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Abstract. We present a method for reconstructing the average evolution of the
photon number distribution of a field decaying in a high-Q cavity. It applies
an iterative maximum likelihood state reconstruction algorithm to the diagonal
elements of the field density operator. It is based on quantum non-demolition
measurements carried out with atoms crossing the cavity one by one. A small
set of successively detected atoms defines a positive operator valued measure
(POVM). The reconstruction is performed by applying this POVM to a large
ensemble of field realizations. An optimal POVM based on the detection of a
minimal number of atoms is shown to be sufficient to ensure an unambiguous
convergence of the reconstruction. The cavity crossing time of this minimal
number of atoms must be much shorter than the lifetime of the largest photon
number present in the field. We apply the method to monitor the evolution of
number states prepared by quantum feedback in a recent experiment. The method
could also be useful in circuit QED experiments.
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1. Introduction

Reconstruction of quantum states [1] is an important issue in quantum information science.
Reconstruction of quantum oscillator states is particularly useful in quantum optics [2–5],
trapped ion physics [6, 7], cavity [8] and circuit [9] quantum electrodynamics. It is a powerful
tool for studying decoherence [8, 10] of systems at the boundary between the quantum and
the classical worlds. For states evolving rapidly in time such as non-classical fields trapped
in cavities, the reconstruction must be based on information acquired on an ensemble of
realizations, each of them providing, in a short time interval, only a limited amount of
information. Adequate estimation procedures must be implemented in order to minimize both
the time window in each run and the number of realizations required for a faithful state
reconstruction.

In many cavity and circuit QED experiments, in which the field is stored in a high-Q
resonator (damping time Tc) a partial reconstruction of the state restricted to the photon number
distribution provides all the relevant information. This is the case for experiments preparing
and studying the evolution of photon number states (Fock states) in cavities [9, 11, 12]. In
these experiments, the time window for data acquisition in each run must be much shorter
than the decoherence time Tc/nm of the Fock state corresponding to the maximum number of
photons nm involved in the measured field. We have recently used a photon number distribution
reconstruction method based on the maximum likelihood (MaxLik) procedure [13, 14] for
process tomography of Fock state relaxation [15] and for the assessment of the fidelity of a
quantum feedback procedure preparing on demand and stabilizing Fock states in a cavity
[11, 12]. A microwave field stored in a superconducting cavity is dispersively probed by non-
resonant circular Rydberg atoms. The detection of the final state of each atom provides quantum
non-demolition (QND) information on the photon number [16].

In this paper we describe in detail this efficient reconstruction method whose principle was
only briefly outlined in [15]. We show that detecting in each realization a minimum number of
atoms in a time short compared to Tc/nm is sufficient to reconstruct faithfully the field evolution.
In section 2, we recall the basics of our experimental setup and of the QND photon number
measurements. In section 3, we present the reconstruction algorithm, and discuss in section 4 the
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Figure 1. The experimental setup.

required minimal atom number per realization. In section 5, we confirm the results of section 4
by numerical simulation of an ideal experiment. Realistic experimental parameters are taken
into account in the numerical simulations of section 6. In section 7 we apply the method to the
actual data of the feedback experiment presented in [11] and present some concluding remarks
in section 8.

2. The experimental setup

Figure 1 is a sketch of the experimental setup described in detail in [11]. A microwave field is
confined in a high-finesse Fabry–Pérot cavity C made of two superconducting niobium mirrors,
resonant at ωc/2π = 51 GHz. When cooled down to 0.8 K, it has a very long field energy
lifetime (Tc = 65 ms in [11]), with a low average number of thermal photons nth = 0.05.

The microwave field is probed by a succession of rubidium atom samples, prepared in
box B into the circular Rydberg states g or e with principal quantum numbers 50 and 51,
respectively. Each atom undergoes π/2 microwave pulses mixing e and g in the low-Q cavities
R1 and R2 fed by the classical source S, which constitute a Ramsey interferometer. Atomic
samples are separated by a time interval Ta = 82 µs. They are excited by 2 µs laser pulses and
have a well-defined velocity v = 250 m s−1 so that the position of each sample is known within
1 mm at any time from its preparation in B to its detection (in the e–g basis) by field ionization
in D. The number of Rydberg atoms in a single sample obeys a Poisson law with an average
≈0.8. This number is low enough so that the probability of having more than two atoms in a
sample is negligible. The atomic detection efficiency is 35%.

The Rydberg atoms interact with the field in C with a coupling strength measured
by the vacuum Rabi frequency, �0/2π = 48 kHz. The g → e frequency is ωa = ωc + δ with
δ/2π ≈ 250 kHz. The atom–field interaction is thus dispersive (δ � �0). The atomic coherence
undergoes in C a light-induced phase shift linear in the photon number n: ϕ(n) = (n + 1/2)ϕ0.
The phase shift per photon ϕ0 is

ϕ0 =
�2

0teff

2δ
, (1)

where teff =
√

π/2 w0/v is the effective interaction time for an atom crossing the Gaussian
profile of the cavity mode with a waist w0. The measurement of ϕ(n) by Ramsey interferometry
provides information about the photon number distribution of the cavity field [17]. From now
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on, we will consider that ϕ0 = 2π/(nm + 1), which is optimal for discriminating photon numbers
ranging from 0 to nm.

Assuming the field to be in the n-photon Fock state |n〉, the probability to detect an atom
in state j ( j = 0, 1 for e and g, respectively) is ideally given by

π( j |n, φ) =
1

2

[
1 + cos (ϕ(n) + φ − jπ)

]
, (2)

where the Ramsey interferometer phase φ can be tuned by varying the relative phase between
the two π/2-pulses. We introduce the photon number operator n̂ and we define for any function
f (n) the operator f (n̂) =

∑
n f (n) |n〉〈n|. The positive operator valued measure (POVM)

associated with the atomic detection in state j is

Êφ, j = π( j |n̂, φ). (3)

For a field with a photon number distribution P(n) = 〈n|ρ̂|n〉 (ρ̂ is the field density operator),
the probability π( j |P, φ) for detecting the atom in state j is

π( j |P, φ) = Tr
(
ρ̂ Êφ, j

)
. (4)

More generally, detecting successively ND atoms in states J = { jk}16k6ND , with the
respective Ramsey phase settings 8 = {φk}16k6ND , corresponds to the measurement of the
POVM

Ê8,J =

ND∏
k=1

π( jk|n̂, φk). (5)

Note that the single-atom POVMs π( jk|n̂, φk) commute since they are all diagonal in the photon
number basis. The probability of finding the detection event J with phase setting 8 is then

π(J |P, 8) = Tr
(
ρ̂ Ê8,J

)
. (6)

For each phase setting 8, the Ê8,J POVMs fulfil the normalization∑
J

Ê8,J = 1. (7)

After this detection, the field density operator ρ̂ is changed to

ρ̂ ′
=

√
Ê8,J ρ̂

√
Ê8,J

Tr
(

Ê8,J ρ̂
) . (8)

For a density operator that is diagonal in the Fock states basis, this equation reduces to

ρ̂ ′
=

Ê8,J ρ̂

Tr
(

Ê8,J ρ̂
) , (9)

leading for the photon number distribution to

P ′(n) =
1

Z

[
ND∏

k=1

π( jk|n, φk)

]
P(n), (10)
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where Z is a normalization factor. We recognize here a direct application of Bayes law
expressing how the photon number distribution is updated once the ND atoms have been
detected.

We have shown in [16] that this measurement projects the field into a Fock state when ND is
of the order of n2

m. These atomic detections achieve thus an ideal projective QND measurement
of the photon number. The result of this projection is random. By performing many such
realizations, we could reconstruct the initial photon number distribution P(n). In the conditions
of [16], where nm = 7, this progressive collapse of the field state takes a time of the order of
20 ms, which is not negligible as compared to Tc/nm. This direct determination of P(n) leads
thus to a skewed probability distribution for large n, reducing the fidelity of the state estimation
at a given time. In order to improve this fidelity, we used instead in [11, 12, 15] a MaxLik
reconstruction method using many realizations of incomplete projections with ND � n2

m atoms
detected in a time interval much shorter than Tc/nm.

3. The reconstruction process

The MaxLik reconstruction method seeks, in general, a density operator ρ̂ maximizing the joint
likelihood of the results of all measurements carried out on M identical copies of the system.
We are here interested in the diagonal elements of ρ̂ only, but for the sake of generality we
first describe the reconstruction method in terms of the full density operator. For each copy of
the field, one performs ND-atom detections whose outcomes are represented by a sequence J
of ND atomic detection results. Let us call M8 the number of times the phase setting 8 has
been used and M8,J the number of times J has been obtained for this setting. We denote by
f8,J = M8,J/M the corresponding frequencies.

If all M8,J are very large, the frequencies f8,J are equal to the probabilities p8,J =

(Mφ/M)Tr(ρ̂ Ê8,J ) = Tr(ρ̂Ê8,J ), where we have defined the POVM

Ê8,J = (Mφ/M)Ê8,J , (11)

normalized by
∑

8,J Ê8,J = 1. Ideally, provided that the set of measurements 8 is large enough,
one could retrieve ρ̂ by inverting the linear equations

f8,J = Tr(ρ̂Ê8,J ). (12)

In practice, the M8,J numbers are finite, leading to statistical fluctuations of the f8,J and
this simple reconstruction procedure may lead to unphysical density operators with negative
eigenvalues. The MaxLik method [13] circumvents this difficulty by searching for the density
operator ρ̂ maximizing the likelihood function

L(ρ̂) =

∏
(8,J )

Tr(ρ̂Ê8,J )
f8,J

. (13)

Using the results of [18, 19], an iterative algorithm leading to the density matrix
maximizing L has been proposed in [13]. It introduces the nonlinear function of ρ̂,

R̂(ρ̂) =

∑
8,J

f8,J

Tr(ρ̂Ê8,J )
Ê8,J , (14)
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which obviously reduces to the unity operator if ρ̂ satisfies equation (12). The searched density
operator ρ̂f thus satisfies R̂(ρ̂f)ρ̂f ' ρ̂f R̂(ρ̂f) ' R̂(ρ̂f)ρ̂f R̂(ρ̂f) ' ρ̂f. These expressions suggest
to obtain ρ̂f as the fixed point of the iterations [14]

ρ̂i+1 = R̂(ρ̂i)ρ̂i (15)

or, within a normalization,

ρ̂i+1 = R̂(ρ̂i)ρ̂i R̂(ρ̂i) (16)

starting from an initial guess, for instance a flat photon number distribution. The iterative
expression (16) ensures the positivity of the density operator at each step and is thus preferred
in the general case. For diagonal density operators, which will only interest us from now on, the
simpler iteration (15) is well behaved (i.e. yields at each iteration positive Pi(n)s). Moreover,
it increases the likelihood at each step. The density operator ρ̂i converges toward ρ̂f if it is
the unique fixed point of (15). We determine in the next section the minimum number ND of
detected atoms in each realization, ensuring the uniqueness of the fixed point.

Before this discussion, let us note that the iteration (15) has a simple physical interpretation.
The first step of the iterative procedure replaces our initial guess ρ̂0 by

ρ̂1 = R̂(ρ̂0)ρ̂0 =

∑
8,J

f8,J
Ê8,J

Tr
(
ρ̂0 Ê8,J

) ρ̂0, (17)

where we recognize the projected density operator updated by the measurement 8, J (see
equation (9)) averaged over a large ensemble of realizations (weights f8,J ). If ND were large
enough to ensure the complete collapse of the photon number distribution in each realization,
ρ̂1 would obviously be the searched distribution and the procedure would converge in a
single step [16]. For smaller ND values, ρ̂1, which includes information provided by many
measurements, is a better guess of the actual state than ρ̂0. Resuming then the iteration
defined by equation (15) with ρ̂1 as a new initial guess leads to an estimation ρ̂2 better than
ρ̂1 and so on.

4. The minimum number of detected atoms per realization

Let us now examine how many atoms have to be detected in each realization in order to ensure
the uniqueness of the MaxLik iteration fixed point toward which the state estimate converges.
For this purpose, it is convenient to introduce a simple geometrical interpretation of the detection
probabilities π(J |P, 8). We associate with each photon number n from 0 to nm a unit vector
n in an Oxy-plane at an angle ϕ(n) with the Ox-axis. Similarly, for each detection in state j
with a Ramsey interferometer phase φ, we define a unit vector d at an angle −φ + jπ with the
Ox-axis.

For a single atom detected per realization (ND = 1), we then obtain from equation (2)

π( j |P, φ) =
1

2

[
1 + P · d

]
, (18)

with

P =

∑
n

P(n)n. (19)
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Figure 2. Representation of the effective charge distribution corresponding to a
coherent field with three photons on average. The phase shift per photon φ0 is
π/4. The area of the gray circles is proportional to the effective charge, i.e. to
the corresponding photon number probability. The dipole P and the detection
direction d are represented as vectors. The projection of P on d determines the
single atom detection probability according to equation (18).

We recognize here the dipole of nm + 1 charges distributed on a circle at the positions defined
by the n vectors as represented in figure 2. The total charge

∑
n P(n) of this distribution is 1.

For two atoms per realization (ND = 2) corresponding to the detection vectors d1 and d2,
we similarly obtain

π(J |P, 8) =
1

22

∑
n

P(n)[1 + n · d1][1 + n · d2]

=
1

22
[1 + Q(1)

· D(1) + Q(2)
· D(2)], (20)

with Q(1)
= P, D(1)

= d1 + d2, and where the rank 2 tensors Q(2) and D(2) are defined by their
components

Q(2)
p,q =

∑
n

P(n)n p nq, D(2)
p,q = d1p d2q , (p, q) ∈ {x, y}

2, (21)

and their scalar product by

Q(2)
· D(2)

=

∑
p,q

Q(2)
p,q D(2)

p,q . (22)

The tensor Q(2) is the quadrupole of the charge distribution. While the dipole is sufficient to
determine the one-atom probabilities, dipole and quadrupole are required for two-atom joint
probabilities.

For ND detected atoms equation (20) generalizes to

π(J |P, 8) =
1

2ND

ND∑
k=0

Q(k)
· D(k). (23)
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The two rank k tensors Q(k) and D(k) are given by

Q(k)
=

∑
n

P(n)n⊗k (n⊗k
p,q,...,t = n pnq . . . nt; Q(0)

= 1), (24)

D(k)
=

∑
16i1<i2<···<ik6ND

di1 ⊗ di2 . . . ⊗ dik (D(0)
= 1). (25)

Note that Q(k) is symmetric and thus involves only k + 1 independent parameters.
The ND-atom detection probabilities involve all the multipoles of the charge distribution

up to the 2ND-pole. Conversely, the knowledge of the ND-atom joint detection probabilities
determines unequivocally all the 2`-poles up to ` = ND by inversion of equation (23), provided
that the Ramsey interferometer phases correspond to at least two different detection directions
(for the sake of simplicity we chose here the two directions φ = 0 or π/2). In the case of ND = 1
and for measurements carried out with d aligned along Ox (φ = 0), we obtain immediately,
from equation (18),

Q(1)
x = 2 π( j = 0|P, φ = 0) − 1, (26)

while measurements made with d aligned along Oy (φ = π/2) yield

Q(1)
y = 2 π( j = 0|P, φ = π/2) − 1. (27)

A single-atom detection with two interferometer phases is thus enough to fully determine the
dipole of the photon number distribution. For ND = 2, we have similarly

Q(2)
x,x = 2 π(0, 0|P, φ1 = 0, φ2 = 0) + 2 π(1, 1|P, φ1 = 0, φ2 = 0) − 1,

Q(2)
y,y = 2 π(0, 0|P, φ1 = π/2, φ2 = π/2) + 2 π(1, 1|P, φ1 = π/2, φ2 = π/2) − 1,

Q(2)
x,y = 2 π(0, 0|P, φ1 = 0, φ2 = π/2) + 2 π(1, 1|P, φ1 = 0, φ2 = π/2) − 1.

The quadrupole of the photon number distribution is thus explicitly determined in terms of
simple linear combinations of two-atom joint probabilities. These equations generalize to an
arbitrary rank `:

Q(`)
p,q,...,t = 2

[∑
J ′

π(J ′
|P, 8)

]
− 1, (28)

with 8 = {(π/2)δp,y, (π/2)δq,y, . . . , (π/2)δt,y} and J ′
= { jp, jq, . . . , jt} such as jp + jq + · · · +

jt is even.
Let us now establish the main result of this section. A photon number distribution over

a range of nm + 1 values requires at least the measurement (with a minimum of two Ramsey
interferometer phases) of N min

D = I [(nm + 1)/2] atoms (I denotes the integer part). We first note
that all multipoles up to rank ` of a charge distribution localized on a circle whose total charge is
unity (figure 2) are determined by 2` real parameters. For ` = 1, the two parameters are the two
coordinates of the dipole. Going to ` = 2 adds the three components Q(2)

xx , Q(2)
yy and Q(2)

xy which
are constrained by the identity Q(2)

xx + Q(2)
yy = 1 resulting from the unit length of the n vectors.

The total number of parameters is thus 4. Let us assume that the multipole expansion up to rank
` − 1 is determined by 2` − 2 parameters. The Q(`) multipole has ` + 1 components constrained
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by the ` − 1 relations Q(`)
xxpqr ... + Q(`)

yypqr ... = Q(`−2)
pqr ... which again result from the normalization

of the n vectors. It can be shown that there are no other independent relations linking the Q(`)

components to the Q(s) ones with s < `. The number of independent parameters determining
all multipole components up to rank ` is thus 2` − 2 + 2 = 2`. The information contained in the
measurements realized with ND atoms thus results in 2ND constraints for the nm + 1 charges
whose sum is unity, which demonstrates that the minimum number of detected atoms should be
N min

D = I [(nm + 1)/2].
The above argument shows that the MaxLik strategy converges if we have perfect

knowledge of the N min
D -atom joint probabilities. We examine in the next section the rate of

convergence and the influence of a finite number of realizations leading to statistical noise on
the measured probabilities.

5. Monte Carlo simulations, the ideal case

We have numerically checked the convergence and the accuracy of the MaxLik procedure for
different ND values. We perform Monte Carlo simulations of QND measurement sequences
and feed the results of these simulations into the iterative reconstruction algorithm. An initial
photon number distribution P f (n) (shown by the green histogram in figure 3(a)) with nm = 7 is
arbitrarily chosen. It has nm + 1 = 8 non-zero elements spanning the photon numbers from 0 to
nm. The measurement is simulated using a phase shift per photon equal to π/4 and four Ramsey
phases (φ ' 0, π/4, π/2, 3π/4). For each atom, φ is chosen randomly among these four
values. Although two phases are, in principle, enough according to section 4, the choice of four
phases ensures that the number of iterations required for convergence is the same for all eight
photon numbers. These simulations are performed assuming an ideal cavity with negligible field
decay and a perfect Ramsey interferometer (fringe contrast equal to 1). The influence of finite
decay time and limited Ramsey fringe contrast will be taken into account in the next section.

A single realization of a simulated measurement consists of ND detected atoms.
The number of realizations leading to a reconstruction is M = 19 000. Thirty independent
simulations are performed in order to estimate the dispersion of the final result. Figures 3(b)–(d)
display the evolution of the eight Pi(n) values versus the iteration rank i , averaged over the
30 simulations, for ND = 3, 4 and 6. An initial flat photon number distribution is assumed
(P0(n) = 1/8). The dotted lines indicate the values of P f (n). For ND = 3 (figure 3(b)) the field
state seems to stabilize at a first fixed point different from P f (n) after several hundreds of
iterations. It then evolves after imax = 100 000 iterations into the distribution shown in figure 3(a)
(red histogram). The error bars represent the variance of the 30 independent simulations. The
occurrence of a ‘metastable’ point in the iteration and the poor fidelity at i = imax (compare the
red to the green histogram in figure 3(a)) is consistent with the analysis of section 3, which
states that ND = 3 is not enough for an unambiguous reconstruction of P f (n) with nm = 7.

Figures 3(c) and (d) present in the same way the evolution of Pi(n) for ND = 4 and 6.
The Pi(n)s reach a stable point after about 300 iterations for ND = 4 and about 60 iterations
for ND = 6. These fixed points remain unchanged thereafter until i = imax. The final histograms
(orange and yellow bars in figure 3(a)) are now very close to P f (n). The figure of merit of the
reconstruction, defined as the standard deviation of Pimax(n) with respect to P f (n), is

σ =
1

nm + 1

√∑
n

(
Pimax(n) − P f (n)

)2
. (29)
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Figure 3. Convergence of the reconstructed photon number distribution as a
function of ND. (a) Green histogram: photon number distribution P f (n) to be
reconstructed. Red, orange and yellow histograms: photon number distributions
obtained by averaging 30 independent reconstructions with i = 105 iterations,
corresponding to ND = 3 (red), ND = 4 (orange) and ND = 6 (yellow). Error bars
represent the standard deviation of the 30 reconstructions. (b) Photon number
probabilities Pi(n) (averaged over 30 independent reconstructions) versus the
iteration number i for ND = 3 (dashed horizontal lines correspond to P f (n)).
The initial guess P0(n) is 1/8 for all n. (c) and (d) The same as (b) for ND = 4
and 6, respectively.

We find that σ = 0.01 for ND = 3 and 0.001 for ND = 4 and 6. For comparison the initial
guess P0(n) corresponds to σ0 = 0.025. These numerical results confirm that ND = 4 atoms are
necessary and sufficient to reconstruct faithfully an arbitrary photon number distribution with
nm = 7. In addition, they indicate the order of magnitude of the number of required iterations.
Increasing ND above N min

D does not improve the reconstruction fidelity but decreases the number
of required iteration steps.

6. Simulating the reconstruction of a time-varying P(n) under realistic
experimental conditions

We now take into account in the simulations the realistic parameters of our cavity QED
experiment described in section 2. We recall that our goal is the reconstruction of a decaying
photon number distribution with a temporal resolution much better than Tc/nm. We thus now
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introduce in the simulation field relaxation between atomic samples by numerical integration
of the field master equation. This influences the simulated detection results. However, the
reconstruction part in the simulation ignores relaxation assuming that the average measurement
time for detecting N min

D atoms is short enough with respect to the field relaxation time.
The Monte Carlo simulation now also accounts for the Poisson distribution of the atoms in
each sample. In addition, it replaces the ideal single-atom detection probability π( j |n, φ) of
equation (2) by

πs( j |n, φ) =
1

2
[1 + cs cos (ϕ(n) + φ − jπ)] , (30)

with cs = 0.76 being the limited contrast of our Ramsey interferometer [11]. This replacement
modifies accordingly the expressions of Êφ,J and hence the MaxLik iteration operator R̂(ρ̂).

A single realization of a simulated experiment involves 500 successive samples crossing C
over a 41 ms time interval. We have investigated the evolution of two initial fields: a nearly pure
n = 4 Fock state (green histogram in figure 4(a)) corresponding to the field state prepared in
the quantum feedback experiment of [11] and a coherent state with an average photon number
of 3 (green histogram in figure 4(c)). As in a real typical experiment, we resum the sequence
4000 times. We reconstruct the photon number distribution P(n, t) by applying the iterative
procedure to the subset of atoms detected in NS = 20 samples crossing C in a time interval
centered at t . The corresponding time window is 1.6 ms, which corresponds to ND ' 4 detected
atoms on the average. It defines the time resolution of the reconstruction. Note that the atoms
detected before the time window at t do not influence the average photon number distribution
at this time because of the QND nature of the atom–cavity interaction. Hence, we exploit
information provided by all the atoms crossing C in each realization and not only that contained
in a single time window. The full reconstruction process is repeated 100 times in order to obtain
the statistical error bars. The time origin t = 0 corresponds to the detection of the first atomic
sample used for reconstruction.

The thin lines in figures 4(b) and (d) display one of the reconstructed P(n, t)s
corresponding to the initial states described by the green histograms in figures 4(a) and (c),
respectively. The statistical noise in the signals results from the finite number of realizations
used for the reconstruction. The thick solid lines are theoretical fits to the reconstructions.
The only fit parameters are the initial photon number probabilities denoted by Pini(n) from
which we calculate the theoretical values of P(n, t), knowing Tc, nth and using the field density
matrix master equation [17]. The fit is adjusted to the reconstructed signals up to t = 16 ms.
Note that this fitting procedure directly gives the initial photon number distribution. It uses
the a priori knowledge of cavity damping time and of the residual blackbody radiation for
eliminating systematic errors due to the effect of field damping during the first NS atom sample
measurement. The averages of 100 independent reconstructions of Pini(n) are shown by red
histograms in figures 4(a) and (c) for the two initial states. The standard deviation of the
reconstruction with respect to the ‘real’ state is σ = 0.004 for the Fock state and σ = 0.002
for the coherent one, while the initial flat distribution corresponds to σ0 = 0.09 and 0.03,
respectively. In the case of the Fock state, the reconstructed population Pini(4) = 80 ± 3% is,
within the error bar, equal to the expected one (82%). In addition to yielding a good estimation of
the initial state, these reconstructions faithfully reproduce the expected field evolution even for
times outside the 16 ms window used for the fit. This makes us confident that our reconstruction
procedure is able to reproduce with good fidelity and high time resolution the evolving photon
number distribution of a relaxing field in a cavity.
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Figure 4. Reconstruction of photon number distributions based on the numerical
simulation of experiments on relaxing fields. (a) and (b) The field to be
reconstructed is close to a Fock state (photon number distribution P f (n) shown
by the green histogram in panel (a)). The red histogram in panel (a) is obtained
by averaging 100 independent reconstructions of Pini(n). Error bars represent the
standard deviation of these reconstructions. In (b) the thin lines represent one of
the 100 reconstructed P(n, t) versus time. The solid lines present the theoretical
fit from which the initial distribution Pini(n) is extracted. (c) and (d) The same
as (a) and (b) for an initial coherent state with three photons on average. For the
sake of clarity, only P(n = 2, t) and P(n = 4, t) are shown in the reconstructed
signal.

7. Reconstruction of real experimental data

In [11, 12], quantum feedback protocols have been used to prepare on demand photon number
states. The field is probed by QND measurements carried out with atoms allowing a control
computer to estimate in real time the field state and to decide which correction action must be
taken in order to bring this state closer to the target. The procedure is repeated in a succession of
loops. When the controller estimates that the target is reached with a threshold fidelity, it stops
acting on the field. Repeating this operation 4000 times, we prepare a statistical ensemble on
which we apply the MaxLik reconstruction procedure with nm = 7 as an independent estimation
of the prepared field state.

New Journal of Physics 14 (2012) 115007 (http://www.njp.org/)

http://www.njp.org/


13

Figure 5. Reconstruction procedure applied to the real experimental data of [11].
(a) In green: photon number distribution as estimated by the quantum feedback
controller for the target n = 4 Fock state. In red: reconstructed photon number
distribution obtained as in figure 4 but based on real experimental data. (b)
The thin lines represent the P(n, t) reconstruction versus time following the
interruption of the feedback loop at t = 0. The solid lines present the theoretical
fit from which the red histogram in panel (a) is extracted.

Figure 5(a) shows in green the photon number histogram (average over 4000 realizations)
as estimated by the controller in the experiment [11] when the fidelity with respect to the
target state n = 4 reaches the 0.8 threshold. This initial state was chosen for the simulation
of section 6, so that the green histograms in figures 4(a) and 5(a) are identical. Figure 5(b)
shows the evolution of P(n, t) during the 100 ms following the interruption of the feedback
loop. The reconstruction method is the same as the one used in section 6 with ND ' 4 atoms in
each time window. The thin lines describe the decay of the initial approximate four-photon Fock
state after the termination of the feedback loop. The solid lines are fits realized as described in
section 6. The real data are in good agreement with theoretical predictions over the total 100 ms
measurement time. The fit parameters Pini(n) are displayed in figure 5(a) (red histogram). The
Pini(4) probability is 0.74, slightly smaller than the one (0.82) estimated by the controller. This
indicates that the controller overestimates the fidelity of the state it prepares, its task being
much more complex than merely reconstructing the photon number distribution. This explains
the small discrepancy between the green and the red histograms in figure 4(a). However there is
great similarity between the reconstructions of the experimental and simulated data (the same
statistical noise and time evolution in figures 4(b) and 5(b)). Note that in the reconstructed
distribution Pini(7) ' 0 (figure 5(a)). The vanishing values of Pini(0) and Pini(1) also prove that
the eight and nine photon Fock states are not populated (with the ϕ0 = 2π/(nm + 1) = π/4
setting, the atomic POVMs do not distinguish n from n + nm). This justifies our choice of
the maximum photon number nm = 7. Non-zero populations over the whole 0–nm interval
may indicate an improper choice of nm. A similar time-resolved reconstruction procedure
was applied to study the evolution of fields prepared in Fock states by random projective
measurements [15]. The detailed analysis presented here validates the procedure that was only
briefly outlined in [15].
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8. Conclusion

We have presented here a powerful MaxLik method for the statistical reconstruction of fields
evolving in a cavity. It uses a stream of non-resonant atoms as a QND dispersive probe.
We have shown that a minimal sequence of ND ' nm/2 atoms around a given time in each
realization is necessary and sufficient to reconstruct a snapshot of the field photon number
distribution, provided it does not contain more than nm photons. Each realization contributes
to the reconstruction of the field at all times since information can be extracted from a long
atomic sequence divided into elementary ND atom bins. Due to the QND character of our
measurement scheme, data coming from different bins contribute independently to the statistical
reconstruction. In this way, information is acquired more rapidly than in procedures involving
destructive measurements, which are limited to one measurement in a given time bin for each
realization.

The presented method has been successfully tested on numerically simulated as well as on
experimentally measured data. For an ideal atomic beam delivering one atom every Ta, the time
resolution of this method of state reconstruction is Tanm/2, which should be smaller than Tc/nm

the lifetime of the Fock state with the maximum photon number in the field. The method can thus
reconstruct the evolution of arbitrary photon number distribution provided nm <

√
2Tc/Ta. If we

had a deterministic source of atoms and a perfect detector, the limit in our experiment would
be nm ' 40, this figure being limited to ' 10 by the randomness of the present atomic source
and the limited detection efficiency. Improving on these factors and on the cavity damping time
should allow us to time resolve the evolution of fields involving up to a few tens of photons.

Our method can be generalized to the full reconstruction of field density operators [8]
by applying controlled field displacements before measurement of the ND-atom POVMs. The
minimum number of detected atoms in a time bin is still given by N min

D = I [(nm + 1)/2], where
nm is now the number of Fock states populated in the displaced field. Note finally that our
reconstruction method, based on non-resonant interaction with the cavity, may be of interest
in the context of circuit QED with three-dimensional cavities [20]. In these experiments, an
increase of the coherence time of the qubit is obtained at the expense of reduced control, which
makes it difficult to implement the reconstruction method used in [9].
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