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Abstract. We investigate the optimal estimation of a quantum process that
can possibly consist of multiple time steps. The estimation is implemented by
a quantum network that interacts with the process by sending an input and
processing the output at each time step. We formulate the search for the optimal
network as a semidefinite program and use duality theory to give an alternative
expression for the maximum payoff achieved by estimation. Combining this
formulation with a technique devised by Mittal and Szegedy we prove a
general product rule for the joint estimation of independent processes, stating
that the optimal joint estimation can be achieved by estimating each process
independently, whenever the figure of merit is of a product form. We illustrate the
result in several examples and exhibit counterexamples showing that the optimal
joint network may not be the product of the optimal individual networks if the
processes are not independent or if the figure of merit is not of the product form.
In particular, we show that entanglement can reduce by a factor K the variance
in the estimation of the sum of K independent phase shifts.
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1. Introduction

Quantum theory offers impressive advantages over classical theory in the estimation of physical
parameters [1–7, 10–13]. The prototypical example is the estimation of an unknown phase
shift [3, 4, 11, 12]: here the variance vanishes as N−2 with the number N of accesses to the
phase-shifting process, whereas classical statistics over independent copies would give the
scaling N−1. The quadratic improvement is achieved by preparing an entangled state of N
systems and applying the unknown process to each system. The same quadratic advantage can
be found in the estimation of a direction in space [5, 6] and in the joint estimation of three
Cartesian axes [7–9].

Given the usefulness of entanglement for the estimation of a single parameter from multiple
accesses to a physical process, it is natural to ask whether entanglement can improve the
estimation of many parameters corresponding to different processes. For example, one may
wonder whether entanglement can help in the estimation of two independent phase shifts.
In a slightly different context, this type of question was originally addressed by Wootters in
an unpublished work and by DiVincenzo et al [14], who asked whether a joint entangled
measurement could improve the extraction of information about two bits encoded in two
independent sets of states. In this scenario, it was shown that the amount of information that
can be extracted from the product set is additive [14]. More recently, a different proof showing
the optimality of product measurements for the extraction of information from general product
sets of states was provided in [15].

In this paper, we address the problem of the joint estimation of the parameters encoded
in a set of independent processes, where each process can consist of several time steps. Due
to the possibility of connecting an input of an unknown process with the output of another
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one, here the question of whether quantum correlations can improve the estimation is not only
a question about the usefulness of entanglement in the input states and in the measurements,
but also a question about the usefulness of quantum correlations in time, namely correlations
mediated by the exchange of quantum systems from one time step to the next. We address
the question in the framework of quantum estimation [16, 17], where the figure of merit is
the expected payoff associated with a payoff function g(x̂, x), which depends on the true
value x and the estimated value x̂ labelling the unknown process. In order to tackle the
question we formulate the optimization of the quantum network for the estimation of an
unknown multi-time process as a semidefinite program and we discuss the corresponding
dual problem. In this context, we prove a general product rule, showing that the optimal
joint estimation of a set of independent parameters x := (x1, . . . , xK ) can be achieved by
estimating each parameter independently whenever the figure of merit is of the product form
g(x̂, x)=

∏K
k=1 gk(x̂k, xk), where gk is the payoff function for the parameter xk . In particular, our

result implies that the maximum probability of success in identifying a set of unknown processes
is the product of the maximum probabilities of success in identifying each individual process
separately.

Product theorems are a key tool of theoretical computer science [18–24], where one is
often interested in how the resources needed to solve several independent problems jointly
are related to the resources needed to solve each problem individually. Our work begins to
explore the usefulness of this techniques in the domain of physics, starting from the fundamental
problem of identifying a set of independent physical parameters. In order to prove our result we
use the framework of quantum combs [25, 26] (see also the work by Gutoski and Watrous
on quantum strategies [27]). As we have already mentioned, in this framework we formulate
the maximization of the expected payoff as a semidefinite program, and present an intuitive
formulation of the dual minimization program. Such a dual formulation is interesting in its
own right, as it generalizes to arbitrary processes and arbitrary payoff functions a classic
formula derived by Yuen et al [28] for the minimum error state discrimination. Exploiting
the form of the primal and dual programs, we then prove our product theorem following a
general technique devised by Mittal and Szegedy in [23] (see also [24]), which is adapted
here in order to deal with the optimization of quantum networks consisting of multiple
time steps.

2. Quantum networks for process estimation

Suppose that an experimenter has access to a physical process Px that depends on an unknown
parameter x in some parameter space X. The goal of the experimenter is to determine the
parameter x with the maximum precision allowed by the laws of quantum mechanics.

Generally, the process Px can consist of N time steps, labelled by an index s in some
finite set S = (s1, . . . , sN )⊂ N, ordered so that sm < sn for m < n. At each time step s ∈ S
the process transforms an input quantum system, with Hilbert space denoted by H(s)in , into a
(possibly different) output quantum system, with Hilbert space denoted by H(s)out. If the process
Px is memoryless, all time steps are independent and one can associate a quantum channel with
each time step. The quantum channel at step s, denoted by C(s)x , will be a completely positive
trace-preserving map sending density matrices on H(s)in to density matrices on H(s)out. Hence, the
process Px can be described by a time-ordered sequence of quantum channels, each channel
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labelled by the unknown parameter x , as in the following picture:

H(s1)in C(1)x H(s1)out H(s2)in C(2)x H(s2)out ... H(sN )in C(N)x H(sN )out

In the easiest case, one may have the same channel at each time step, namely C(s)x = Cx for every
s ∈ S. This is the case, e.g., of quantum phase estimation [3, 4, 10–13], where one has access to
N uses of the unitary channel Cx = UxρU †

x , with Ux = exp(i x H) for some Hamiltonian H with
an integer spectrum.

In the presence of memory, the input–output transformation at the step s is described by
a quantum channel involving internal ancillas: in this case the quantum channel C(s)x transforms
density matrices on H(s)in ⊗As−1 into density matrices on H(s)out ⊗As , where As is the Hilbert space
of the sth ancilla. Hence, the process Cx is represented by a time-ordered sequence of black boxes
with internal memories:

H(s1)in

C(s1)x

H(s1)out H(s2)in

C(s2)x

H(s2)out ... H(sN )in

C(sN )x

H(sN )out

As1 As2 ... ASN−1

Note that, since the ancillas are internal to the network, the first and last ancillary systems
are trivial: A0 ' AN ' C.

The most general strategy to estimate an unknown parameter from a time-ordered sequence
of black boxes consists in inserting them into a quantum network where they are interspersed
with known quantum gates and eventually a quantum measurement is performed on the output,
producing the estimate x̂ ∈ X.

The estimation process can be depicted as
Bs1 Bs2 ... BsN

Ψ H(s1)in

C(s1)x

H(s1)out
U1 H(s2)in

C(s2)x

H(s2)out ... H(SN )in

C(sN )x

H(SN )out
Px̂

As1 As2 ... AsN−1
(1)

where Bs, s ∈ S, are the internal ancillas of the estimating network, 9 is a quantum state on
Bs1 ⊗H(s1)

in , each Us is a quantum channel and Px̂ is a quantum measurement, described by a
positive operator valued measure (POVM) on the Hilbert space BsN ⊗H(sN )

out .
Examples of quantum networks for the estimation of unknown parameters can be found

in [11, 12].

3. Optimizing quantum networks: the method of quantum combs

A convenient way of optimizing quantum networks is the method of quantum combs [25, 26]
(see also the work on quantum strategies by Gutoski and Watrous [27]), which associates
positive operators with sequential quantum networks. Here we briefly summarize some known
basic facts about this method; see the original papers for proofs and for further details.

In the following, we will use the following notation: Lin(H) will denote the set of linear
operators on a (finite-dimensional) Hilbert space H, Lin+(H) will denote the set of positive
operators on H, while St(H) will denote the set of density matrices on H, that is, the set of
positive operators ρ ∈ Lin+(H) such that Tr[ρ] = 1.
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3.1. Quantum combs

A sequential network of quantum channels with internal memories can be associated with a
non-negative operator satisfying suitable linear constraints. Precisely, a network of the form

H(s1)in

C(s1)
H(s1)out H(s2)in

C(s2)
H(s2)out ... H(sN )in

C(sN )
H(sN )out

As1 As2 ... AsN−1 (2)

is associated with a positive operator R ∈ Lin+[
⊗

s∈S(H
(s)
out ⊗H

(s)
in )]. The fact that the network

consists of quantum channels (trace-preserving maps) imposes the following constraint: there
must exist a set of positive operators R(n)

∈ Lin+[
⊗n

i=1(H
(si )
out ⊗H(si )

in )], n = 1, . . . , N − 1, such
that 

Trout,sN [R] = Iin,sN ⊗ R(N−1),

Trout,sN−1

[
R(N−1)

]
= Iin,sN−1 ⊗ R(N−2),

...

Trout,s1

[
R(1)

]
= Iin,s1,

(3)

where Trout,s and Iin,s denote the partial trace over H(s)out and the identity operator on H(s)in ,
respectively [25–27].

Most importantly, the converse also holds [25–27]: if a positive operator R satisfies the
constraints of equation (3) for some set of positive operators R(n), n = 1, . . . , N − 1, then there
exists a network of the form of equation (2) such that the operator associated with that network
is R. This is important because it implies that optimizing over quantum networks is completely
equivalent to optimizing over positive operators R satisfying equation (3). In fact, given an
operator R satisfying equation (3), there is a constructive algorithm to build up the channels C(s)

at all time steps s ∈ S [29]. In the following, a positive operator R ∈ Lin+[
⊗

s∈S(H
(s)
out ⊗H

(s)
in )]

satisfying equation (3) for some operators R(n), n = 1, . . . , N − 1, will be called a quantum
comb. We will denote the set of quantum combs with a prescribed number of time steps and
prescribed input and output Hilbert spaces as Comb[

⊗
s∈S(H

(s)
out ⊗H

(s)
in )].

3.2. Quantum testers

More generally, a quantum network can contain measurements: at each time step s one can
have a measurement with outcome ms in some set Ms . Conditionally to the outcome ms , the
input system will undergo a transformation, represented by a completely positive trace non-
increasing map C(s)ms

, with the condition that the sum over all outcomes C(s) :=
∑

ms∈Ms
C(s)ms

is
trace-preserving. A sequential network containing measurements, such as the network

H(s1)in

C(s1)ms1

H(s1)out H(s2)in

C(s2)ms2

H(s2)out ... H(sN )in

C(sN )msN

H(sN )out

As1 As2 ... ASN−1

can be associated with a collection of positive operators T := {Tm|m ∈ M := M1 × · · · × MN }

with the property that the sum over all outcomes T :=
∑

m∈M Tm satisfies equation (3). We call
such a collection of operators a quantum tester. It is possible to prove that if a collection of
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positive operators T = {Tm|m ∈ M} is a quantum tester, then there exists a quantum network of
the form

H(s1)in

C(s1)
H(s1)out H(s2)in

C(s2)
H(s2)out ... H(sN )in

C(sN )m

H(sN )out

As1 As2 ... ASN−1 (4)

such that T is the tester associated with that network [25–27]. Note that here the measurement
takes place only in the last step, while the boxes C(sn), n = 1, . . . , N − 1, represent quantum
channels.

One particular type of tester is that where the first and last quantum systems are trivial
(H(s1)

in ' H(sN )
out ' C in equation (4)). These testers represent quantum networks that start with a

state preparation and end with a POVM measurement. These are exactly the networks that are
interesting for the estimation of quantum processes, as depicted in equation (1): note that to test
a process consisting of N time steps we need a tester consisting of N + 1 time steps. Labelling
the Hilbert spaces as in the following diagram

C(s1)
H(s1)in H(s1)out

C(s2)
H(s2)in ... H(sN )out

C(sN+1)mAs1 As2 ... ASN (5)

the normalization of the tester T becomes

∑
m∈M Tm = Iout,sN ⊗4(N ),

Trin,sN

[
4(N )

]
= Iout,sN−1 ⊗4(N−1),

...

Trin,s1[4
(1)] = 1,

(6)

for some set of positive operators 4(n) ∈ Lin{H(sn)

in ⊗ [
⊗n−1

i=1 (H
(si )
out ⊗H(si )

in )]}, n = 1, . . . , N .

3.3. The generalized Born rule

If we test a process represented by the quantum comb R ∈ Comb[
⊗

s∈S(H
(s)
out ⊗H

(s)
in )] with a

network represented by the tester T := {Tm|m ∈ M}, then we obtain a probability distribution
p(m|R(N )) over all possible outcomes. Such a probability distribution is given by the
generalized Born rule of [25, 26]:

p(m|R)= Tr[Tm R]. (7)

Here the quantum comb R plays the role of the density matrix in the ordinary Born rule, and
the tester {Tm|m ∈ M} plays the role of the POVM measurement. In fact, the ordinary Born
rule can be retrieved as a special case of equation (7), corresponding to the case of state
preparation processes, namely processes that consist of a single time step (N = 1) with no
input system (H(s1)

in ' C). In that special case, the normalization of the quantum comb, given
by Trout,s1[R] = Iin,s1 , becomes Tr[R] = 1, which is the normalization of a density matrix,
while the normalization of the tester, given by

∑
m∈M Tm = Iout,s1 ⊗4(1), Tr[4(1)] = 1, becomes∑

m∈M Tm = Iout,s1 , which is the normalization of a POVM.
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4. The optimization problem of quantum metrology

In process estimation one has a parametric family of processes with a given input–output
structure and with a fixed number of time steps N labelled by an index s ∈ S ⊂ N. Each process
is described by a quantum comb Rx ∈ Comb[

⊗
s∈S(H

(s)
out ⊗H

(s)
in t)], where x ∈ X is the parameter

to be estimated. Let us denote by π(x) the probability that the unknown parameter has the
value x . If x has a continuum of values, p(x) will represent the probability density of x with
respect to some measure dx . For simplicity, in the following we will present the results in the
discrete case, but it is important to bear in mind that these results hold also in the continuous
case, just replacing sums with integrals and replacing the quantifier ‘∀x̂ ∈ X’ with ‘∀x̂ ∈ X
except at most for a set of zero measure’.

4.1. Primal maximization problem

For an estimation strategy described by the quantum tester T := {Tx̂ | x̂ ∈ X}, the probability
distribution p(x̂ |x) is given by equation (7). In order to evaluate the performance of a given
strategy, we introduce a payoff function g(x̂, x), which quantifies the gain (or the loss, when
the value of g(x̂, x) is negative) obtained by estimating x̂ when the actual value is x . In the
following, we will require that the payoff function is positive, that is,

g(x̂, x)> 0, ∀x̂, x ∈ X . (8)

Clearly, this assumption can be made without loss of generality as long as the payoff is lower
bounded (that is, as long as there is a limit to the losses).

The expected payoff, averaged over the possible true values, is then given by

γ [T] :=
∑
x∈X

π(x)
∑
x̂∈x

g(x̂, x) p(x̂ |x)

=

∑
x̂∈X

Tr [Tx̂ G x̂ ] , G x̂ =

∑
x∈X

π(x) g(x̂, x) Rx . (9)

An example of the payoff function is g(x̂, x)= δx̂,x , which gives a unit gain if and only if
the estimated value x̂ coincides with the true value x . In this case the average gain coincides
with the average probability of guessing the correct value

γ [T] ≡ psucc :=
∑
x∈X

π(x)p(x |x).

A tester T is optimal if it achieves the maximum payoff, defined as

γmax := max
T,4(1),...,4(N )

γ [T]

Tx̂ > 0,∀x̂ ∈ X∑̂
x∈X

Tx̂ = Iout,sN ⊗4(N ),

Trin,sN

[
4(N )

]
= Iout,sN−1 ⊗4(N−1),

...

Trin,s1[4
(1)] = 1.
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4.2. Dual minimization problem

Maximizing the payoff in equation (10) is a semidefinite program. Using duality theory we now
give a useful expression for the maximum payoff:

Theorem 1. The maximum payoff is given by

γmax = min

{
λ> 0 | ∃R ∈ Comb

[⊗
s∈S

(
H(s)out ⊗H

(s)
in

)]
: λR > G x̂ , ∀x̂ ∈ X

}
, (10)

where G x̂ is defined as in equation (9).

The proof of the theorem, given in the appendix, follows the same lines used by
Gutoski [35] to prove strong duality for the minimum error discrimination of two quantum
processes, which the special instance of our problem corresponding to X := {0, 1} and g(x̂, x)=

δx̂,x . Here we illustrate the result of theorem 1 in a few special examples.

4.3. Examples

4.3.1. State estimation. State estimation can be viewed as a special case where the unknown
process Px to be estimated consists only of the preparation of a quantum state ρx ∈ Lin+(H) (that
is, when there is only one time step N = 1, the output Hilbert space is H(s1)

out = H, and the input
Hilbert space is trivial H(s1)

in ' C). In this case, the expression (10) becomes

γmax = min
{
λ> 0 | ∃ρ ∈ St (H) : λρ > G x̂ , ∀x̂ ∈ X

}
, (11)

with G x̂ =
∑

x∈X π(x) g(x̂, x) ρx .

4.3.2. Minimum error state discrimination. If g(x̂, x)= δx̂,x , the maximum payoff γmax

coincides with the maximum probability of guessing the correct value pmax
succ, so that maximizing

the payoff is equivalent to minimizing the error probability. In this special case we retrieve from
equation (11) the classic expression of Yuen et al [28] (see also [30, 31])

pmax
succ = min

{
Tr[3] | 3 ∈ Lin(H), 3> πx̂ρx̂ ,∀x̂ ∈ X

}
(12)

(the above expression follows from equation (11) with the definition 3 := λρ).

4.3.3. State estimation/discrimination in the group covariant case. The dual expression for
the maximum payoff has an interesting interpretation in the presence of symmetry. Let us first
consider a simple case of state discrimination, where X is a finite group, the prior probability
π is uniform, that is, π(x)= 1/|X|, and the unknown state ρx is given by ρx = Uxρ0U †

x , where
ρ0 ∈ St(H) is a fixed state and U : X → Lin(H), x 7→ Ux is a projective unitary representation of
the group X. In this case, it is easy to show that the minimization over 3= λρ in equation (12)
can be restricted without loss of generality to invariant states, satisfying UxρU †

x = ρ,∀x ∈ X.
Hence, we have

pmax
succ = min

{
λ | ∃ρ ∈ St(H) : ρ is invariant, ρ >

ρ0

λ|X|

}
=

1

|X|qmax
(13)

qmax := max {q | ∃ρ ∈ St(H) : ρ is invariant, qρ0 6 ρ} .
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By definition, qmax is the maximum probability that ρ0 can have in an ensemble decomposition
of an invariant state ρ, optimized over all possible invariant states. The probability qmax ranges
between 1/|X| and 1. Intuitively, qmax can be interpreted as a measure of how symmetric the
state ρ0 is: for qmax = 1 the state ρ0 is invariant, while for qmax = 1/|X| the state ρ0 generates a
family of orthogonal states ρx = Uxρ0U †

x .
The result can be easily extended to the case of arbitrary payoff functions that are left-

invariant under the action of the group, that is, functions g satisfying the condition g(yx̂, yx)=

g(x̂, x),∀x̂, x, y ∈ X. Moreover, the expression of equation (13) can be generalized to a form
that holds also for continuous groups:

Corollary 1. Let X be a compact group, g : X × X → R be a left-invariant payoff function, and
ρx be the quantum state ρx := Uxρ0U †

x , where U : x 7→ Ux is a unitary representation of the
group X. If the prior probability is given by the Haar measure dx, then the maximum average
payoff over all quantum measurements is given by

γmax =
γ0

qmax
, γ0 :=

∫
X

dx g(e, x)

qmax := max {q | ∃ρ ∈ St(H) : ρ is invariant, qσ0 6 ρ}

σ0 :=
1

γ0

∫
X

dx g(e, x) Uxρ0U †
x ,

where e ∈ X denotes the identity element in the group X.

Proof. Using the invariance of the Haar measure and of the payoff function it is easy to
check that G x̂ = Ux̂(γ0σ0)U

†
x̂ . Using this fact, we can restrict the minimization in equation (11)

to invariant states ρ satisfying the condition λρ > γ0σ0. Finally, defining q := γ0/λ we can
transform the minimization over λ into a maximization over q , thus proving the thesis. ut

4.3.4. Binary discrimination of multi-time quantum processes. The discrimination of two
multi-time processes P0 and P1 corresponds to the special case where X = {0, 1}. In this case,
the maximum probability of successful discrimination defines an operational norm in the real
vector space generated by quantum processes [34, 35]. For prior probabilities π0 and π1, the
probability of success and the norm are linked by the relation [34]

psucc =
1
2

(
1 + ||π0P0 −π1P1||op

)
,

which generalizes the well-known expression of Helstrom [16] for the optimal discrimination
between two quantum states. In the binary case the dual expression for the maximum success
probability given by theorem 1 coincides with the dual expression presented by Gutoski in [35].

4.3.5. Process estimation/discrimination in the group covariant case. Consider the case of
a general process Px consisting of N time steps. Suppose that Px has the form Px =

(
⊗

s∈S V
(s)
x )P0(

⊗
s∈S U

(s)†
x ), where P0 is a fixed process and U(s)†x (ρ) := U (s)†

x ρU (s)
x [V(s)x (ρ) :=

V (s)
x ρV (s)†

x ] is a unitary quantum channel representing the action of the group on the input
(output) system at the sth time step.

Denoting by Rx and R0 the quantum combs corresponding to the processes Px and P0, it is
possible to show that Rx =

(⊗
s∈S V

(s)
x ⊗ U(s)∗x

)
(R0), where U(s)∗x denotes the complex conjugate

U(s)∗x with respect to the computational basis [32].
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The result of corollary 1 can then be generalized immediately to the case of general
processes:

Corollary 2. Let X be a compact group, g : X × X → R be a left-invariant payoff function, and
let ρx be the quantum state ρx := Uxρ0U †

x , where U : x 7→ Ux is a unitary representation of the
group X. If the prior probability is given by the Haar measure dx, then the maximum average
payoff over all quantum measurements is given by

γmax =
γ0

qmax
,

γ0 :=
∫

X

dx g(e, x),

qmax := max

{
q | ∃R ∈ Comb

(⊗
s∈S

H(s)out ⊗H
(s)
in

)
: R is invariant, q S0 6 R

}
,

S0 :=
1

γ0

∫
X

dx g(e, x)

(⊗
s∈S

V(s)x ⊗ U(s)∗x

)
(R0),

where e ∈ X denotes the identity element in the group X.

Proof. The same proof as for corollary 1. ut

5. Product rule for the estimation of independent processes

Imagine that we have K processes, where each process Pk,xk corresponds to a quantum network
as in figure (2) and is labelled by an unknown parameter xk in some set Xk , k = 1, . . . , K . For
every fixed k, all the processes {Pk,xk | xk ∈ Xk} consist of the same number Nk of time steps,
which we label by an index sk in some set Sk ⊂ N. At time sk , each process Pk,xk will transform
an input system with Hilbert space H(sk)

k,in into an output system with Hilbert space H(sk)

k,out.
Let us denote by x the vectors of parameters x := (x1, . . . , xK ) ∈ X := X1 × · · · × XK . We

say that the K processes {Pk,xk | k = 1, . . . , K } are independent when

• two processes Pk,xk = Pl,xl with k 6= l correspond to two disconnected quantum networks
for every xk ∈ Xk and for every xl ∈ Xl

• the prior distribution of the parameters factorizes as

π(x)= π1(x1)π2(xi) · · ·πK (xK ), (14)

where πk is the prior distribution for the parameter xk .

For example, the different parameters could be K independent and uniformly distributed
phase shifts.

If {Pk,xk | k = 1, . . . , K } are K independent processes, we denote by Px := P1,x1 ⊗P2,x2 ⊗

· · · ⊗PK ,xK the corresponding joint process.
Suppose that we want to estimate parameter x labelling the joint process Px and that our

figure of merit is given by the payoff function g(x̂, x). If we are interested in each parameter
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independently, then the payoff function for the estimation of the vector x is the product of the
payoff functions for the estimation of its components:

g(x̂, x)=

K∏
k=1

gk(x̂k, xk), gk > 0, ∀k = 1, . . . , K , (15)

where the notation gk > 0 means g(x̂k, xk)> 0,∀x̂k, xk ∈ Xk . For example, the payoff function
could give a unit reward only when all the parameters are guessed correctly, so that g(x̂, x)=

δx̂,x =
∏K

k=1 δx̂k ,xk .
Note that, in order to have a meaningful figure of merit for the estimation of the vector x,

it is important to have gn > 0 for every n: otherwise, the product of two negative gains (i.e. of
two losses) for two different parameters would count as a positive gain for the joint estimation
of the vector x.

Based on the hypotheses of independence of the processes and on the product form of the
payoff function we can prove the following theorem:

Theorem 2 (Product rule for the estimation of K independent processes). LetPk,xk , k = 1,
. . . , K , be K independent processes, each process labelled by an unknown parameter xk ∈ Xk

with prior probability πk(xk). Then for a payoff function g(x̂, x) of the product form of
equation (15) the maximum payoff for the estimation of x is given by the product of the
maximum payoffs for the estimation of its components:

γmax =

K∏
k=1

γmax,k, (16)

where γmax,k is the maximum payoff achievable in the estimation of xk .
In other words, the optimal estimation of the vector x can be achieved by estimating each

component xk independently.

Proof. Clearly, we have γmax >
∏K

k=1 γmax,k , because restricting to product strategies can only
reduce the maximum payoff. To prove the converse we use the dual minimization problem of
theorem 1, in which restricting to product combs can only increase the minimum.

Let Rk,xk be the quantum comb representing the process Pk,xk and let Rx =
⊗K

k=1 Rk,xk be
the quantum comb representing the process Px =

⊗K
k=1 Pk,xk . Let us introduce the notation

Ck := Comb

[(⊗
sk∈Sk

H(sk)
out ⊗H(sk)

in

)]
,

C := Comb

[(
K⊗

k=1

⊗
sk ∈ Sk

H(sk)
out ⊗H(sk)

in

)]
,

Cprod :=

{
R =

K⊗
k=1

Rk | Rk ∈ Ck ∀k = 1, . . . , K

}
⊂ C.

With this notation we have that Rk,xk and Rx belong to Ck and C, respectively.
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Define the positive operators

Gk,x̂k :=
∑
xk∈Xk

πk(xk) gk(x̂k, xk) Rk,xk ,

G x̂ :=
∑
x∈X

π(x) g(x̂, x) Rx ≡

K⊗
k=1

Gk,x̂k .

Then, by theorem 1 we have

γmax = min {λ> 0 | ∃R ∈ C : λR > Gx, ∀x ∈ X}

6min
{
λ> 0 | ∃R ∈ Cprod : λR > Gx, ∀x ∈ X

}
6

K∏
k=1

min
{
λk > 0 | ∃Rk ∈ Ck : λk Rk > Gk,xk , ∀xk ∈ Xk

}
=

K∏
k=1

γmax,k.

Here, the second inequality comes from the fact that if λk Rk > Gk,xk for all k, then λR > Gx for
λ=

∏
k λk and R =

⊗
k Rk . ut

Relation with the product rules presented by Mittal and Szegedy. The technique used to prove
that the optimal payoff is of the product form is directly inspired by a result presented by
Mittal and Szegedy on product rules for semidefinite programming [23]. However, our result
is not a direct application of the theorem in [23], which concerns product programs, where
the linear constraint for the product program is the tensor product of the linear constraints for
the individual programs. The theorem is not directly applicable in our case because in the joint
estimation of K processes the linear constraints of equation (10) are not the tensor product of the
linear constraints for the estimation of each process separately. However, the crucial point here
is that the tensor product of K operators satisfying the constraints individually is an operator
that satisfies the joint constraint and that this property is true both in the primal maximization
problem and in the dual minimization program.

Example 5: minimum error discrimination of K sets of processes. Theorem 2 can be applied
to the case of minimum error discrimination of processes. Suppose that for every k = 1, . . . , K
we have a set of processes {Pk,xk | xk ∈ Xk}, each process Pk,xk having prior probability
πk,xk (

∑
xk∈Xk

πk,xk = 1). Denoting by pmax
succ,k the maximum probability of success in correctly

identifying the kth process, and by pmax
succ the probability of success in correctly identifying all

processes, we then have pmax
= pmax

succ,1 · · · pmax
succ,K . The best joint strategy for discrimination is

just the product of the best individual strategies.

5.1. Counterexamples

Our theorem 2 proved the optimality of product strategies in the hypotheses that the processes
are independent and that the payoff function is of a product form. Here we show that if one of
these hypotheses is dropped, there are examples where the result does not hold.
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5.1.1. Minimum error discrimination of two pure states with multiple copies. One of the most
basic problems in quantum information is to distinguish between two non-orthogonal quantum
states (see, e.g., the classic textbook of Helstrom [16]). In this context, one important question
is how small the probability of error can be made when a finite number of identically prepared
quantum systems are available. Consider the minimum error discrimination of two pure states
{ρ0, ρ1} with prior probabilities {p0, p1}, in the case where K identical copies of the unknown
state are available. We can view this problem as an instance of minimum error discrimination of
K perfectly correlated preparation processes, each of which prepares one of the states {ρ0, ρ1}.
Denoting by pmax

succ(K ) the probability of success with K copies, we know from the quantum
Chernoff bound [33] that pmax

succ(K ) converges to 1 exponentially fast in the limit K → ∞. On
the other hand, the product of the probabilities of success, given by [pmax

succ(K = 1)]K tends to
zero (exponentially fast) unless the two states are perfectly distinguishable. This example shows
that, when the prior distribution is not of the product form, the optimal joint strategy may not
be the product of the optimal individual strategies.

5.1.2. Estimation of two independent phase shifts with a correlated payoff function. Phase
estimation is another great classic of quantum estimation theory [16, 17], with applications
to quantum clocks [4] and high-precision interferometry (see [10, 13] for an overview of the
relevant literature). In the usual scenario, one has given access to multiple queries to the same
black box implementing an unknown phase shift and the question is how the precision of
estimation increases with the number of queries [4, 12]. Here we will consider instead a different
scenario: two black boxes implementing different (uncorrelated) phase shifts are given and the
goal is to estimate the values of the two shifts. A priori, since the values of the two phase shifts
are independent, it could sound natural that the optimal estimation strategy consists in estimating
each phase shift independently. However, in the following we will see that an arbitrarily small
amount of correlation in the figure of merit used to judge the quality of the estimation can change
critically the features of the optimal network, with the optimal input state changing suddenly
from factorized to maximally entangled.

Let us see in detail how the example works. Consider the estimation of two independent
phase shifts on two qubit systems, with Hilbert spaces H1 and H2, respectively (H1 ' H2 ' C2).
Denoting by |0〉 and |1〉 the two orthonormal vectors in the standard basis forC2, the phase shifts
on a qubit system are given by Ux = |0〉〈0| + eix

|1〉〈1|, x ∈ [0, 2π). We assume that the phase
shifts on the two qubits are uniformly distributed according to the Haar measure dx/2π . The
problem is then to find the best estimate of the unknown parameter x := (x1, x2) characterizing
the black boxes Ux1 and Ux2 . As a figure of merit, we consider the maximization of the payoff
function

gp(x̂, x)= p cos(x̂1 + x̂2 − x1 − x2)+ (1 − p) cos(x̂1 − x̂2 − x1 + x2),

for some p ∈ [0, 1]. Note that gp is a convex combination of the figure of merit cos(x̂1 + x̂2 −

x1 − x2), which quantifies how good is our estimate of the sum s := x1 + x2, and of the figure
of merit cos(x̂1 − x̂2 − x1 + x2), which quantifies how good is our estimate of the difference
d := x1 − x2. In other words, we can interpret f as expressing the fact that, with probability
p, we will be asked to estimate the sum, while with probability (1 − p) we will be asked to
estimate the difference.

Due to the symmetry of the problem, it is enough to consider quantum networks where the
two unknown phase shifts are applied in parallel on a suitable entangled state |E〉 ∈ H1 ⊗H2,
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as proven in [34]. No additional reference system is needed, because the black boxes form a
unitary representation of an Abelian group [36]. Hence, the problem is reduced to the optimal
estimation of x from the output state |Ex〉 := (Ux1 ⊗ Ux2)|E〉.

From the theory of optimal estimation of group parameters [36] we know that the optimal
measurement is given by the covariant POVM

Px̂ = (Ux1 ⊗ Ux2)|η〉〈η|(Ux1 ⊗ Ux2)
†, |η〉 := |0〉|0〉 + |0〉|1〉 + |1〉|0〉 + |1〉|1〉.

Incidentally, we note that the POVM is of the product form Px̂ = P1,x̂1 ⊗ P2,x̂2 . By direct
calculation, we then find that the average value of gp is γp = 〈E |G p|E〉 with

G p =
p

2
(|0〉|0〉〈1|〈1| + |1〉|1〉〈0|〈0|)+

1 − p

2
(|0〉|1〉〈1|〈0| + |1〉|0〉〈0|〈1|).

Clearly, the maximum eigenvalue of G p is λmax = max{p/2, (1 − p)/2}, corresponding to
the non-degenerate eigenvector |E〉 = 2−

1
2 (|0〉|0〉 + |1〉|1〉) for p > 1/2 and |E〉 = 2−

1
2 (|0〉|1〉 +

|1〉|0〉) for p < 1/2. For p = 1/2 one has degeneration, and the optimal input state can be chosen
of the product form |E〉 = |+〉|+〉 with |+〉 = 2−

1
2 (|0〉 + |1〉).

The qualitative explanation of the behaviour is the following: for p = 1/2 the figure of
merit is factorized (g 1

2
= cos(ϕ̂−ϕ) cos(ψ̂ −ψ)) and the optimal estimation strategy can be

chosen to be factorized too. For every value p 6=
1
2 , the degeneration is removed and suddenly

the optimal input state becomes maximally entangled. The optimal input state depends in
a discontinuous way from the parameter p: the (unique) optimal input state for p > 1/2 is
orthogonal to the (unique) optimal input state for p < 1/2. Note, however, that there is no
discontinuity in the average payoff.

5.1.3. Estimating the sum of K independent phase shifts. The relation between the correlations
in the figure of merit and the correlations in the optimal estimating network can also be observed
in the case of multiple independent phase shifts. Suppose that we have K identical systems,
with Hilbert spaces Hk ' CN for all k = 1, . . . , K , and suppose that each system undergoes an
independent phase shift U (k)

xk
:= eixk H (k)

, where H (k) :=
∑N

n=1 n |n〉〈n| for every k, {|n〉} being
the computational basis.

If we want to estimate the sum s :=
∑

k xk a natural figure of merit is the minimization of
the expected value of the cost function c(ŝ, s)= 2[1 − cos(ŝ − s)]. This cost function is well
known in the phase estimation literature as a smooth and periodic version of the variance [4, 12,
16, 17]. For small s, we have indeed ĉ(ŝ, s)≈ (ŝ − s)2. Clearly, minimizing c is equivalent to
maximizing the payoff function g(ŝ, s)= 1 + cos(ŝ − s).

Let us find the optimal estimation strategy. First, using the fact that the unknown black
boxes form a unitary representation of an Abelian group, we know that the optimal strategy
consists in applying the black boxes in parallel on an entangled input state |E〉 ∈ H⊗K [34, 36].
Moreover, note that for every fixed i and j , if we apply the transformation xi 7→ xi + ξ , x̂i 7→

x̂i + ξ , x j 7→ x j − ξ , x̂ j 7→ x̂ j − ξ , ξ ∈ [0, 2π), then the value of the figure of merit does not
change. Using this symmetry it is easy to show that the input state |E〉 must be an eigenstate of
the difference operator 1i j = H (i)

− H ( j) for every possible pair i, j . It is then straightforward
that the optimal choice is |E〉 =

∑N
n=1 en|n〉

⊗K , where {en} are suitable coefficients. The problem
then becomes to estimate the sum s from the state |Ex〉 := (

∏
k U (k)

xk
)|E〉 =

∑N
n=1 eisnen|n〉

⊗K .
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From the theory of optimal phase estimation we know that the minimum cost is cmin =

4 sin2[ π

2N ], which converges to π2

N 2 in the limit N → ∞ (see [4]). The corresponding optimal
state is the entangled state [4]

|Eopt〉 =

(
N

2

)−
1
2

N∑
n=1

sin

[
π(n − 1)

(N − 1)

]
|n〉

⊗K ,

and the optimal POVM is Ps = |ηs〉〈ηs|, |ηs〉 :=
∑N

n=1 eisn
|n〉

⊗K . It is easy to see that the use
of entanglement implies an advantage over factorized strategies, where each system is prepared
independently in a state |ek〉 and is measured independently with the optimal POVM. Indeed,
if we choose the optimal states |ek〉 = |e〉 := ( N

2 )
−

1
2
∑N

n=1 sin[π(n−1)
N−1 ] and the optimal product

POVM Px̂ :=
∏

k U (k)
xk
(2|+〉〈+|)U (k)†

xk
, then we obtain the cost

〈c(ŝ, s)〉 = 2(1 − 〈cos(ŝ − s)〉)

= 2

(
1 −

K∏
k=1

〈cos(x̂k − xk)〉

)

= 2

{
1 −

[
1 − 2 sin2

( π
2M

)]K
}
,

where 〈 f 〉 denotes the expectation value of the function f . For large N we obtain the asymptotic
expression 〈c〉 ≈

Kπ2

N 2 . From the comparison with the optimal value cmin ≈
π2

N 2 , we note that
entangling K systems and making a joint measurement implies a reduction of the variance of a
factor K in the estimation of the sum.

6. Conclusions

In this paper, we addressed the estimation of an unknown quantum process that can possibly
consist of a finite number of time steps. We formulated the search for the optimal quantum
network for estimation as a semidefinite program, and used duality theory to give an alternative
expression of the maximum payoff achieved by the optimal network. Using this result, we
proved a product rule for quantum metrology, showing that the individual strategies are
sufficient to achieve the optimal joint estimate of a set of independent processes whenever
the figure of merit is of the product form. In particular, the probability of success in the
discrimination of K sets of processes is the product of the probabilities of success for each set.

It is easy to see that the product rule established here for joint estimation can also be
extended to the optimization of quantum networks for other tasks, such as the optimal cloning
of independent sets of states and processes. In the case of pure state cloning, it has been observed
in [38] that the product rule shows that the maximum global fidelity for the joint cloning of K
sets of states is the product of the maximum global fidelities for each set, so that the optimal
joint cloner is the product of the optimal individual cloners. Using the same type of argument,
one can show that the global channel fidelity for the joint cloning of K sets of unitary gates
(see [39] for the definition of the cloning task in the case of quantum gates) is the product of the
maximum global fidelities for each set, so that the optimal joint cloning network is the product
of the optimal individual networks.
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Appendix. Proof of theorem 1

Define the block diagonal matrices T := (
⊕N

n=14
(n))⊕ (

⊕
x∈X T (N )

x ) and G = (
⊕N

n=1 0n)⊕

(
⊕

x∈X G(N )
x ), where 0i denotes the zero matrix in the i th block. With these definitions, the

optimization problem in equation (10) can be written as a semidefinite program in the standard
form

γmax = maxT Tr[T G]

subject to T > 0

L(T )= K ,

(A.1)

where L is the Hermitian-preserving linear map defined by L(T )=
⊕N

j=0 R( j) with

R(0)
= Trin,s1[4

(1)],

R(1)
= Trin,s2[4

(2)] − Iout,s1 ⊗4(1),

...

R(N−1)
= Trin,sN [4(N )] − Iout,sN−1 ⊗4(N−1),

R(N )
=

(∑
x∈X

Tx

)
− Iout,sN ⊗4(N ),

and K is the block diagonal operator K :=
⊕N

j=0 K ( j) defined by K (0)
= 1 and K ( j)

= 0 j for
every j = 1, . . . , N .

Using the duality of semidefinite programming, we obtain

γmax 6 γ
∗ := min

S
Tr[SK ] (A.2)

subject to L†(S)> G,

where S =
⊕N

j=0 S( j) and L† is the dual map defined by 〈S,L(T )〉 = 〈L†(S), T 〉 with 〈S, T 〉 :=
Tr[S†T ] is the Hilbert–Schmidt product. Using the definition of L†, it is easy to check that
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L†(S)= (
⊕N

n=1 Mn)⊕ (
⊕

x∈X Mx) where

M1 = Iin,s1 S(0) − Trout,s1[S(1)],

M2 = Iin,s2 ⊗ S(1) − Trout,s2[S(2)],

...

MN = Iin,sN ⊗ S(N−1)
− Trout,sN [S(N )],

Mx = S(N ), ∀x ∈ X.

Recalling the definition of K and G, the expression for γ ∗ becomes

γ ∗
= minS S(0)

subject to Iin,s1 S(0) > Trout,s1[S(1)],

Iin,s2 ⊗ S(1) > Trout,s2[S(2)],

...

Iin,sN ⊗ S(N−1) > Trout,sN [S(N )],

S(N ) > G(N )
x , ∀x ∈ X.

(A.3)

Note that S(N ) must be positive, since we have S(N ) > G(N )
x > 0. Consequently, S( j) must

be positive for every j = 0, . . . , N . Moreover, there exists at least an operator S such that
L†(S) > G. For example, one can choose

S(N ) = gmax

N∏
n=1

(
Iout,sn ⊗ Iin,sn

)
, gmax := max

x̂,x∈X
g(x̂, x),

S(N−1)
= 2 Trout,sN Trin,sN [S(N )],

...

S(0) = 2 Trout,s1Trin,s1[S(s1)].

The existence of an operator S such that L†(S) > G, along with the fact that the maximum
payoff γmax is bounded by gmax, implies that the hypotheses of Slater’s theorem (see, e.g.,
[35, 37]) on strong duality are satisfied. Hence, the optimum values for the primal and dual
optimization problem coincide: γmax = γ ∗.

Now, we show that the first N inequalities can be chosen to be equalities without loss
of generality: we show that for every operator S satisfying the constraints there exists another
operator S̃ that achieves the equality in the first N constraints and has the same value of the
objective function as S. To prove this statement, we proceed by induction. First, we define the
operator S̃ :=

∑N
j=0 S̃( j) through the relations

S̃(0) := S(0),

δ(1) := Iin,s1 S̃(0) − Trout,s1[S(1)]> 0,

S̃(1) := S(1) + ρ1 ⊗ δ(1),

S̃( j) := S( j), ∀ j = 2, . . . , N ,
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where ρ1 is an arbitrary quantum state in St(Hout,s1). Clearly, with this definition we have
Trout,s1[S̃(1)] = Iin,s1 S̃(0), that is, S̃ achieves the equality in the first constraint. Moreover, since δ(0)

is positive we have Iin,s2 ⊗ S̃(1) > Iin,s2 ⊗ S(1) > Trout,s2[S(2)] ≡ Trout,s2[S̃(2)], namely S̃ satisfies
the second constraint. Hence, the operator S̃ has the same objective value of S, satisfies all the
constraints and achieves the equality in the first. Now, suppose that S achieves the equality in
the first k > 1 constraints and define

S̃( j) := S( j), ∀ j = 1, . . . , k,

δ(k+1) := Iin,sk+1 S̃(k) − Trout,sk+1[S(k+1)]> 0,

S̃(k+1) := S(k+1) + ρk+1 ⊗ δ(k+1),

S̃( j) := S( j), ∀ j = k + 2, . . . , N ,

where ρk+1 is an arbitrary quantum state in St(Hout,sk+1). With this definition it is immediate to see
that S̃ has the same objective value of S, satisfies all constraints and achieves the equality in the
first k + 1 ones. By induction, we conclude that for every operator S satisfying the constraints
there exists another operator S̃ which achieves the equality in the first N constraints and has
the same objective value. Defining λ := S̃(0) and R := S̃(N )/λ, we then obtain the thesis of the
theorem. �
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