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Abstract. Inspired by recent experiments in cell biology, we elucidate the
visco-elastic properties of an active gel by studying the dynamics of a small
tracer particle inside it. In a stochastic hydrodynamic approach for an active gel
of finite thickness L , we calculate the mean square displacement of a particle.
These particle displacements are governed by fluctuations in the velocity field.
We characterize the short-time behavior when the gel is a solid as well as the
limit of long times when the gel becomes a fluid and the particle shows simple
diffusion. Active stresses together with local polar order give rise to velocity
fluctuations that lead to characteristic behaviors of the diffusion coefficient
that differ fundamentally from those found in a passive system: the diffusion
coefficient can depend on system size and diverges as L approaches an instability
threshold. Furthermore, the diffusion coefficient becomes independent of the
particle size in this case.
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1. Introduction

The rheological properties of a complex fluid are often measured by using ‘passive’ micro-
rheology. In this approach, the visco-elastic moduli are calculated from the generalized
Stokes–Einstein relation [1] by measuring the fluctuations of a tracer particle of micron
size [2] embedded in the complex fluid. This experimental technique is, however, restricted
to thermal equilibrium systems for which the fluctuation–dissipation theorem is valid, the
generalized Stokes–Einstein relation being a specific case of this theorem. In a non-equilibrium
system such as the actin cytoskeleton of a eukaryotic cell, measurements of the local rheology
using ‘active micro-rheology’ and those of the fluctuations using ‘passive micro-rheology’
give different information. This is well illustrated by recent in vitro experiments where the
fluctuation–dissipation theorem is shown to be violated at frequencies smaller than a few
hertz [3] in an acto-myosin gel. The non-equilibrium character of the acto-myosin gel here
is due to the consumption of adenosine-tri-phosphate (ATP), which is constantly hydrolysed
into adenosine-di-phosphate (ADP) and inorganic phosphate.

Still, in a cell, passive rheological measurements following the motion of tracer particles
are of considerable interest, as they yield information about the underlying small-scale dynamics
and interactions [4] and therefore give insight into the nature of motions and transport of
biological materials inside the cell. An example is given by recent experiments on the motion of
secretory vesicles that are transported through the actin cortical layer in human carcinoid BON
cells [5]. The mean square displacement g(t) = 〈[x(t) − x(0)]2

〉 of a vesicle of instantaneous
position x(t), attached to the cytoskeleton, is measured. The broad picture emerging from
these experimental results is complex and interesting: one finds directed motion at short times
and diffusive motion at long times but also phases of quasi-arrested motion and complex
crossovers [4, 5].

The aim of this paper is to study the diffusion of a probe particle in a thin film of an active
material, see figure 1. Surprisingly, we find that the diffusion coefficient has a component that
is independent of the particle radius. In addition, this component diverges near an instability
called the Frederiks transition and thus generically dominates any Stokes-like contribution.

We obtain these results from a stochastically driven coarse-grained hydrodynamic
description of viscoelastic active gels [6, 7]. We calculate the motion of a small bead of size a
inside a thin active gel film, with polar order, described by a polarization field pα, α = x, y, z.
The film is infinite along the x, y plane, but has a finite thickness L in the z-direction. A typical
example that we have in mind is the cortical actin layer in a cell where the orientation of the
actin filaments can have a component parallel to the cell membrane. It has recently been shown
that a liquid active gel film of thickness L with polarization either parallel or perpendicular
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Figure 1. Schematic representation of a bead (red) diffusing in a thin active film
of thickness L . The arrows show fluctuations of the polarity field.

to its surface has a spontaneous flow transition above a critical activity threshold, which has
been called a Frederiks transition [8–10]. The transition is driven by the coupling between the
polarization orientation and the active stress. The new anomalous contribution to the diffusion
coefficient diverges near this transition; however, our results are more general and also apply
to situations before the transition is reached. It is not yet clear whether the Frederiks transition
plays a role in cellular systems such as cortical actin or the lamellipodia of moving cells.

2. Diffusion in an active thin film

We consider an incompressible viscoelastic film with a viscoelastic relaxation time τ . At short
times, smaller than τ , the film behaves as a solid with a shear modulus E , and the mean
squared displacement of a bead of size a remains bounded: g(t) '

kT
π Ea . At long times t � τ ,

the film is a liquid and the motion of the particle is diffusive. As the film is anisotropic,
one must define a diffusion tensor Dαβ . For a particle at the origin at t = 0, it is defined by
gab(t) = 〈xa(t)xb(t)〉 = 2Dabt for large t . If the particle follows the velocity field, vα(x, t), of
the surrounding active fluid, the diffusion tensor can be written as

Dαβ =
1

V

∫
∞

0
dt

∫
d3k

(2π)3
〈ei k[x(t)−x(0)]ṽα(k, 0)ṽβ(−k, t)〉, (1)

where ṽα(k, t) is the spatial Fourier transform of the velocity field and V denotes the system
volume. In the following, we discuss both the diffusion tensor and the effective elastic modulus
viewed by the bead at short times.

The force balance in an incompressible active gel can be expressed as ∂β(σ̃αβ + σ a
αβ −

Pδαβ + σ e
αβ) = 0, where σ̃αβ denotes the traceless part of the symmetric deviatoric stress and

the antisymmetric deviatoric stress is given by

σ a
αβ =

1
2(pαhβ − pβhα). (2)

Here hα = −δF/δpα is the orientational field conjugate to the polarization pα, where F =∫
d3r f denotes the polarization free energy with free energy density f . The pressure P plays

the role of a Lagrange multiplier to impose the incompressibility constraint ∂αvα = 0. Note that
in a polar system the equilibrium stress can have anisotropies described by the Ericksen stress

σ e
αβ = −

∂ f

∂(∂β pγ )
∂α pγ . (3)
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In the following, we consider the simple case when the polarity field has constant magnitude
pγ pγ = 1 and we ignore stress contributions due to the Ericksen stress, i.e. we approximate
σ e

αβ ' 0. The constitutive equations of the active gel then read [7](
1 + τ

D

Dt

) {
σ̃αβ + ζ1µqαβ +

ν1

2

(
pαhβ + pβhα −

2

3
pγ hγ δαβ

)}
= 2ηvαβ + ξ σ

αβ, (4)

D

Dt
pα =

(
1 + τ

D

Dt

)
1

γ1
hα − ν1 pβ ṽαβ + ξ⊥α. (5)

Here

qαβ =

(
pα pβ −

1

3
δαβ

)
(6)

is the nematic tensor. The traceless part of the symmetric velocity gradient tensor is denoted by
ṽαβ . The shear viscosity at long times is denoted by η, γ1 is the rotational viscosity and ν1 is the
flow alignment parameter, which is a number of the order of 1. The viscoelastic properties of
the gel are described by a Maxwell model with a relaxation time τ of elastic stresses. The noise
correlations are given by

〈ξ σ
αβ(t, x)ξ σ

γ δ(t
′, x′)〉 = 2kT η

[
δαγ δβδ + δαδδβγ −

2

3
δαβδγ δ

]
δ(t − t ′)δ(x − x′), (7)

〈ξ⊥α(t, x)ξ⊥β(t
′, x′)〉 = 2

kT

γ1
[δαβ − pα pβ]δ(t − t ′)δ(x − x′), (8)

where k is the Boltzmann constant and T denotes temperature.
We now consider a film in a non-flowing stable steady state with a polarization unit vector

pα perpendicular to the surface of the film (similar results are obtained for a polarization
parallel to the film). We consider a small perturbation to this non-flowing steady state where
the polarization is tilted and where the active gel flows. From the velocity–velocity correlation
functions, we determine the root mean square displacement tensor at long and short times. We
discuss the bead fluctuations in both the viscous and the elastic limit of the viscoelastic active
gel.

As the calculations are rather tedious, we first give scaling-like arguments which result
from a simplified analysis of the problem. We then give the results of the full fluctuating
hydrodynamic equations. For simplicity, we describe the tilt of the polarity with respect to the
z-axis normal to the film surface by a single small angle θ . The rate of variation of the angle θ

in the viscous limit (τ = 0) is due to the elastic nematic torque with a Frank elastic constant K
and according to equation (5) to a coupling to the strain rate u,

∂θ

∂t
=

K

γ1
∇

2θ − ν1u + ξ⊥(x, t). (9)

We have added in this equation the thermal noise of the polarization fluctuations ξ⊥(r, t), which
has zero mean and correlations given by 〈n⊥(x, t)n⊥(x′, t ′)〉 = 2(kT/γ1)d(t − t ′)d(x − x′). We
ignore here the tensorial character of the strain rate and consider u as one of its typical
components.

If the polarization angle θ does not vanish, the active stress is finite and is compensated for
by the viscous stress in the film

ηu ' ζ1µθ, (10)
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where we have for simplicity ignored the noise in the stress. Including this noise does not
change qualitatively the final result. The two equations, (9) and (10), can be solved by
Fourier expansion both in space and in time, writing the polarization angle as θ(x, t) =∑

n sin(nπ z/L)
∫

dω
∫ dq

(2π)2 exp i (qr − ωt)θ̃(n, ω, q). Here, the position vector is x = (r, z)
with r denoting the position in the plane parallel to the film, and the wavevector is k =

(q, nπ/L) with q denoting the wavevector parallel to the plane, while n describes the Fourier
mode perpendicular. In the following, we focus only on the unstable mode n = 1. The Fourier
transform of the polarization angle satisfies the equation

−i ωθ̃ =
1

τq
θ̃ + ξ̃⊥(ω), (11)

where the relaxation time is given by τ−1
q = −

ν1
η

[(|ζ1µ| − ζ1µc) −
ηK q2

ν1γ1
]. We have defined

here the activity threshold for the flow instability of the thin active film ζ1µc =
ηK

ν1γ1 L2 . If the
active stress |ζ1µ| is larger than this threshold, the non-flowing steady state is unstable and
the film spontaneously flows. In this paper, we focus on the vicinity of the Frederiks transition.
The polarization angle and the velocity correlation functions can be directly calculated from
equation (11) leading to

〈ṽ(q, ω)ṽ(q ′, ω′)〉 =
kT γ1(ζ1µ)2

K 2Lη2(q2 + 1/L2)

1

(γ1ω/K )2 + (q2 + q2
c )

2
(2π)3δ(q + q′)δ(ω + ω′), (12)

where we have defined the wavevector qc such that q2
c = (γ1ν1/η)(ζ1µc − |ζ1µ|)/K . In

order to calculate the diffusion constant, we first approximate equation (1), assuming that the
fluctuations of position and velocity are uncorrelated. We thus write the diffusion constant as

D '
1

3V

∫
∞

0
dt

∫
d3k

(2π)3
〈ei k[r(t)−r(0)]

〉〈ṽ(k, 0)ṽ(−k, t)〉. (13)

At long times, the motion is diffusive and 〈ei k[r(t)−r(0)]
〉 = exp(−Dk2t) where D is the diffusion

constant for particle motion parallel to the surface. The time-correlation function of the velocity
is obtained by inverse Fourier transformation of equation (12)

〈ṽ(q, 0)ṽ(q′, t)〉 =
kT (ζ1µ)2L

γ1η2
τq exp(−t/τq)(2π)2δ(q + q′), (14)

where the velocity relaxation time τq for a wavevector q obeys τ−1
q =

K
γ1

(q2
c + q2). After

calculation of the integral over the wavevectors, equation (13) gives an implicit equation for
the diffusion constant

D '
kT L(ζ1µ)2

DKη2q2
c

log

(
1 +

γ1 D

K

)
. (15)

In the vicinity of the Frederiks transition where qc → 0, the diffusion constant reads

D ' 2−1/2 K

γ1ν1

(
kT (ζ1µ)2

L K ζ1µc(ζ1µc − |ζ1µ|)

)1/2

× log1/2

(
kT (ζ1µ)2

ν2
1 L K ζ1µc(ζ1µc − |ζ1µ|)

)
. (16)

This is the main result of this paper. In a liquid active nematic film, the diffusion constant of a
tracer particle diverges at the Frederiks transition as the inverse square root of the distance to the
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transition threshold. This is consistent with the fact that above the transition, the film flows and
the tracer no longer has a diffusive motion but it is convected by the flow at constant velocity.
Another important result is that the diffusion constant does not depend on the size of the tracer
particle but only on the thickness of the film.

This result can be understood by the following argument. Close to the Frederiks transition,
the relaxation rate of the velocity fluctuations τq is long compared to the diffusion time (1/Dq2)

and the diffusion proceeds in a frozen fluctuating velocity field. The velocity thus fluctuates in
space and the diffusing particle follows these velocity fluctuations. The correlation length of
the velocity fluctuation is 1/qc so that the diffusing particle makes at short times ballistic steps
of the order of 1/qc

6. The velocity during these ballistic steps is the instantaneous velocity
of the particles that can be obtained by integrating the velocity correlation function given
by equation (14) over the wavevectors 〈v2

〉 '
kT K
L3γ 2

1
| log qca|, which diverges logarithmically

at the Frederiks transition. The diffusion constant is then D ∼ 〈v2
〉

1/2/qc in agreement with
equation (16). These scaling results are confirmed by a complete calculation using the full
hydrodynamic equations of [7], which we give in the appendix. The actual calculation which
treats correctly the tensorial character of the strain rate tensor and includes all sources of noise
only leads to different prefactors in the scaling law.

At times shorter than the viscous relaxation time of the nematic active gel, the film has
a solid-like behavior. In the elastic regime, the shear modulus is given by E = η/τ and the
rotational modulus by G = γ1/τ . We introduce the local deformation δ such that the shear
rate is u =

∂δ

∂t and write the equations of motion (4) and (5) for the deformation δ and for the
polarization angle θ directly in Fourier space,

−i ωηδ̃ = (1 − i ωτ)ζ1µθ̃ + ξ̃ σ ,
(17)

−i ωθ̃ = −
K (q2 + 1/L2)

γ1
(1 − i ωτ) + ν1i ωδ̃ + ξ̃⊥.

We have added there thermal noise in both equations. For simplicity, in a scaling-like argument,
we ignore the noise associated with polarization. The correlation of the noise in the mechanical
stress is 〈ξ̃ σ (q, ω)ξ̃ σ ∗

(q′, ω′)〉 = 2kT η(2π)3δ(ω + ω′)δ(q + q′). Looking at the limit where ωτ

is very large, we find the instability threshold for the Frederiks transition where polarization
becomes tilted,

ν1ζ1µc = E

[
1 +

K

GL2

]
. (18)

This threshold is different from the threshold for the Frederiks transition of a liquid film
described above.

From equation (17), we obtain the fluctuations in the deformation δ and thus the
fluctuations in the tracer particle displacement δR2 in the elastic regime by integration over
frequency ω and wavevector q:

〈δR2
〉 '

kT LG

E K

(
1 +

K

GL2

)2

|log qca| +
kT K

G E L
. (19)

Note that in the solid regime, the mean square particle displacement does not increase with
time as is also the case in chemical gels at long times. Here, we have defined the characteristic

6 Since we work with the generalized Stokes equation for the velocity field, the origin of this ballistic regime is
not the inertia of the gel, but due to the (active and Onsager) stresses created by the polarization field p.
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wavevector qc that vanishes at the transition by q2
c = ν1(ζ1µc − |ζ1µ|) G

E K . The root mean
square displacement of the tracer particle therefore diverges logarithmically at the Frederiks
transition. It also has a short-distance contribution which explicitly depends on the size of
the particle and which increases upon decreasing the sizes. As above, this calculation ignores
the tensorial character and thermal fluctuations of the polarization angle. However, detailed
calculation given in the appendix predicts the same scaling behavior in the vicinity of the
Frederiks transition.

Until now we have considered only the effects of the thermal noise. However, in an active
gel the stochasticity is not entirely of thermal origin; there are non-thermal noises as well.
In active polar gels, active stresses are generated, for example, by motor proteins which are
driven by hydrolysis of ATP. The resulting chemical energy available per ATP molecule under
physiological conditions is roughly 1µ ' 20kT . Since this is significantly higher than kT ,
noises of non-thermal origin, and hence violation of the fluctuation dissipation theorem, are
likely to be of relevance in a realistic description of cells. In the simplest case of an isotropic
gel, such active stress fluctuations may be described by a zero-mean Gaussian noise with
a variance (suppressing Cartesian indices) 〈ξ σ (x, t)ξ σ (x′, t ′)〉 ' p(1 − p)cm f 2

0 a2 exp(−|t −

t ′
|/τm) cos(ω0|t − t ′

|)δ(x − x′). This noise enters the constitutive equation for the stress (4).
Here, a is the mesh size of the gel, cm is the concentration of the independently acting force
generators, which could be independent motors or small clusters and f0 is the stall force of
such force generators. Force generation is associated with a characteristic time scale τm . The
probability for a force generator to be active and generate a force is p. The average active
stress can be expressed in these quantities as ζ1µ ' cma f0 p. In general, groups of motors
can generate noisy oscillations of frequency ω0 [11]. For ω0 = 0, the noise fluctuations can
be approximated on long time scales by variances 〈nr(x, t)nr(x′, t ′)〉 ' p(1 − p)cm f 2

0 d(t −

t ′)d(x). By comparing these noise strengths to the thermal noise, we can define the effective
temperature of the active shear noise

kTeff ' p(1 − p)
cm f 2a2τm

2η
. (20)

3. Discussion and outlook

To summarize, we have studied the motion of a small bead inside a polar active gel slab of
finite thickness L . The results obtained by the simplified scaling arguments discussed above
can be confirmed by more detailed calculations taking the tensorial structure of the shear rates
into account. This calculation is presented in the appendix. We demonstrate that the active stress
contributions to the diffusion and elastic coefficients diverge for constant thickness L at a critical
value of the active stress ζ1µc, or for constant active stress ζ1µ at a critical thickness Lc. The
precise value of critical stress or critical length depends on other parameters characterizing the
active fluid as well as on boundary conditions.

For times smaller than a characteristic relaxation time of polarization fluctuations τp =

γ1/(K q2
c ) but still in the viscous regime (τ � t � τp), particle motion is ballistic and the

velocity diverges as v ∼ ln 1/2
|δL/a| for small δL = Lc − L . In the long-time limit t � sp � s,

we recover a usual diffusive motion; however, the diffusion coefficient depends on the system
size L and diverges as D ∼ δL−1 ln 1/2δL for small δL . For small times, in the elastic limit
(t � τ ), effective elastic constants depend on the system size L , in contrast with equilibrium
elastic solids.
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The overall picture that emerges is that the diffusion constants of tracer particles
in viscoelastic thin active films and their rheological behaviors have activity-dependent
contributions which depend on the system size L and diverge for small δL at the Frederiks
transition. This is a general result for any active films, which is not limited to the vicinity of the
transition. The dependences on L are suggestive of long-range correlations in the system, all
of which are of active origin. In this work, we have looked at fluctuations around the reference
state p = êz to obtain the linearized equations of motion. If the polarization 〈p〉 is along the
XY -plane in the reference state, all qualitative features including the scaling of the active
stress contributions to the elasticity and diffusivity with the system size remain unchanged,
although numerical coefficients would change. Our linearized theories do not yield super-
diffusive motions as reported in [12]. Nonlinear effects may be important for understanding
this feature. In fact, the divergence that we predict signals the long-range convective order and
superdiffusive behavior which are expected to obey the Toner and Tu predictions for active
stresses larger than the critical value [13].

There are several possible in vivo biological examples to which our results should apply.
For example, Caspi et al [4] found in in vivo micro-rheology experiments inside a living
cell that the MSD of an engulfed micro-sphere scales as t3/2 at short times and crosses
over to subdiffusive or ordinary diffusion scaling at large t . More recently, Huet et al [5]
characterized the dynamics of secretory vesicles in experiments on the subplasmalemmal
region of human carcinoid BON cells, and found the existence of different classes of motion,
including constrained, directed and diffusive. These are reminiscent of our results on the
temporal behavior of the bead MSD for different values of time. These experiments are not
yet quantitative and cannot be used to provide a test of our theory. However, our work shows
that novel physical mechanisms exist that are related to activity that might be important
for understanding these experiments. In principle, one would like to develop new model
experiments on active fluids and gels that are well controlled and quantitative. So far, such
systems are only beginning to emerge. Note that the results presented here are very general
and apply to a broad range of active thin films. In particular, we predict that in such systems,
in addition to a Stokes-like contribution to the diffusion coefficient, there is also an activity-
dependent contribution independent of the particle size but depending on film thickness.
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Appendix

Here, we discuss the full calculation of the velocity fluctuations of a particle of size a embedded
in an active gel in the viscous and elastic regimes separately. We start from relations (2)–(5)
and determine the conjugate field to the polarity vector hα from a Frank free energy that
describes the energies of splay, bend and twist deformations by parameters K1, K2 and K3. For
simplicity, we consider here the limit K1 → ∞ (i.e. the splay modes are suppressed, ∇ · p = 0).
We furthermore introduce the constraints p2

= 1 and ∇ · v = 0, i.e. we ignore fluctuations in the
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magnitude of p and treat the fluid as incompressible. The two constraints ∇ · p = 0 and p2
= 1

are imposed by the two Lagrange multipliers h‖ and φ in the free energy functional

F =
1

2

∫
d3x[K2(∇ × p)2 + K3(∂zp)2

− h‖ p2 + 2φ∇ · p], (A.1)

where we have assumed that p exhibits small fluctuations around a reference state p0 = êz, the
unit vector along the z-axis. The incompressibility constraint is imposed via the pressure P as
the Lagrange multiplier.

The gel is confined between two surfaces at z = 0 and z = L . We impose the following
boundary conditions: no flow across the boundary surfaces vz(z = 0) = 0 and vz(z = L) = 0 and
vanishing surface shear stress at the boundaries: ∂vα/∂z = 0, at z = 0 and z = L for α = x, y.
In addition, we impose p(z = 0) = êz and p(z = L) = êz. These boundary conditions are
satisfied by the Fourier mode expansions

vα(x, t) =

∫
d2q

(2π)2

dω

2π

∑
n

ṽn
α(q, ω) exp[−i ωt + ir · q] cos

(nπ z

L

)
, (A.2)

vz(x, t) =

∫
d2q

(2π)2

dω

2π

∑
n

ṽn
z (q, ω) exp[−i ωt + i r · q] sin

(nπ z

L

)
, (A.3)

pα(x, t) =

∫
d2q

(2π)2

dω

2π

∑
n

p̃n
α(q, ω) exp[−i ωt + i r · q] sin

(nπ z

L

)
, (A.4)

where α = x, y. Here, r is a vector in the x–y plane and the corresponding wavevector is denoted
as q.

We linearize the state of the system around a reference state with vα = 0, vz = 0 and p = êz.
The force balance equation together with the incompressibility condition and the constitutive
equation, (4), for τ = 0 lead to equations for the flow field

−η

(
q2 +

n2π 2

L2

)
ṽn

z (q, t) = ζ1µPzβ
nπ

L
p̃n

β + i ζ1µPzzqβ p̃n
β −

ν1

2
Pzz

(
i qβ h̃β −

nπ

L
h̃n

z

)
−

ν1

2

nπ

L
(Pzβ h̃n

β − Pzz h̃
n
z ) −

1

2

(
i qβ h̃n

β −
nπ

L
h̃n

z

)
+ Pzβ ξ̃

σ,n
β + Pzz ξ̃

σ,n
z ,

−η

(
q2 +

n2π 2

L2

)
ṽn

α(q, t) = ζ1µPαβ

nπ

L
p̃n

β + i ζ1µPαzqβ p̃n
β −

ν1

2

(
Pαβ

nπ

L
h̃n

β − Pαz
nπ

L
h̃n

z

)
−

ν1

2
Pαz

(
i qβ h̃n

β −
nπ

L
hn

z

)
+

1

2

nπ

L
h̃n

α + Pαβ ξ̃
σ,n
β + Pαz ξ̃

σ,n
z , (A.5)

where α, β = x or y. Here, we have introduced the projection operators Pzz =

q2/(q2 + n2π 2/L2), Pαβ = δαβ − qαqβ/(q2 + n2π 2/L2) = Pβα and Pαz = −i qα(nπ/L)/(q2 +
n2π 2/L2) = Pzα and the pressure P has already been eliminated. The noise terms ξ̃ σ,n

α have
zero mean with variance

〈ξ̃ σ,n
α (q, ω)ξ̃

σ,m
β (q′, ω′)〉 = 2ηkB T

(
q2 +

n2π 2

L2

)
(2π)3δ(q + q′)δ(ω + ω′)δαβδnm, (A.6)

where α and β = x, y, z.
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The dynamic equation for the polarization field reads

−i ω p̃n
α = −ω̃n

αz −
K

γ1

(
q2 +

n2π 2

L2

)
p̃n

α −
1

γ1
(h‖ p̃n

α − i qαφ̃
n) − ν1ũn

αz + ξ̃ n
⊥,α (A.7)

with ũn
αz =

(
−

nπ

L ṽn
α + i qαṽ

n
z

)
/2, ω̃n

αz = −
(

nπ

L ṽn
α + i qαṽ

n
z

)
and noise correlations

〈ξ̃ n
⊥,α(q, ω)ξ̃m

⊥,β(q
′, ω′)〉 =

2kT

γ1
(2π)3δ(q + q′)δ(ω + ω′)δαβδnm. (A.8)

Further, with K2 = K3 = K we have hα = −
δF
δpα

= K∇
2 pα + h‖ pα + ∇αφ in the real space. The

constraints ∇ · p = 0 and p2
= 1 (which to the lowest order is the same as imposing pz = 1) give

rise to two equations for Lagrange multipliers h‖ and φ:(
q2 +

n2π2

L2

)
φn(q) = −

nπ

L
hn

‖
+ γ1

ν1 + 1

2

(
q2 +

n2π 2

L2

)
vn

z − i qβξ
n
⊥,β +

nπ

L
ξ n
⊥,z, (A.9)

hn
‖
= −ν1γ1ũn

zz +
nπ

L
φn + γ1ξ

n
⊥,z. (A.10)

Inserting solutions for the Lagrange multipliers φ and h‖ into equations (A.5)–(A.7) leads to

−η

(
q2 +

n2π 2

L2

)
ṽn

z = Pzzξ
σ,n
z + Pzβ f σ,n

β , (A.11)

−η

(
q2 +

n2π 2

L2

)
ṽn

α = ζ1µ
nπ

L
p̃n

α +
ν1 − 1

2

nπ

L
K

(
q2 +

n2π 2

L2

)
p̃n

α

+Pαβ ξ̃
σ,n
β + Pαz ξ̃

σ,n
z , (A.12)

∂ p̃n
α

∂t
= −

K

γ1

(
q2 +

n2π 2

L2

)
p̃n

α +
ν1 − 1

2

nπ

L
ṽn

α + Pαβ ξ̃
n
⊥,β + Pαz ξ̃

n
⊥,z. (A.13)

Note that ṽn
z decouples from p̃n

α. Combining equations (A.12) and (A.13), we find expressions
for the fluctuations of p̃n

α:(
∂

∂t
+

1

τ̃q

)
p̃n

α = −
nπ

L

ν1 − 1

2

Pαβ ξ̃
σ,n
m + Pαz ξ̃

σ,n
z

η
(

q2 + n2π2

L2

) + Pαβ ξ̃
n
⊥β + Pαz ξ̃

n
⊥,z, (A.14)

where we have identified an effective relaxation time τ̃q of the polarization fluctuations p̃n
α:

τ̃q =

 K

γ1

(
q2 +

n2π 2

L2

)
+

ν1 − 1

2

(
ζ1µ +

ν1 − 1

2
K

(
q2 +

n2π 2

L2

))
n2π2

L2

1

η
(

q2 + n2π2

L2

)
−1

.

(A.15)

The reference state of constant polarity is stable only if τ̃q > 0. Time scale τ̃q is the analogue of
the time scale τq that we extract from equation (11). We can Fourier transform equation (A.14)
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in time to obtain a closed equation for ṽn
α:

−η

(
q2 +

n2π 2

L2

)
ṽn

α(q, t) =

[
ξ1µ +

ν1 − 1

2
K

(
q2 +

n2π2

L2

)] ν1−1
2

n2π2

L2 ṽn
α

−i ω + K
γ1

(
q2 + n2π2

L2

)
+

nπ

L

Pαβ ξ̃
n
⊥,β + Pαz ξ̃

n
⊥,z

−i ω + K
γ1

(
q2 + n2π2

L2

) + Pαβ ξ̃
σ,n
α + Pαz ξ̃

σ,n
z . (A.16)

The correlation function Cn
αβ(q, ω) of the velocity field ṽn

α(q, ω) is defined by

〈ṽn
α(q, ω)ṽn

β(q
′, ω′)〉 = Cn

αβ(q, ω)(2π)3δ(q + q′)δ(ω + ω′). (A.17)

Due to the rotational symmetry in the XY -plane, the time-dependent diffusion coefficient
for a particle of radius a is (using that 〈ṽn

x (q, t)ṽn
x (−q, 0)〉 = 〈ṽn

y(q, t)ṽn
y(−q, 0)〉)

Dxx(t) = Dyy(t) = D(t) =
π

V

∑
n

∫
q26(π/a)2

d2q

(2π)2

∫ t

0
dt ′ exp[−2D(t ′)(q2 + n2π 2/L2)t ′]

× 〈vn
x (q, t ′)vn

x (−q, 0)〉, (A.18)

where j = x or y. In the long-time limit t → ∞, the diffusion coefficient D is given by

D = kT
∑

n

∫
q26(π/a)2

d2q

(2π)2

[
π

L

1

(2D + 1n)1n

×

η(2 − Pzz)

(
q2 +

n2π 2

L2

)
+

1

γ1

n2π 2

L2

[
ζ1µ + K

2 (ν1 − 1)
(

q2 + n2π2

L2

)]2

(K/γ1)2(q2 + n2π 2/L2)2


(A.19)

with

1n = η

(
q2 +

n2π 2

L2

)
+ (ν1 − 1)

n2π 2

L2

γ1

2K

ζ1µ + K
2 (ν1 − 1)

(
q2 + n2π2

L2

)
(

q2 + n2π2

L2

) . (A.20)

The anomalous diffusion behaviors of a particle in an active gel are captured by equation (A.19).
A divergence of D occurs if 1n = 0 when q2

= 0. This divergence corresponds to a Frederiks
transition for n = 1 which occurs for a critical active stress

ζ1µc = −
π 2

L2
0 (A.21)

with

0 = −

[
K

γ1
+

K (ν1 − 1)2

4η

]
2η

ν1 − 1
. (A.22)

Equation (A.21) is the analogue of the estimation of ζ1µc given below equation (11).
Alternatively, we can introduce for a given ζ1µ the critical system size Lc for which the
instability occurs: L2

c = −π20/(ζ1µ). Note that at this threshold the effective relaxation
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time scale τ̃p diverges. In the following, we discuss the behavior of D in the limit of small
dL = Lc − L . Keeping only the divergent contributions in the limit δL → 0, we obtain

D '

√
kT

γ1η

[
π 4

L4
c

(ζ1µ)2 + 2
π 2

L2
c

ζ1µ
ν1 − 1

2

]1/2
√

log

(
ηD

0

)
1

K 1/2

1

δL1/2
. (A.23)

We thus find that D diverges as δL−1/2 for small δL . Note that because vz is independent of
pα, the diffusion coefficient Dzz is given by its thermal equilibrium value for an isotropic fluid:
Dzz = 2kBT/(ηa).

From the defining relation (A.18), we see that for times t � [D(t)(q2 + n2π2

L2 ) + 1n(q)]−1

(but still in the viscous regime) we encounter a different behavior. We again consider the case
K1 → ∞ and K = K2 = K3 and use equations (A.16) to calculate the displacement correlations.
We show only the contribution that diverges at the transition for L = Lc. We obtain

〈δR2
x(t)〉 =

∫ t

0
dt1

∫ t

0
dt2

∫
∞

−∞

dω

2π

∫
d2q

2π2

∑
n

π

L

2kT

γ1

∣∣∣∣−i ωη

(
q2 +

n2π 2

L2

)

+η

(
q2 +

n2π 2

L2

)
1

τ̃q

∣∣∣∣−2

(ζ1µ)2 n2π 2

L2
. (A.24)

Thus 〈δRx(t)2
〉 again has an activity-dependent part that diverges when τp diverges, i.e. at

L = Lc. Evaluating in the limit L → Lc, we find that in this short-time regime

〈δRx(t)
2
〉 ' −kT

(ζ1µ)2

L Kγ1[η/4 + γ1(ν1 − 1)2]
t2 ln |δL/a|, (A.25)

which corresponds to ballistic motion with a velocity obeying v2
s = 〈δRx(t)2

〉t−2.
Finally, we consider the elastic limit of the dynamics. We begin with the viscoelastic

version of equations (A.12) and (A.13):

−η

(
q2 +

n2π 2

L2

)
ṽn

α =

(
1 + τ

∂

∂t

) [
ζ1µ +

ν1 − 1

2
K

(
q2 +

n2π 2

L2

)]
nπ

L
p̃n

α + Pimχ̃
σ,n
β + Pαzχ̃

σ,n
z

(A.26)

∂ p̃n
α

∂t
= −

(
1 + τ

∂

∂t

)
K

γ1

(
q2 +

n2π2

L2

)
p̃n

α +
ν1 − 1

2

nπ

L
ṽn

α + Pαβ χ̃
n
⊥,β + Pαzχ̃

n
⊥,z. (A.27)

Equations (A.26) and (A.27) may be obtained from the constitutive relations (4) and (5) with a
finite τ by following the derivations of (A.12) and (A.13). Fourier transforming in time t and
defining local displacement field ũn

α through the relation ṽn
α(q, ω) = −i ωũn

α(q, ω), we obtain

η

(
q2 +

n2π 2

L2

)
i ωũn

α = (1 − i ωτ)

[
ζ1µ +

ν1 − 1

2
K

(
q2 +

n2π 2

L2

)]
nπ

L
p̃n

α + Pαβ χ̃
σ,n
β + Pαzχ̃

σ,n
z

×

[
−i ω

(
1 +

K

G

(
q2 +

n2π 2

L2

))
+

K

γ1

(
q2 +

n2π 2

L2

)]
p̃n

α

= −
ν1 − 1

2

nπ

L
i ωũn

α + Pαβ χ̃
n
⊥,β + Pαzχ̃

n
⊥,z.
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Looking at the limit ωτ � 1 and eliminating ũn
α, we obtain[

−i ω1e+
K

γ1

(
q2 +

n2π 2

L2

)]
p̃n

α = −
ν1 − 1

2η
(

q2 + n2π2

L2

) nπ

L
(Pαβχ

σ,n
β + Pαzχ

σ,n
z ) + Pαβχ

n
⊥,β + Pαzχ

n
⊥,z,

(A.28)

where

1e = 1 +
K

G

(
q2 +

n2π 2

L2

)
+

ν1 − 1

2E
(

q2 + n2π2

L2

) [
ζ1µ +

ν1 − 1

2

(
q2 +

n2π 2

L2

)
K

]
n2π2

L2
, (A.29)

where E = η/τ and G = γ1/τ . Thus the instability threshold corresponding to equation (18)
obeys

2E

[
1 +

K

G

π2

L2

]
+

(ν1 − 1)2

4

π 2

L2
K = −ζ1µc

ν1 − 1

2
, (A.30)

allowing us to define a critical wavevector q2
c = ζ1µ − ζ1µc. Equating the instantaneous

position vector dR of the bead with the local displacement vector field u at the location of
the bead, we find that

〈δR · δR〉 ' −

(
ζ1µ

E

)2 kT

K

(
1 +

γ1

4η

)
L

1 + Kπ2

GL2

log qca, (A.31)

where we have shown only the diverging part depending on activity. When the instability
threshold is approached, qc vanishes and 〈δR · δR〉 diverges logarithmically. Noting that near
the threshold ζ1µ may be replaced by ζ1µc and using the relation between ζ1µc and E (see
the text above equation (19)), equation (A.31) reduces to equation (19) up to numerical factors.
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