value 06 T 6 1. The average zero-
voltage conductance 〈G〉 is then given by the integral

〈G〉 = T 2G0

∫ 2π

0
dφ ρ(φ)

∣∣1 − (1 − T )eiφ
∣∣−2
, (9)

with ρ(φ)= 〈
∑

n δ(φ−φn)〉 the density on the unit circle of the eigenvalues eiφn of ��∗. The
corresponding finite-voltage expression has a uniform ρ = N/2π , leading to

〈G̃〉 = N G0T/(2 − T ), (10)

irrespective of the symmetry class and independent of the topological quantum number Q.
The zero-voltage average (9) does depend on Q and is different for class D and BDI. The

calculations are given in the appendix. Explicit expressions in class D are

〈G〉D

G0
=


2T, for N = 2, Q = 0,

1 + 2T 2, for N = 3, Q = 1,

2T (2 − T + T 2), for N = 4, Q = 0,

1 + 2T 2(3 − 2T + T 2), for N = 5, Q = 1.

(11)

The Q dependence appears to second order in the reflection probability R = 1 − T , while the
general first-order result

〈G/G0〉D = N (1 − 2R)+ 2R +O(R2) (12)

is Q independent. The corresponding expressions in class BDI are more lengthy, and we only
record the small-R result

〈G/G0〉BDI = N (1 − 2R)+ 2R
Q2 + N

N + 1
+O(R2), (13)

to show that it is Q-dependent already to first order in R. These are all finite-N results. In the
large-N limit the Q dependence is lost,

〈G/G0〉 =
N T

2 − T
+

2(1 − T )

(2 − T )2
+O(N−1), (14)

irrespective of the symmetry class.
As illustrated in figure 2, for the case when all Tn’s have the same value T the difference

δG = 〈G〉 − 〈G̃〉 is positive, corresponding to weak antilocalization and a conductance peak.
The sign of the effect may change if the Tn’s are very different, in particular, in class
BDI—which has δG < 0 in a quantum dot geometry (circular ensemble) [28]. It is a
special feature of quantum interference in a magnetic field that the distinction between weak
localization and antilocalization is not uniquely determined by the symmetry class [21, 31, 32].

3. Simulation of a microscopic model

The random-matrix calculation serves the purpose of a qualitative understanding of the weak
antilocalization effect. For a quantitative description we need to relax the assumption of channel-
independent Tn’s. For that purpose we now turn to a microscopic model of a Majorana nanowire.
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Figure 2. Amplitude δG of the average zero-voltage conductance peak as a
function of (mode-independent) transmission probability T , in symmetry class
D (thick curves) and BDI (thin curves) for different numbers of modes N . The
superconductor is topologically trivial when N is even (Q = 0, dashed curves)
and nontrivial when N is odd (Q = 1, solid curves). The dash-dotted curve is the
Q-independent large-N limit (14).

3.1. Model Hamiltonian

Following [6, 7], we consider a conducting channel parallel to the x-axis on a substrate
in the x–y-plane (width W and Fermi energy EF), in a magnetic field B (orientation n̂
and Zeeman energy EZ =

1
2 geffµB B), with Rashba spin–orbit coupling (characteristic energy

Eso = meffα
2
so/h̄

2 and length lso = h̄2/meffαso) and induced s-wave superconductivity (excitation
gap 10). The Hamiltonian is

H=

(
H0 − EF 1σy

1∗σy EF − H ∗

0

)
,

H0 =
p2

x + p2
y

2meff
+ U (x, y)+

αso

h̄
(σx py − σy px)+ EZn̂ · σ .

(15)

The electrostatic potential U = Ugate + δU contains the gate potential Ugate that creates the tunnel
barrier and the impurity potential δU that varies randomly from site to site on a square lattice
(lattice constant a), distributed uniformly in the interval (−Udisorder,Udisorder). The disordered
region is −LN < x < LS, an NS interface is constructed by increasing the pair potential 1
from 0 to 10 at x = 0 and a rectangular barrier of height Ubarrier, thickness δLbarrier is placed
at x = −xbarrier. The conductance of the normal region (x < 0) contains a contribution Gdisorder

from disorder and Gbarrier from the barrier.
The orientation of the magnetic field plays an important role [6, 7]: it lies in the x–y-

plane to eliminate orbital effects on the superconductor and we will only include its effect
on the electron spin (through the Zeeman energy). A topologically nontrivial phase needs a
nonzero excitation gap for EZ >10, which requires a parallel magnetic field B‖ (n̂ = x̂). We will
consider that case in the next subsection and then discuss the case of a perpendicular magnetic
field B⊥ (n̂ = ŷ) in section 3.3.
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Figure 3. Disorder-averaged differential conductance as a function of bias
voltage, for a nanowire modeled by Hamiltonian (15). The two panels (a) and
(b) correspond to the two geometries shown to scale above each plot. (The
solid vertical line indicates the position of the tunnel barrier, relative to the
NS interface; disordered regions are dotted.) Each panel shows data for zero
magnetic field (black) and for two nonzero magnetic field values (blue and
red). The solid curves are for a parallel field B‖ and the dashed curves for a
perpendicular field B⊥. The system is topologically trivial (Q = 0) in all the
cases except for the red solid curves (Q = 1).8

3.2. Average versus sample-specific conductance

To avoid the complications from chiral symmetry, we first focus on a relatively wide junction,
W = 3 lso, when symmetry class D (rather than BDI) applies [28]. (We turn to class BDI in
the next subsection.) The normal region has N = 8 propagating modes (including spin) in zero
magnetic field, for EF = 12 Eso. The topological quantum number Q was determined both from
the determinant of the reflection matrix [33]7 and independently by counting the gap closings
and reopenings upon increasing the magnetic field. A transition from Q = 0 to 1 is realized by
increasing B‖ at fixed 10 = 8 Eso.

The results are shown in figure 3 (solid curves) for two geometries, one with the tunnel
barrier far from the NS and another with the barrier close to the interface8.

The disorder-averaged conductance shows a zero-voltage peak in a magnetic field,
regardless of whether the nanowire is topologically trivial (Q = 0) or nontrivial (Q = 1). The
peak disappears in zero magnetic field and instead a conductance minimum develops, indicative

7 For the parallel magnetic fields in figures 3 and 4 we find that Q =
1
2 (1 − Det r) switches from 0 to 1 at

EZ = 8.1 Eso and then back to 0 at EZ = 11.3 Eso, with a re-entrant Q = 0 interval 9.2 Eso < EZ < 9.7 Eso
8 The parameters for the simulations shown in figures 3 and 4 are, in panel (a): xbarrier = 23 lso, δLbarrier = 4a =

0.4 lso, Udisorder = 12.5 Eso, Ubarrier = 15 Eso, Gdisorder = 2.7 e2/h, Gbarrier = 1.8 e2/h; in panel (b): xbarrier = 3 lso,
δLbarrier = a = 0.1 lso, Udisorder = 20 Eso, Ubarrier = 50 Eso, Gdisorder = 2.9 e2/h and Gbarrier = 3.2 e2/h.
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Figure 4. Numerical simulation of a nanowire for a single disorder realization
(no averaging). The color scale gives the differential conductance as a function
of bias voltage (the vertical axis) and parallel magnetic field (the horizontal axis).
The parameters in panels (a) and (b) correspond to those in figures 3(a) and (b), as
listed in footnote 8. The magnetic field range in both panels is in the topologically
trivial phase (Q = 0), but still exhibits a conductance peak pinned to zero voltage
(green circle).

of an induced superconducting minigap in the normal region. The two geometries in panels 3(a)
and (b) show comparable results, the main difference being a broadening of the zero-bias peak
when the tunnel barrier is brought closer to the NS interface—as expected from the increase
in Thouless energy9. The shallow maximum which develops around zero voltage in the B = 0
curve of panel 3(b) is a precursor of the reflectionless tunneling peak, which appears in full
strength when the barrier is placed at the NS interface [5].

All this applies to the average conductance in an ensemble of disordered nanowires.
Individual members of the ensemble show mesoscopic, sample-specific conductance
fluctuations, in addition to the systematic weak antilocalization effect. For some disorder
realizations the zero-voltage conductance peak remains clearly visible, see figure 4. The
peak sticks to zero bias voltage over a relatively wide magnetic field range, even though the
superconductor is topologically trivial (Q = 0). The appearance and disappearance of the peak
are not associated with the closing and reopening of an excitation gap, so it cannot produce
Majorana fermions [34]10.

9 Figure 3 shows that the Q = 1 peak becomes narrower than the Q = 0 peak when the length of the disordered
region between the tunnel barrier and the NS interface is reduced. This is consistent with the findings of [17] for
the effect of disorder on the Majorana resonance.
10 The appearance and disappearance of the zero-voltage conductance peak in figure 4 are associated with the
merging and splitting of two peaks at ±V0. We understand this as a collision of two poles of the scattering matrix
at complex energy iε± V0, as described by Pikulin and Nazarov [34].

New Journal of Physics 14 (2012) 125011 (http://www.njp.org/)

http://www.njp.org/


10

3.3. Parallel versus perpendicular magnetic field

So far we have considered a class D nanowire with a magnetic field B‖ parallel to the wire axis.
In a perpendicular magnetic field B⊥ (perpendicular to the wire in the plane of the substrate)
the symmetry class remains D (broken time-reversal and spin–rotation symmetry), although the
topologically nontrivial phase disappears [6, 7]. We therefore expect the class D zero-bias peak
to persist in a perpendicular field as a result of the weak antilocalization effect.

This expectation is borne out by the computer simulations, see the dashed curves in
figure 3. A zero-bias peak exists for both B⊥ and B‖. If the nanowire is topologically trivial,
there is not much difference in peak height for the two magnetic field directions (compare
the blue solid and dashed curves). In contrast, if the nanowire is topologically nontrivial for a
parallel field, then the peak is much reduced in a perpendicular field (red solid versus dashed
curves). The disappearance of the Majorana zero mode and the collapse of the zero-bias peak
may be accompanied by the appearance of propagating modes in the superconducting part of
the nanowire. This explains the increased background conductance in the red dashed curve of
figure 3(a).

The effect of a magnetic field rotation is entirely different when W . lso and the
symmetry class is BDI rather than D [26, 28]. The term σx py in the Hamiltonian (15) can
then be neglected, so that H commutes with σy in a perpendicular magnetic field (n̂ = ŷ).
The two spin components along ±ŷ decouple and for each spin component separately the
particle–hole symmetry is broken. We therefore expect both the Majorana resonance and the
weak antilocalization peak to disappear in a perpendicular magnetic field for sufficiently narrow
wires.

This is demonstrated by the computer simulations shown in figure 5, for the average
conductance in a topologically trivial wire of width W = 0.3 lso. The main difference with the
data in figure 3 is that the symmetry class is now BDI rather than D, because of the narrower
wire. This change of symmetry class does not significantly affect the weak antilocalization peak
in a parallel magnetic field. But if the magnetic field is rotated to a perpendicular direction, the
peak disappears—as expected for a class BDI nanowire.

3.4. Effects of thermal averaging

All the results presented so far are in the zero-temperature limit. We calculate the temperature
dependence of the differential conductance from the finite-T0 and finite-V0 generalization of
equation (6),

G =
2e

h

∫
∞

−∞

dε
d f (ε− eV0)

dV0
Tr rhe(ε)r

†
he(ε), (16)

f (ε)=
1

1 + exp(ε/kBT0)
. (17)

Thermal averaging at a nonzero temperature T0 broadens the conductance peak around V0 = 0
and reduces its height, at constant area

∫
G dV0 under the peak.

This effect of thermal averaging applies to both the weak antilocalization peak and the
Majorana resonance, but the characteristic temperature scale is different, as shown in figure 6.
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Figure 5. The same as figure 3, but now for a narrower wire in symmetry class
BDI (rather than D). The system is topologically trivial, without Majorana zero
modes. The weak antilocalization peak vanishes if the magnetic field is rotated
from B‖ to B⊥.11

Figure 6. Temperature dependence of the conductance peaks from figure 3(b).
The four blue curves (Q = 0, topologically trivial) correspond from top to
bottom to four increasing temperatures and likewise the four red curves (Q = 1,
topologically nontrivial).

The Majorana zero mode is more sensitive to thermal averaging because it is more tightly
bound to the NS interface, with a smaller Thouless energy and therefore a smaller characteristic
temperature.

11 The parameters for the simulations shown in figure 5 are: W = 0.3 lso, xbarrier = 2.7 lso, δLbarrier = a = 0.01 lso,
EF = 1000 Eso, 10 = 100 Eso, Udisorder = 4000 Eso and Ubarrier = 7000 Eso, corresponding to N = 8, Gdisorder =

1.3 e2/h and Gbarrier = 1.5 e2/h.
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Figure 7. Differential conductance for a single disorder realization of a nanowire
(N = 2 spin-resolved modes)12. The left panel shows the appearance of a zero-
voltage peak in a range of magnetic field values, for B parallel to the wire.
The right panel shows the dependence on the orientation of the magnetic field,
for a fixed field strength (EZ = 10 Eso). The zero-voltage peak vanishes if B is
perpendicular to the wire. This is the same phenomenology as for a Majorana
resonance, but here it happens in the topologically trivial phase.

4. Discussion

In conclusion, we have shown that random quantum interference by disorder in a
superconducting nanowire can systematically produce a zero-voltage conductance peak in
the absence of time-reversal symmetry. This weak antilocalization effect relies on the same
particle–hole symmetry that protects the Majorana zero mode, but it exists in both the
topologically trivial and nontrivial phases of the superconductor. A conclusive demonstration
of Majorana fermions will need to rule out this alternative mechanism for a conductance peak.

There are several strategies one might follow for this purpose:

• Increasing the tunnel barrier with a gate voltage suppresses the weak antilocalization
effect, but not the Majorana resonance. The resonance does become narrower, so at finite
temperatures thermal smearing will still lead to a suppression with increasing barrier height
and this might not be the most effective strategy to distinguish the two effects.

• The disappearance of the conductance peak when the magnetic field is rotated (in the
plane of the substrate) towards a direction perpendicular to the wire, the technique used in
[10, 12], can identify the Majorana zero mode—but only if the ratio W/ lso is sufficiently
large that the wire is in class D rather than BDI. In class BDI the Zeeman energy in the
rotated field commutes with the Rashba energy, precluding the weak antilocalization effect

12 The parameters for the simulations shown in figure 7 are: W = 0.3 lso, xbarrier = 1.1 lso, δLbarrier = a = 0.01 lso,
EF = 200 Eso, 10 = 100 Eso, EZ = 60 Eso, Udisorder = 500 Eso and Ubarrier = 2000 Eso, corresponding to N = 2,
Gdisorder = 1.5 e2/h and Gbarrier = 0.85 e2/h.
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as well as the Majorana resonance. Both the works [10, 12] have W . lso and are believed
to be in class BDI [16, 26], so this complication seems quite relevant.

• Measuring the conductance through a single-mode point contact is a very effective
strategy: for N = 1 the zero-temperature conductance G = Q × 2e2/h directly measures
the topological quantum number even without any tunnel barrier [35], and this signature
of a Majorana zero mode is quite robust against finite temperatures. (The chararacteristic
energy scale is the induced superconducting gap in the region between the point contact
and the superconductor.) The single mode in the point contact should be spin resolved for
this to work: if instead the point contact transmits both spins in one orbital mode (N = 2),
then the ambiguity between weak antilocalization and the Majorana resonance remains
(see figure 7).

• The Majorana resonance from a wire of finite length should split into two at the lowest
temperatures, because of the nonzero overlap of the zero modes at the two ends of the
wire [12]. No such systematic splitting will occur for the weak antilocalization peak.
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Appendix. Random-matrix theory

To evaluate the average conductance (9) we seek the density of the eigenvalues xn = eiφn

of the product X =��∗ of the unitary matrix � and its complex conjugate. We denote
µn = cosφn ∈ [−1, 1] and determine the joint probability distribution P({µn}) using methods
from random-matrix theory [36].

In symmetry class D, we have �= V ′3V ∗ with V and V ′ independently and uniformly
distributed according to the Haar measure dU of the unitary group U(N ). Because d(UU ′)=dU
for a fixed unitary matrix U ′, the matrix �≡ U is itself uniformly distributed in U(N ).

In class BDI, we have V ′
= V T and we may write �≡ UλU † with U uniformly in U(N ).

The diagonal matrix λ= diag(λ1, λ2, . . . , λN ) contains the eigenvalues λn = ±1 of 3. The
number q = |Q| of Majorana zero modes is encoded in the topological invariant Q = Tr3=∑

n λn. (For full generality we allow Q to also take on negative values, but the final result will
only depend on the absolute value q.)

A.1. Brownian motion of unitary matrices

We employ Dyson’s Brownian motion approach [37], which sets up a stochastic process for the
unitary matrix U whose stationary distribution coincides with the Haar measure on U(N ). In
each infinitesimal step of the process, U → U exp(iH), where H is a Hermitian matrix from
the Gaussian unitary ensemble, with identically normal distributed complex numbers Hlm = H ∗

ml

(l 6 m), Hlm = 0, Hkl Hmn = δknδlmτ , Hkl H ∗
mn = δkmδlnτ ; the limit τ → 0 is implied to generate

infinitesimal increments.
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The corresponding increments dµn can be calculated in perturbation theory. The drift
coefficients cl = limτ→0 τ

−1δµl and the diffusion coefficients clm = limτ→0 τ
−1δµlδµm follow

by averaging over the random variables in H . As we will see, the symmetries in the classes
D and BDI are restrictive enough so that these coefficients can be expressed in terms of the
quantities µn alone, without requiring data from the eigenvectors of X . Thus, the stochastic
process for these quantities closes.

Introducing a fictitious time t , the evolution of the joint probability distribution is governed
by a Fokker–Planck equation,

∂P

∂t
=

[
−

∑
l

∂

∂µl
cl +

1

2

∑
l,m

∂

∂µl

∂

∂µm
clm

]
P ({µn}, t) . (A.1)

The stationary solution P({µn}), for which the right-hand side of the Fokker–Planck equation
vanishes, is the required eigenvalue distribution.

A.2. Symmetry class D

In class D, we have X = UU ∗ with U uniformly distributed in U(N ). Note that the operation
of complex conjugation is basis dependent; if B = A∗ in one basis, then this relation is only
preserved under orthogonal transformations, but not under general unitary transformations.
Thus, we work in a fixed basis |r〉 (at most permitting orthogonal basis changes), and define for
any |ψ〉 =

∑
r ψr |r〉 a complex-conjugated vector |ψ∗

〉 ≡
∑

r ψ
∗

r |r〉. As usual, 〈ψ | =
∑

r ψ
∗

r 〈r |;
thus 〈ψ∗

| =
∑

r ψr〈r |.
The matrices X and U are unitary and obey Det X = |Det U |

2
= 1. Moreover, the matrix

X∗ has the same eigenvalues x1, x2, . . . , xN as the matrix X . For even N , it follows that all
eigenvalues appear in complex-conjugated pairs; every eigenvalue xk has a partner xk̄ = x∗

k =

x−1
k . For odd N , in addition to such pairs there is a single unpaired eigenvalue, denoted as

xN , which (because of the constraint on the determinant) is pinned at xN = 1. The paired
eigenvectors are related according to

|k̄〉 = ξkU |k∗
〉. (A.2)

Here we have to set ξk such that ξ 2
k = λk; this guarantees that the relation between both

eigenvectors in a pair is reciprocal, |
¯̄k〉 = |k〉. Observing that the eigenvectors form an

orthogonal basis, we find the matrix elements

〈k|U |l∗
〉 = ξkδkl̄ = (〈k∗

|U ∗
|l〉)∗ = 〈l|U T

|k∗
〉. (A.3)

With the help of these matrix elements we can now evaluate the drift and diffusion
coefficients. In second-order perturbation theory,

δxl = 〈l|δX |l〉 +
∑

k

′ 〈l|δX |k〉〈k|δX |l〉

xl − xk
, (A.4)

where the prime restricts the sum to k 6= l, while

δX = iU HU ∗
− iX H ∗ + U HU ∗H ∗

−
1

2
U H 2U ∗

−
1

2
X H ∗2 (A.5)
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is the increment of X to leading order in τ . The Gaussian averages are now carried out according
to the rules

〈k|AH B|l〉〈m|C H D|n〉 = τ 〈k|AD|n〉〈m|C B|l〉, (A.6)

〈k|AH B|l〉〈m|C H ∗D|n〉 = τ 〈k|ACT
|m∗

〉〈n∗
|DT B|l〉. (A.7)

In particular, H 2 = Nτ , U HU ∗H ∗ = τUU †
= τ , and

〈l|U HU ∗ − X H ∗|k〉〈k|U HU ∗ − X H ∗|l〉

= 2τ 〈l|X |l〉〈k|X |k〉 − τ 〈l|U T
|k∗

〉〈l∗
|U ∗

|k〉 − τ 〈k|U T
|l∗

〉〈k∗
|U ∗

|l〉

= 2τ xl xk − τδlk̄(xl + xl̄), (A.8)

where we invoked equation (A.3). We thus obtain

δxl = τ − Nτ xl − τ
∑

k

′ 2xl xk − δlk̄(xl + xl̄)

xl − xk
. (A.9)

Analogously, we find that

δxlδxm = 〈l|δX |l〉〈m|δX |m〉 = −2τδlm x2
l + 2τδlm̄. (A.10)

Note that these expressions only depend on the eigenvalues. We remark that for the pinned
unpaired eigenvalue xN = 1, occurring if N is odd, these relations deliver δxN = (δxN )2 = 0.

We now pass over to the quantities µl = (xl + xl̄)/2, and restrict the index l such that it
enumerates the pairs of eigenvalues. For even N we then find that

δµl = τ − 2τµl − 2τ(µ2
l − 1)

∑
k

′ 1

µl −µk
, (A.11)

while for odd N we have

δµl = −3τµl − 2τ(µ2
l − 1)

∑
k

′′ 1

µl −µk
, (A.12)

where the double prime excludes the pinned eigenvalue. Furthermore,

δµlδµm = 2τ(1 −µ2
l )δlm. (A.13)

The stationarity condition of the associated Fokker–Planck equation (A.1) can be expressed
as

∂

∂µl
δµl P =

1

2

∂2

∂µl
(δµl)2 P. (A.14)

For even N = 2M , this is solved by

P(µ1, µ2, . . . , µM)∝

M∏
k=1

1 +µk√
1 −µ2

k

M∏
l<m=1

(µl −µm)
2, (A.15a)

up to a normalization constant. Each of the µn’s (n = 1, 2, . . . ,M) is twofold degenerate. For
odd N = 2M + 1 one eigenvalue is pinned at +1, and the remaining ones are twofold degenerate
with the distribution

P(µ1, µ2, . . . , µM)∝

M∏
k=1

√
1 −µ2

k

M∏
l<m=1

(µl −µm)
2. (A.15b)
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This concludes our derivation of the eigenvalue distribution of UU ∗ with U uniform in U(N ).
We have not found the result (A.15) in the literature, but there is a curious correspondence
with the known [36, 38] eigenvalue distribution of orthogonal matrices (uniformly distributed
according to the Haar measure). An (N + 1)× (N + 1) orthogonal matrix O with determinant
−1 has one eigenvalue pinned at −1. If we exclude that eigenvalue, the remaining N eigenvalues
of O have the same probability distribution as the N eigenvalues of UU ∗.

A.3. Brownian motion of orthogonal matrices

As an independent demonstration of this correspondence between the eigenvalue distributions
of UU ∗ and O , we have investigated the Brownian motion of orthogonal matrices. Let O be a
random (N + 1)× (N + 1)-dimensional matrix in the orthogonal group, constrained to the sector
Det O = −1.

The Brownian motion is induced by O(1 + A + A2/2), where (in the fixed basis) A = −AT

is a real antisymmetric matrix, with A2
lm = τ . Due to the condition on the determinant, there is

always one eigenvalue pinned at xN+1 = −1, while an additional eigenvalue is pinned at xN = 1
if N is odd. All other eigenvalues appear in pairs xl , xl̄ , with |l̄〉 = |l∗

〉 (no additional factors are
required).

We calculate the increments and average:

δxl =
1

2
〈l|O A2

|l〉 +
∑
k 6=l

〈l|O A|k〉〈k|O A|l〉

xl − xk

(A.16)
⇒ δxl = −

1

2
τN xl + τ

∑
k 6=l

xl xk(δkl̄ − 1)

xl − xk
,

δxlδxk = 〈l|O A|l〉〈k|O A|k〉

(A.17)⇒ δxlδxk = τ xl xk(δlk̄ − δlk)= τ(δlk̄ − x2
l δlk).

(Note that 〈l|A|l〉 does not vanish if |l〉 is complex, as is generally the case for the unpinned
eigenvalues.)

As before, in passing to µl we restrict indices to enumerate different pairs. For N even, we
find that (considering that the restricted sum has (N − 2)/2 terms)

δµl =
1

2
τ −

1

2
τNµl − τ

∑
k 6=l,N+1

µlµk − 1

µl −µk

(A.18)
=

1

2
τ − τµl − τ(µ

2
l − 1)

∑
k 6=l,N+1

1

µl −µk
,

while if N is odd (where the restricted sum has (N − 3)/2 terms),

δµl = −
1

2
τNµl − τ

∑
k 6=l,N ,N+1

µlµk − 1

µl −µk

(A.19)
= −

3

2
τµl − τ(µ

2
l − 1)

∑
k 6=l,N ,N+1

1

µl −µk
.
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Furthermore,

δµlδµk = τ(1 −µ2
l )δlk. (A.20)

Comparison with equations (A.11)–(A.13) shows that these are the same average
increments, if we rescale τ by a factor of 2. The eigenvalues of UU ∗ and O therefore execute
the same Brownian motion process, with the same stationary solution (A.15).

A.4. Symmetry class BDI

In class BDI, we have X = UkU †U ∗kU T, with U uniform in U(N ) and λ a fixed diagonal
matrix with entries ±1 that sum up to Q. Since here the matrix X is symmetric, X = XT, it is
now diagonalized by an orthogonal transformation; thus, the eigenvectors |k〉 = |k∗

〉 are real.
As in class D, eigenvalues appear in complex-conjugate pairs, apart from eigenvalues pinned
at 1. We observe that � mediates between the associated eigenvector, |k̄〉 = ξk�|k〉 = ξ ∗

k�
∗
|k〉.

In order to treat the partners symmetrically we have to require that |k̄〉 is also real, so nk

compensates for any complex overall factor. It then follows that 〈k|��∗
|k〉 = n2

k = λk , and thus
the coefficients nk are related to the eigenvalues as in class D.

To identify the pinned eigenvalues note that �=�†
=�−1 is both Hermitian and unitary,

and thus has eigenvalues ±1. Let �± be the eigenspace for each set of eigenvalues, and
�∗

±
the analogous eigenspace for �∗, which is spanned by the complex-conjugated vectors.

We denote ξ = sign Q. The space [span(�−ξ , �
∗

−ξ )]
⊥ is then of dimension q = |Q| (barring

accidental degeneracies), and all of the vectors in this space obey X |k〉 = |k〉. Thus X has
q = |Q| eigenvalues pinned at 1. For each pinned eigenvalue, insisting that |k̄〉 = |k〉 implies
�|k〉 =�∗

|k〉 = ξ |k〉, ξ = sign Q = ±1 (consistent with the property that these states lie in the
joint subspace of �ξ and �∗

ξ ).
With these additional properties in hand, the evaluation of drift and diffusion coefficients

can proceed along the same steps as before. With the specified form of X , the incremental step
of U carries over to an increment

δX = iU [H, λ]U †�∗
− i�U ∗[H ∗, λ]U T

(A.21)+ τQ(�∗ +�)+ 2τ(1 − X)− 2Nτ X,

where we have already averaged terms of second order in H ; in particular, terms such as
U HλHU †U ∗λU T = τQ�∗ produce the topological invariant Q. The associated eigenvalue
increment averages to

δxl = −2Nτ xl + τQ〈l|�∗ +�|l〉 + 2τ(1 − xl)

−

∑
k

′

(xl − xk)
−1

〈l|U [H, λ]U †�∗ −�U ∗[H ∗, λ]U T|k〉〈k|U [H, λ]U †�∗ −�U ∗[H ∗, λ]U T|l〉

= −2Nτ xl + 2τqδll̄ + 2τ(1 − xl)− 4τ
∑

k

′ xl xk − δll̄δkk̄ − δkl̄(xl + xl̄)/2 + xl xkδlk

xl − xk
, (A.22)

where the δlk term can be dropped because of the constraint k 6= l on the sum. Note how Q
changes to q = |Q| because of the sign of the matrix element involving pinned eigenvalues.

Again we find that eigenvalues at unity remain pinned. For the other eigenvalues, we
separate out from the sum the q eigenvalues that are pinned, and sum over the M = (N − q)/2
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pairs of unpinned eigenvalues,

δxl = − 2Nτ xl + 2τ(1 − xl)− 2τ
2 − (xl + xl̄)

xl − xl̄

(A.23)
− 4τq

xl

xl − 1
− 4τ xl

∑
k

′′ xk + xk̄ − 2xl̄

xl + xl̄ − xk − xk̄

,

where the double prime again indicates the exclusion of the pinned eigenvalues. Furthermore,

δxlδxm = 8τ(δlm̄ − δlm x2
l ). (A.24)

For the quantities µl = (xl + xl̄)/2, this gives

δµl = −2qτ(µl + 1)+ 2τ(1 − 3µl)− 4τ
∑

k

′′ µ2
l − 1

µl −µk
, (A.25)

δµlδµm = 8τ(1 −µ2
l )δlm. (A.26)

The stationarity condition (A.14) is now fulfilled for

P(µ1, µ2, . . . , µM)∝

M∏
k=1

(1 −µk)
(q−1)/2

M∏
l<m=1

|µl −µm|, (A.27)

which gives the joint probability distribution of the twofold degenerate, unpinned eigenvalues
µn (n = 1, 2, . . . ,M).

A.5. Eigenvalue density

The probability distributions (A.15) and (A.27) are both of the form

P(µ1, µ2, . . . , µM)∝

M∏
k=1

(1 +µk)
a(1 −µk)

b
M∏

l<m=1

|µl −µm|
β, (A.28)

with β = 2, a = 1/2, b = |Q| − 1/2 in class D and β = 1, a = 0, b = |Q|/2 − 1/2 in class BDI.
These are called Jacobi distributions, because the eigenvalue density ρ(µ) can be written in
terms of Jacobi polynomials [36].

For small N it is easier to calculate the eigenvalue density by integrating out all µn’s except
a single one. Keep in mind that |Q| of the µn’s are pinned at unity and that the N − |Q| = 2M
unpinned µn’s are twofold degenerate. (The products in equation (A.28) run only over these M
unpinned pairs.) The eigenvalue density ρ(µ)= 〈

∑N
n=1 δ(µ−µn)〉 is then given by

ρ(µ) = |Q|δ(µ− 1)+ 2Mp(µ),

p(µ)=

∫ 1

−1
dµ1

∫ 1

−1
dµ2 (A.29)

· · ·

∫ 1

−1
dµM δ(µ−µ1)P(µ1, µ2, . . . , µM).
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The delta functions satisfy
∫ 1

−1 δ(µ± 1)dµ= 1. The average conductance follows from the
eigenvalue density according to equation (9),

〈G〉 = T 2G0

∫ 1

−1
dµρ(µ)[1 + (1 − T )2 − 2(1 − T )µ]−1. (A.30)

This gives the small-N results in equation (11) and figure 2.
The large-N limit (14) is obtained from an integral equation for the eigenvalue density in

the Jacobi ensemble [5, 39],

M
∫ 1

−1
dµ p(µ′) ln |µ−µ′

| = −
1

2
(1 − 2/β) ln p(µ)

−
a

β
ln(1 +µ)−

b

β
ln(1 −µ)+ C +O(1/M). (A.31)

The constant C is determined by the normalization∫ 1

−1
dµ p(µ)= 1. (A.32)

The solution is

Mp(µ)=
M̃

π
√

1 −µ2
−

a

β
δ(µ+ 1)−

b

β
δ(µ− 1)

+
1

4
(1 − 2/β)[δ(µ+ 1)+ δ(µ− 1)] +O(1/M), (A.33)

M̃ = M + (a + b)/β −
1

2
(1 − 2/β). (A.34)

Upon substitution of the values for a, b, β into the two symmetry classes and transforming
back from p to ρ, we find that

ρ(µ)=
N

π

1√
1 −µ2

+
1

2
δ(µ− 1)−

1

2
δ(µ+ 1)+O(1/M), (A.35)

independent of Q and for both symmetry classes D and BDI. The corresponding result for the
conductance is equation (14), to order 1/N if the limit N → ∞ is taken at a fixed Q.

A.6. Large-voltage limit

For completeness we also give the derivation of the large-voltage limit (10) of the average
conductance. We need to evaluate

〈G̃〉 = T 2G0

∫ 2π

0
dφ ρ̃(φ)

∣∣1 − (1 − T )eiφ
∣∣−2
, (A.36)

with ρ̃(φ)= 〈
∑

n δ(φ−φn)〉 the density on the unit circle of the eigenvalues eiφn of a unitary
matrix �̃.

In class D, the matrix �̃≡ U is uniformly distributed in U(N ). This is the circular unitary
ensemble (CUE, β = 2). In class BDI, the chiral symmetry enforces that �̃ is unitary symmetric,
�̃= UU T with U uniform in U(N ). This is the circular orthogonal ensemble (COE, β = 1).
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Unlike the probability distributions we needed for the zero-voltage limit, these two distributions
are in the literature [36],

P(φ1, φ2, . . . , φN )∝

N∏
k<l=1

|eiφk − eiφl |
β . (A.37)

The corresponding density

ρ̃(φ)= N/2π, 0< φ 6 2π (A.38)

is uniform irrespective of the value of β and without any finite-N corrections. Substitution into
equation (A.37) gives the result (10).
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