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Abstract. In order to analyze an information theoretical derivation of
Tsirelson’s bound based on information causality, we introduce a generalized
mutual information (GMI), defined as the optimal coding rate of a channel
with classical inputs and general probabilistic outputs. In the case where the
outputs are quantum, the GMI coincides with the quantum mutual information.
In general, the GMI does not necessarily satisfy the chain rule. We prove that
Tsirelson’s bound can be derived by imposing the chain rule on the GMI. We
formulate a principle, which we call the no-supersignaling condition, which
states that the assistance of nonlocal correlations does not increase the capability
of classical communication. We prove that this condition is equivalent to the
no-signaling condition. As a result, we show that Tsirelson’s bound is implied
by the nonpositivity of the quantitative difference between information causality
and no-supersignaling.
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1. Introduction

One of the most counterintuitive phenomena that quantum mechanics predicts is nonlocality.
The statistics of the outcomes of measurements carried out on an entangled state at two
space-like separated points can exhibit strong correlations that cannot be described within
the framework of local realism. This can be formulated in terms of the violation of Bell
inequalities [1]. On the other hand, it is also known that quantum correlations still satisfy
the no-signaling condition, i.e. they cannot be used for superluminal communication, which
is prohibited by special relativity. The amount that quantum mechanics can violate the
Clauser–Horne–Shimony–Holt inequality [2] is limited by Tsirelson’s bound [8]. In a seminal
paper [3], Popescu and Rohrlich showed that Tsirelson’s bound is strictly lower than the limit
imposed by the no-signaling condition alone. This result raises the question of why the strength
of nonlocality is limited to Tsirelson’s bound in the quantum world. If we could find an
operational principle rather than a mathematical one to answer this question, it would help us
better understand why quantum mechanics is the way it is [5–7].

From an information theoretical point of view, it is natural to ask if superstrong nonlocality,
i.e. nonlocal correlations exceeding Tsirelson’s bound, can be used to increase the capability
of classical communication [4]. Suppose that Alice is trying to send classical information to
distant Bob with the assistance of nonlocal correlations shared in advance. The no-signaling
condition implies that, if no classical communication from Alice to Bob is performed, Bob’s
information gain is zero bits. In other words, zero bits of classical communication can produce
not more than zero bits of classical information gain for the receiver. On the other hand, the no-
signaling condition does not eliminate the possibility that m > 0 bits of classical communication
produce more than m bits of classical information gain for the receiver. Whether such an
implausible situation can occur would depend on the strength of nonlocal correlations. In
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particular, one might expect that Tsirelson’s bound could be derived from the impossibility of
such a situation.

Motivated by the foregoing considerations, information causality has been proposed as an
answer to the question [4]. Information causality is the condition that in bipartite nonlocality-
assisted random access coding protocols, the receiver’s total information gain cannot be greater
than the amount of classical communication allowed in the protocol. This condition is never
violated in classical or quantum theory, whereas it is violated in all ‘supernonlocal’ theories,
i.e. theories that predict supernonlocal correlations [4]. It implies that Tsirelson’s bound
is derived from this purely information theoretical principle. Thus information causality is
regarded as one of the basic informational principles at the foundation of quantum mechanics.

In [4], it was proved that information causality is never violated in any no-signaling theory
in which we can define mutual information satisfying five particular properties. This implies that
in supernonlocal theories, we cannot define a function like the mutual information that satisfies
all five. On the other hand, both the classical and quantum mutual information satisfy all of the
five properties. It is therefore natural to ask another question: which of the five properties is
lost in supernonlocal theories? We address this question to better understand the informational
features of supernonlocal theories in comparison with quantum theory.

In order to answer this question, we need to define a generalization of the quantum
mutual information that is applicable to general probabilistic theories. Several investigations
have been made along this line. In [16, 17], a generalized entropy H is defined, and then
mutual information is defined in terms of this by I (A : B) := H(A)+ H(B)− H(A, B). Using
this mutual information, it is proved that the data processing inequality is not satisfied in
supernonlocal theories. Similar results are obtained in [18, 19]. However, the definitions of the
entropies in their approaches are mathematical, and do not have clear operational meanings.
Note that in classical and quantum information theory, the operational meaning of entropy
and mutual information is given by the source coding and channel coding theorems. In [17],
a coding theorem analogous to Schumacher’s quantum coding theorem [10] is investigated using
generalized entropy. However, their consideration is only applicable under several restrictions.
As discussed in [16], we need to seek generalizations based on the analysis of data compression
or channel capacity. Such an approach is also studied in [9].

Motivated by these discussions, we introduce an operational definition of generalized
mutual information (GMI) that is applicable to any general probabilistic theory. This is a
generalization of the quantum mutual information between a classical system and a quantum
system. Unlike the previous entropic approaches, we directly address the mutual information.
The generalization is based on the channel coding theorem. Thus the GMI inherently has an
operational meaning as a transmission rate of classical information. Our definition does not
require mathematical notions such as state space or fine-grained measurement. The GMI is
defined between a classical system and a general probabilistic system—it is not applicable
to two general probabilistic systems, but it is sufficient for analyzing the situation describing
information causality. The GMI satisfies four of the five properties of the mutual information,
the exception being the chain rule. We will show that violation of Tsirelson’s bound implies
violation of the chain rule of the GMI.

Using the GMI, we further investigate the derivation of Tsirelson’s bound in terms of
information causality. We formulate a principle, which we call the no-supersignaling condition,
stating that the assistance of nonlocal correlations does not increase the capability of classical
communication. We prove that this condition is equivalent to the no-signaling condition, and
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thus it is different from information causality. This result is similar to the result obtained
in [17], but now becomes operationally supported. It implies that Tsirelson’s bound is not
derived from the condition that ‘m bits of classical communication cannot produce more than
m bits of information gain’. We show that Tsirelson’s bound is derived from the nonpositivity
of the quantitative difference between information causality and no-supersignaling. Our results
indicate that the chain rule of the GMI imposes a strong restriction on the underlying physical
theory. As an example of this fact, we show that we can derive a bound on the state space of
1 gbit from the chain rule.

This paper is organized as follows. In section 2, we introduce a minimal framework for
general probabilistic theories. In section 3, we give a brief review of information causality. In
section 4, we define the GMI, and show that Tsirelson’s bound is derived from the chain rule.
In section 5, we prove that the GMI is a generalization of the quantum mutual information.
In section 6, we formulate the no-supersignaling condition, and prove that the condition is
equivalent to the no-signaling condition. In section 7, we clarify the relation among no-
supersignaling, information causality and Tsirelson’s bound. In section 8, we show that we
can limit the state space of 1 gbit by assuming the chain rule. We conclude with a summary and
discussion in section 9.

2. General probabilistic theories

In this section, we introduce a minimal framework for general probabilistic theories based
on [17, 20].

We associate a set of allowed states SS with each physical system S. We assume that
any probabilistic mixture of states is also a state, i.e. if φ1 ∈ SS and φ2 ∈ SS, then φmix =

pφ1 + (1 − p)φ2 ∈ SS, where pφ1 + (1 − p)φ2 denotes the state that is a mixture of φ1 with
probability p and φ2 with probability 1 − p.

We also associate a set of allowed measurements MS with each system S. A set of
outcomesRe is associated with each measurement e ∈MS. The state determines the probability
of obtaining an outcome r ∈Re when a measurement e ∈MS is performed on the system S.
Thus we associate each outcome r ∈Re with a functional er: S→ [0, 1], such that er(φ) is
the probability of obtaining outcome r when a measurement e is performed on a system in
the state φ. Such a functional is called an effect. In order that the statistics of measurements
on mixed states fits into our intuition, we require the linearity of each effect, i.e. er(φmix)=

per(φ1)+ (1 − p)er(φ2).
It may be possible to perform transformations on a system. A transformation on the

system S is described by a map E : SS → SS′ , where S′ denotes the output system. We assume
the linearity of transformations, i.e. E(φmix)= pE(φ1)+ (1 − p)E(φ2). A measurement e ∈MS

is represented by a transformation EM : SS → STS , where TS represents a classical system
corresponding to the register of the measurement outcome. We assume that the composition
of two allowed transformations is also an allowed transformation and that any allowed
transformation followed by an allowed measurement is an allowed measurement.

We assume that a composition of two systems is also a system. If we have two systems A
and B, we can consider a composite system AB which has its own set of allowed states SAB

and that of allowed measurements MAB . Suppose that measurements eA ∈MA and eB ∈MB

are carried out on the systems A and B, respectively. Such a measurement is called a product
measurement and is included in MAB . We assume that a global state ψ ∈ SAB determines a
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Figure 1. Nonlocality-assisted random access coding. The task is for Bob to
correctly guess Xk , where k is a random number unknown to Alice.

joint probability for each pair of effects (eA,r , eB,r ′). We may also assume that the global state
is uniquely specified if the joint probabilities for all pairs of effects (eA,r , eB,r ′) are specified.
Such an assumption is called the global state assumption. However, it is known that there exist
general probabilistic theories which do not fit into this assumption, such as quantum theory in a
real Hilbert space. The arguments presented in the following sections of this paper are developed
under the global state assumption, although the main results are valid without this assumption.
The generalization for theories without this assumption is given in appendix B.

3. Review of information causality

Information causality, introduced in [4], is the principle that the total amount of classical
information gain that the receiver can obtain in a bipartite nonlocality-assisted random access
coding protocol cannot be greater than the amount of classical communication that is allowed
in the protocol. Suppose that a string of n random and independent bits EX = X1, . . . , Xn is given
to Alice, and a random number k ∈ {1, . . . , n} is given to distant Bob. The task is for Bob to
correctly guess Xk under the condition that they can use a resource of shared correlations and
an m bit one-way classical communication from Alice to Bob (see figure 1). To accomplish
this task, Alice first makes a measurement on her part of the resource (denoted by A in the
figure), depending on EX . She then constructs an m bit message EM from EX and the measurement
outcome, and sends it to Bob. Bob, after receiving EM , makes a measurement on his part of
the resource (denoted by B in the figure), depending on EM and k. From the outcome of the
measurement he computes his guess Gk for Xk . The efficiency of the protocol is quantified by

J :=
n∑

k=1

IC(Xk : Gk), (1)

where IC(Xk : Gk) is the classical (Shannon) mutual information between Xk and Gk .
Information causality is the condition that, whatever strategy they take and whatever resource
of shared correlation allowed in the theory they use,

J 6 m (2)

must hold for all m > 0. The derivation of Tsirelson’s bound in terms of information causality
consists of the following two theorems that are proved in [4].
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Figure 2. The channel defining the mutual information between the system X
and the system S. It has a classical system as the input system and a general
probabilistic system as the output system.

Theorem 3.1. If we can define a function I (A : B) satisfying the following five properties in
the general probabilistic theory, J 6 m holds for all m > 0. The properties are

• Symmetry: I (A : B)= I (B : A) for any systems A and B.

• Non-negativity: I (A : B)> 0 for any systems A and B.

• Consistency: If both systems A and B are in classical states, I (A : B) coincides with the
classical mutual information.

• Data processing inequality: Under any local transformation that maps states of system B
into states of another system B ′ without post-selection, I (A : B)> I (A : B ′).

• Chain rule: For any systems A, B and C, the conditional mutual information defined by
I (A : B|C) := I (A : B,C)− I (A : C) is symmetric in A and B.

Theorem 3.2. If there exists a nonlocal correlation exceeding Tsirelson’s bound, we can
construct a nonlocality-assisted communication protocol by which J > m is achieved.

Theorem 3.1 guarantees that both classical and quantum theory satisfy information
causality. Theorem 3.2 implies that information causality is violated in all supernonlocal
theories. These two theorems imply that, in any supernonlocal theory, we cannot define a
function of the mutual information that satisfies all five properties.

4. Generalized mutual information

Suppose that there are a classical system X and a system S that is described by a general
probabilistic theory. The states of X are labeled by a finite alphabet X . For each state x of X , the
corresponding state of S denoted by φx is determined. The state of the composite system X S is
determined by a probability distribution p(x)= Pr(X = x), which represents the probability
that the system X is in the state x , and the corresponding state φx of S. Thus the state of
the composite system X S is identified with an ensemble {p(x), φx}x∈X . To define generalized
mutual information IG(X : S) between the system X and the system S in the state {p(x), φx}x∈X ,
we analyze the classical information capacity of a channel that outputs the system S in the
state φx according to the input X = x (figure 2). As usually considered in information theory,
the sender Alice, who has access to X , tries to send classical information to the receiver Bob,
who has access to S, by using the channel many times. Suppose that they use l identical and
independent copies of this channel. Let X1, . . . , X l be the inputs of the l channels and S1, . . . , Sl

be the corresponding output systems.
Alice’s encoding scheme is determined by a codebook. Let w ∈ {1, . . . , N } be a

message that Alice tries to communicate, and the codeword x l(w)= x1(w) · · · xl(w) be the
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corresponding input sequence to the channels. The codebook C is defined as the list of the
codewords for all messages by

C :=

 x1(1) · · · xl(1)
...

. . .
...

x1(N ) · · · xl(N )

 . (3)

The letter frequency f (x) for the codebook is defined by

f (x) :=
|{(k, w)|xk(w)= x, 16 k 6 l, 16 w 6 N }|

l N
(x ∈ X ). (4)

For a given probability distribution {p(x)}x∈X , the tolerance τ of the code is defined by

τ := max
x∈X

|p(x)− f (x)|. (5)

By making a decoding measurement on the output systems S1, . . . , Sl , Bob tries to guess
what the original message w is. Let D denote the decoding measurement. Note that, in general,
the decoding measurement is not one in which Bob makes a measurement on each of S1, . . . , Sl

individually, but one in which the whole of the composite system S1 · · · Sl is subjected to a
measurement. Let W , Ŵ be Alice’s original message and Bob’s decoding outcome, respectively.
The average error probability Pe is defined by

Pe :=
1

N

N∑
u=1

Pr(Ŵ 6= u|W = u). (6)

The pair of the codebook C and the decoding measurement D is called an (N , l) code. The ratio
log N/ l is called the rate of the code, and represents how many bits of classical information are
transmitted per use of the channel.

Definition 4.1. A rate R is said to be achievable with p(x) if there exists a sequence of (2l R, l)
codes (C(l),D(l)) such that

(i) P (l)
e → 0 when l → ∞,

(ii) τ (l) → 0 when l → ∞.

Definition 4.2. The mutual information between a classical system X and a general
probabilistic system S, denoted by IG(X : S), is the function which satisfies the condition that

(i) A rate R is achievable with p(x) if R < IG(X : S),

(ii) A rate R is achievable with p(x) only if R 6 IG(X : S).

We also define IG(S : X) by IG(S : X) := IG(X : S).

Theorem 4.1. IG(X : S) exists and satisfies IG(X : S)6 H(X). Here, H(X) is the Shannon
entropy of the system X defined by H(X) := −

∑
x∈X p(x) log p(x).

Proof. First we prove the existence of R∗ := sup {R|R is achievable with p(x)}. Consider a
(2l R, l) code and suppose that Alice’s message W = 1, . . . , 2l R is uniformly distributed. Let
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I ′, H ′ be the mutual information and the entropy when the input sequence is the codeword
corresponding to the uniformly distributed message W . By Fano’s inequality, we have

H ′(W |Ŵ )6 P (l)
e l R + 1, (7)

where P (l)
e = P(W 6= Ŵ ). Thus

l R = H ′(W )= I ′(W : Ŵ )+ H ′(W |Ŵ )

6 I ′(X l : Ŵ )+ P (l)
e l R + 1

6 H ′(X l)+ P (l)
e l R + 1. (8)

Here, we use the data processing inequality in the first inequality. By introducing a classical
variable K that indicates k with the probability distribution P(K = k)= 1/ l, we also have

H ′(X l)6
l∑

k=1

H ′(Xk)= l H ′(X |K )6 l H ′(X), (9)

where X is a random variable defined by Pr(X = xk(w))= 2−l R/ l. From (8) and (9),
we obtain

P (l)
e > 1 −

H ′(X)

R
−

1

l R
. (10)

If R is achievable with p(x), there exists a sequence of (2l R, l) codes satisfying P (l)
e → 0 and

H ′(X)→ H(X) when l → ∞. Thus R 6 H(X). Hence R∗ exists and satisfies R∗ 6 H(X).
Next we prove that any rate R < R∗ is also achievable with p(x). Let {(C∗(l),D∗(l))}l be

a sequence of (2l R∗

, l) codes that satisfies P∗(l)
e → 0 and τ ∗(l)

→ 0. For arbitrary 06 λ < 1,
define another codebook C(l) by using C∗(λl) for the first λl codeletters and by choosing the
last (1 − λ)l codeletters arbitrarily so that the total tolerance is sufficiently small. Also define
the corresponding decoding measurement D(l) as the measurement in which the output system
S1 · · · Sλl is subjected to the decoding measurement D∗(l) and the output systems Sλl+1, . . . , Sl

are ignored. The code sequence {(C(l),D(l))}l constructed in this way is a sequence of (2lλR∗

, l)
codes that satisfies P (l)

e → 0 and τ (l) → 0. Thus R = λR∗ is achievable with p(x). Hence we
obtain R∗

= IG(X : S). ut

Note that IG(X : S) is a function of the state 0 := {p(x), φx}x∈X of the composite system
X S. To emphasize this, we sometimes use the notation IG(X : S)0. Since R = 0 is always
achievable, IG(X : S) is nonnegative. Shannon’s noisy channel coding theorem guarantees
that IG(X : S) coincides with the classical mutual information IC(X : S) if S is a classical
system [13]. The GMI satisfies the data processing inequality as follows.

Property 4.2. Let ES→S′ be any local transformation that maps states of a general probabilistic
system S into states of another general probabilistic system S′. If ES→S′ contains no post-
selection, the GMI does not increase under this transformation, i.e. IG(X : S)> IG(X : S′).
Similarly, IG(X : S)> IG(X ′ : S) under any local transformation EX→X ′ that maps states of a
classical system X into states of another classical system X ′ without post-selection.

Proof. Here we only prove the former part. For the latter part, see appendix A. Consider two
channels, channels I and II (see figure 3). Depending on the input X = x , channel I emits the
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Figure 3. Channel II defined as the combination of channel I and ES→S′ .

system S in the state φx , and channel II emits the system S′ in the state φ′

x = ES→S′(φx). It is only
necessary to verify that if a rate R is achievable with p(x) by channel II, R is also achievable
with p(x) by channel I. Let {(C ′(l),D′(l))}l be a sequence of (2l R, l) codes for channel II with
the average error probability P ′(l)

e and the tolerance τ ′(l). From the code (C ′(l),D′(l)), construct a
(2l R, l) code (C(l),D(l)) for channel I by C(l) = C ′(l) and D(l) = D′(l)

◦ E⊗l
S→S′ . Here, D′(l)

◦ E⊗l
S→S′

represents a process in which first ES→S′ is applied to each of S1, . . . , Sl individually and then the
decoding measurement D′(l) is carried out on the total output system S′

1 · · · S′

l . The average error
probability and the tolerance of this code are given by P (l)

e = P ′(l)
e and τ (l) = τ ′(l), respectively.

Hence, if P ′(l)
e → 0 and τ ′(l)

→ 0, we also have P (l)
e → 0 and τ (l) → 0, and thus R is achievable

with p(x) by channel I. ut

In general probabilistic theories, a measurement on a system S without post-selection is
described by a probabilistic map EM that maps states of S into states of a classical system TS.
TS represents the register of the measurement outcomes. As a special case for property 4.2, we
have IG(X : TS)6 IG(X : S) under EM, which is a generalization of Holevo’s inequality. Let us
define the accessible information Iacc(X : S) by

Iacc(X : S) := max IC(X : TS), (11)

where the maximization is taken over all possible measurements on S. Then we have 06
Iacc(X : S)6 IG(X : S).

To summarize, the GMI satisfies the following properties.

• Symmetry: IG(X : S)= IG(S : X).

• Non-negativity: IG(X : S)> 0

• Consistency: When S is a classical system, IG(X : S)= IC(X : S).

• Data processing inequality: IG(X : S)> IG(X ′ : S′) under local stochastic maps EX→X ′ and
ES→S′ that contain no post-selection.

Thus, from theorems 3.1 and 3.2, we conclude that the chain rule of the GMI should be
violated in any supernonlocal theory. Conversely, the chain rule implies Tsirelson’s bound.

Throughout the rest of this paper, we use the GMI given by definition 4.2.

5. Quantum mutual information

The quantum mutual information between a classical system X and a quantum system S is
defined by

IQ(X : S)ρ̂ := H(S)ρ̄ −

∑
x∈X

p(x)H(S)ρ̂x
, (12)
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where

ρ̂ =

∑
x∈X

p(x)|x〉〈x |
X

⊗ ρ̂
S
x , 〈x |x ′〉 = δxx ′, (13)

ρ̄ =

∑
x∈X

p(x)ρ̂x , (14)

and H(S) is the von Neumann entropy. Note that, in quantum theory, a classical system is
described by a Hilbert space in which we only consider a set of orthogonal pure states. With
a slight generalization of the Holevo–Schumacher–Westmoreland theorem, it is shown that the
GMI is a generalization of the quantum mutual information.

Theorem 5.1. In quantum theory, the GMI coincides with the quantum mutual information, i.e.

IG(X : S)0ρ̂ = IQ(X : S)ρ̂, (15)

where

ρ̂ =

∑
x∈X

p(x)|x〉〈x |
X

⊗ ρ̂
S
x (16)

and 0ρ̂ = {p(x), ρ̂x}x∈X .

Proof. To prove this, it is only necessary to verify the following two statements:

(i) A rate R is achievable with p(x) if R < IQ(X : S)ρ̂ ,
(ii) A rate R is achievable with p(x) only if R 6 IQ(X : S)ρ̂ .

The first statement is proved in [11–15] by using random code generation, and the second
statement is proved in the following way. Consider a (2l R, l) code and suppose that Alice’s
message W = 1, . . . , 2l R is uniformly distributed. Similarly to (8), we have

l R = H ′(W )= I ′(W : Ŵ )+ H ′(W |Ŵ )6 I ′

Q(X
l : Sl)+ P (l)

e l R + 1. (17)

Here, we use the data processing inequality. We also have

I ′

Q(X
l : Sl)= H ′(Sl)− H ′(Sl

|X l)= H ′(Sl)−

l∑
k=1

H ′(Sk|Xk)

6
l∑

k=1

(H ′(Sk)− H ′(Sk|Xk))=

l∑
k=1

I ′

Q(Xk : Sk)

= l I ′

Q(X : S|K )= l I ′

Q(X, K : S)− l I ′

Q(K : S)

6 l I ′

Q(X, K : S)= l I ′

Q(X : S). (18)

In the first line, we use the fact that the state of Sk depends only on Xk . The first inequality is
from the subadditivity of the von Neumann entropy. The last equality holds since K → X → S
forms a Markov chain. From (17) and (18), we obtain

P (l)
e > 1 −

I ′

Q(X : S)

R
−

1

l R
. (19)

If R is achievable with p(x), there exists a sequence of (2l R, l) codes satisfying P (l)
e → 0 and

I ′

Q(X : S)→ IQ(X : S)ρ when l → ∞. Thus R 6 IQ(X : S)ρ . ut
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Figure 4. The situation that the no-supersignaling condition refers to. The
amount of information about EX contained in EM and B is quantified by
IG( EX , EM : B).

Figure 5. The channel that we consider to prove lemma 6.1. For each pair of
the input X = x and the output Y = y, the corresponding state φxy of the output
system S is determined.

6. No-supersignaling condition

In this section, to further investigate the derivation of Tsirelson’s bound from information
causality, we formulate a principle that we call the no-supersignaling condition by using the
GMI. Suppose that Alice is trying to send to distant Bob information about n independent
classical bits X1, . . . , Xn, under the condition that they can only use an m bit classical
communication EM from Alice to Bob and a supplementary resource of correlations shared in
advance (see figure 4). The situation is similar to the setting of information causality described
in section 3, but now we do not introduce random access coding. Instead, we evaluate Bob’s
information gain by IG( EX : EM, B). We say that the no-supersignaling condition is satisfied if

IG( EX : EM, B)6 m (20)

holds for all m > 0. The condition indicates that the assistance of correlations cannot
increase the capability of classical communication. It is a direct formulation of the original
concept of information causality that ‘m bits of classical communication cannot produce
more than m bits of information gain’. In what follows, we prove that the no-supersignaling
condition is equivalent to the no-signaling condition. It indicates that information causality and
no-supersignaling are different.

Lemma 6.1. For any classical systems X, Y and any general probabilistic system S, if Iacc(X :
S)= 0 then Iacc(X : S, Y )6 H(Y ).

Proof. Consider a channel with an input system X and two output systems S and Y (see figure 5).
Let Z be the set of all measurements on S, and p(t |x, y, z) be the probability of obtaining the
outcome t when the measurement z ∈ Z is carried out on the system S in the state φxy . To
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achieve Iacc(X : S, Y ), the receiver makes a measurement on S possibly depending on Y . Let
z(y) be the optimal choice of the measurement when Y = y. The probability of obtaining the
outcome t when X = x and Y = y is given by

p1(t |x, y) := p(t |x, y, z(y)). (21)

We define

p1(t, x, y) := p(x, y)p1(t |x, y)= p(x, y)p(t |x, y, z(y)). (22)

The condition Iacc(X : S)= 0 implies that for all z ∈ Z ,∑
y

p(x, y)p(t |x, y, z)= p(x)p2(t |z), (23)

where

p2(t |z) :=
∑
x,y

p(x, y)p(t |x, y, z). (24)

Thus, we obtain

p1(t, x, y)= p(x, y)p(t |x, y, z(y))

6
∑

y′

p(x, y′)p(t |x, y′, z(y))

= p(x)p2(t |z(y)). (25)

The accessible information Iacc(X : S, Y ) is equal to the mutual information IC(X : T, Y )
calculated for the probability distribution p1(t, x, y). Therefore

Iacc(X : S, Y )= IC(X : T, Y )p1

=

∑
t,x,y

p1(t, x, y) log
p1(t, x, y)

p(x)p1(t, y)

= H(Y )+
∑
t,x,y

p1(t, x, y) log
p1(t, x, y)p(y)

p(x)p1(t, y)

6 H(Y )+
∑
t,x,y

p1(t, x, y) log
p(x)p(y)p2(t |z(y))

p(x)p1(t, y)

= H(Y )−
∑
t,y

p1(t, y) log
p1(t, y)

p2(t, y)

= H(Y )− D(p1(t, y)‖p2(t, y))

6 H(Y ).

In the first inequality, we used (25). In the next equality we defined a probability distribution
p2(t, y) := p2(t |z(y))p(y). The last inequality is from the non-negativity of the relative
entropy. ut

Theorem 6.1. The no-supersignaling condition defined in terms of the GMI (20) is equivalent
to the no-signaling condition.
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Proof. Consider a (2l R, l) code for the channel presented in figure 5 and let X = EX , Y = EM and
S = B. Suppose that Alice’s message is uniformly distributed. By Fano’s inequality, we have

I ′(W : Ŵ )> l R − 1 − P (l)
e l R. (26)

By the data processing inequality, we also have

I ′(W : Ŵ )6 I ′(X l : Y l, TSl )6 I ′

acc(X
l : Y l, Sl). (27)

From the no-signaling condition, we have I ′

acc(X
l : Sl)= 0. From lemma 6.1, we obtain

I ′

acc(X
l : Y l, Sl)6 H ′(Y l), (28)

and thus

I ′(W : Ŵ )6 H ′(Y l)6 l H ′(Y ). (29)

Hence, we obtain(
1 − P (l)

e

)
R 6 H ′(Y )+

1

l
. (30)

If R is achievable with p(x), there exists a sequence of (2l R, l) codes that satisfies P (l)
e → 0

and H ′(Y )→ H(Y ) when l → ∞. Thus, for any R that is achievable with p(x), we have
R 6 H(Y ). It implies IG(X : Y, S)6 H(Y ) and thus IG( EX : EM, B)6 m. Conversely, for m = 0,
the no-supersignaling condition IG(X : B)= 0 implies the no-signaling condition. ut

7. The difference between no-supersignaling and information causality

In this section, we discuss the relation between information causality, no-supersignaling,
Tsirelson’s bound and the chain rule. Let us define

1NSS := IG( EX : EM, B)− m, (31)

1IC := J − m, (32)

1′ :=1IC −1NSS = J − IG( EX : EM, B). (33)

1NSS quantifies how much the capability of classical communication is increased with
the assistance of nonlocal correlations. No-supersignaling is equivalent to 1NSS 6 0, and
information causality is equivalent to 1IC 6 0. 1′ quantifies the difference between no-
supersignaling and information causality.

Theorem 3.2 states that, if Tsirelson’s bound is violated, we have 1IC > 0. Therefore
violation of Tsirelson’s bound implies at least either 1NSS > 0 or 1′ > 0. Then which does
violation of Tsirelson’s bound imply,1NSS > 0 or1′ > 0? As we proved in section 6,1NSS 6 0
is satisfied by all no-signaling theories. Thus violation of Tsirelson’s bound only implies1′ > 0.
Therefore, Tsirelson’s bound is not derived from the condition that the assistance of nonlocal
correlations does not increase the capability of classical communication. Instead, Tsirelson’s
bound is derived from the nonpositivity of 1′ (see figure 6). Let us further define

1CR :=
n∑

k=1

IG(Xk : EM, B, X1, . . . , Xk−1)− IG( EX : EM, B). (34)
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Figure 6. The relation between no-supersignaling and information causality, and
the chain rule. Information causality refers to the gap in (1) represented by 1IC.
No-supersignaling refers to the gap in (2) represented by 1NSS, and is irrelevant
to Tsirelson’s bound. The gap in (3) represented by1′ is crucial in the derivation
of Tsirelson’s bound. 1′ is bounded above by zero if the chain rule is satisfied.

The chain rule is equivalent to 1CR = 0. By the data processing inequality, we always have
1CR >1′. Thus the chain rule implies Tsirelson’s bound4 through imposing 1′ 61CR = 0.

Let X and Y be two classical systems and S be a general probabilistic system. The chain
rule of the GMI is given by

IG(X, Y : S)+ IG(X : Y )= IG(X : S)+ IG(Y : S, X). (35)

Each term in (35) has an operational meaning as an information transmission rate by definition.
The relation is satisfied in both classical and quantum theory, but is violated in all supernonlocal
theories. Thus we can conclude that this highly nontrivial relation gives a strong restriction on
the underlying physical theories. However, the operational meaning of this relation is not clear
so far.

8. Restriction on 1 gbit state space

To investigate how the chain rule of the GMI imposes a restriction on physical theories, we
consider a gbit—the counterpart of a qubit in general probabilistic theories [15]. Here, we do
not make assumptions about a gbit such as the dimension of the state space, or the possibility
or impossibility of various measurements and transformations. Instead, we define a gbit as the
minimum unit of information in the theory, and require that the classical information capacity
of 1 gbit is not more than one bit. Thus we require that

IG(X : S1gb)6 1, (36)

for any classical system X . When X is a classical system composed of two independent and
uniformly random bits X0 and X1, we have

IG(X0, X1 : S1gb)6 1. (37)

4 Another way to show this is to observe that the data processing inequality and the no-supersignaling condition
imply that 1CR >1IC.
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By the chain rule, we have

IG(X0, X1 : S1gb)= IG(X0 : S1gb)+ IG(X1 : S1gb, X0). (38)

By the data processing inequality, we also have

IG(X0 : S1gb)+ IG(X1 : S1gb, X0)> Iacc(X0 : S1gb)+ Iacc(X1 : S1gb). (39)

Thus the chain rule implies

Iacc(X0 : S1gb)+ Iacc(X1 : S1gb)6 1. (40)

We consider success probabilities of the decoding measurements on S1gb for X0 and X1. For
simplicity, we assume that the optimal measurement carried out on S1gb to decode X0 or X1

has two outcomes t = 0, 1. Let P(t |m, x0, x1) be the probability of obtaining the outcome
t when X0 = x0, X1 = x1 and the measurement m is made. The index m = 0, 1 corresponds
to the optimal measurement for decoding X0, X1, respectively. The list of all probabilities
{P(t |m, x0, x1)}t,m,x0,x1=0,1 can be regarded as representing a ‘state’. We compare the state space
of a qubit and the state space determined by (40). For further simplicity, we assume that for all
x0 and x1,

P(t = x0|m = 0, x0, x1)=
1 +α

2
(06 α 6 1),

P(t = x1|m = 1, x0, x1)=
1 +β

2
(06 β 6 1).

Then we have

Iacc(X0 : S1gb)= IC(x1 : t |m = 0)= 1 − H(x0|t,m = 0)

= 1 − H(x0 ⊕ t |m = 0)= 1 − h

(
1 +α

2

)
, (41)

and

Iacc(X1 : S1gb)= 1 − h

(
1 +β

2

)
. (42)

Here, h(x) is the binary entropy defined by h(x) := −x log x − (1 − x)log(1 − x). From
(40)–(42), we have

h

(
1 +α

2

)
+ h

(
1 +β

2

)
> 1. (43)

This inequality gives a restriction on the state space of 1 gbit (see figure 7). It is shown in
appendix B that in the case of one qubit, the obtainable region is given by α2 +β2 6 1.

9. Conclusions and discussions

We have defined a GMI between a classical system and a general probabilistic system.
Since the definition is based on the channel coding theorem, the GMI inherently has an
operational meaning as an information transmission rate. We showed that the GMI coincides
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Figure 7. Comparison of the state space of a qubit and the boundary given by
the chain rule. The gray region indicates the state space of a qubit given by
α2 +β2 6 1. The black region in addition to the gray region indicates the region
defined by (43).

with the quantum mutual information if the output system is quantum. The GMI satisfies
non-negativity, symmetry, the data processing inequality and the consistency with the classical
mutual information, but does not necessarily satisfy the chain rule.

Using the GMI, we have analyzed the derivation of Tsirelson’s bound from information
causality defined in terms of the efficiency of nonlocality-assisted random access coding. We
showed that the chain rule of the GMI, which is satisfied in both classical and quantum theory,
is violated in any theory in which the existence of nonlocal correlations exceeding Tsirelson’s
bound is allowed. Thus we conclude that the chain rule of the GMI implies Tsirelson’s bound.

We formulated a condition, the no-supersignaling condition, which states that the
assistance of nonlocal correlations does not increase the capability of classical communication.
We proved that this condition is equivalent to the no-signaling condition. We also clarified the
relation among no-supersignaling, information causality, Tsirelson’s bound and the chain rule.

The derivation of Tsirelson’s bound from information causality proposed in [4] is
remarkable in that Tsirelson’s bound is exactly derived and that to do so we only need the
five properties of the mutual information. However, information causality is different from
the condition that ‘m bits of classical communication cannot produce more than m bits of
information gain’. This derivation shows that several laws of the Shannon theory5, represented
by the five properties of the mutual information, taken together impose a strong restriction on
the underlying physical theory. If we take the GMI as the definition of the mutual information,

5 By the Shannon theory we mean the theoretical framework composed of various theorems on the asymptotic
coding rate of the sources and the channels.
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Figure A.1. Channel III defined as the combination of EX→X ′ and channel I. This
channel as a whole is equivalent to a channel with the input x ′ and the output φx ′ .

it reduces to the statement that ‘a law of Shannon theory, namely the chain rule of the GMI,
imposes a strong restriction on the underlying physical theory’.

Although the operational meaning of the GMI is clear, we have not yet succeeded in
finding a clear operational meaning of the chain rule. In classical and quantum Shannon theory,
the chain rule appears in a number of proofs of coding theorems. Therefore, investigation of
the meaning of the chain rule would lead us to a better understanding of the informational
foundations of quantum mechanics. On the other hand, our definition of the GMI is not the only
way to generalize the quantum mutual information. It would also be fruitful to seek out other
operationally motivated definitions of the GMI and compare them.
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Appendix A. Data processing inequality

We prove the latter part of theorem 4.2, which states that under any local stochastic map EX→X ′

that contains no post-selection, we have

IG(X : S)> IG(X
′ : S). (A.1)

The effect of EX→X ′ is determined by a conditional probability distribution pE(x ′
|x), where

x and x ′ denote the states of X and X ′, respectively. Let {p(x), φx}x∈X be the state of
X S before applying EX→X ′ . We can define probability distributions pE(x, x ′)= p(x)pE(x ′

|x),
p(x ′)=

∑
x pE(x, x ′) and pE(x |x ′)= pE(x, x ′)/p(x ′) for x ∈ X and x ′

∈ X ′. The state of X ′S
after applying EX→X ′ is {p(x ′), φx ′}x ′∈X ′ , where φx ′ is the mixture of φx with the probability
given by pE(x |x ′). We assume that |X |, |X ′

|<∞.
To prove (A.1), consider two channels, channels I and III (see figure A.1). Channel I outputs

the system S in the state φx according to the input X = x , and channel III outputs the system
S in the state φx ′ according to the input X ′

= x ′. It is only necessary to show that if a rate R is
achievable with p(x ′) by channel III, R is also achievable with p(x) by channel I. Consider a
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sequence of (2l R, l) codes (C ′(l),D′(l)) for channel III that satisfies

(i) P ′(l)
e → 0 when l → ∞,

(ii) τ ′(l)
→ 0 when l → ∞.

Such a sequence exists if R is achievable with p(x ′) by channel III. From the code
(C ′(l),D′(l)), we randomly construct (2l R, l) codes (C(l),D(l)) for channel I in the following way.

• For any w and k (16 w 6 2l R, 16 k 6 l), generate the codeletter xk(w) randomly and
independently according to the probability distribution P(xk(w)= x)= pE(x |x ′

k(w)).

• Regardless of the randomly generated codebook C(l), use the same decoding measurement
D(l) = D′(l).

Let PC
(l)

e be the average error probability of the code (C(l),D(l)) defined by

PC
(l)

e :=
1

2l R

2l R∑
u=1

P(Ŵ 6= u|W = u, C(l)). (A.2)

Averaging PC
(l)

e over all codebooks C(l) that are randomly generated, we obtain

P̄ (l)
e :=

∑
C(l)

P(C(l)) PC
(l)

e , (A.3)

where P(C(l)) is the probability of obtaining the codebook C(l) as a result of random code
generation. In lemma A.1, we show that P̄ (l)

e → 0 in the limit of l → ∞. In lemma A.2, we
prove that for a sufficiently large l, the tolerance τ (l) of the codebook C(l) is almost equal to 0
with arbitrarily high probability. Finally, we give the proof for (A.1) in theorem A.3.

Lemma A.1.

lim
l→∞

P̄ (l)
e = 0. (A.4)

Proof. P̄ (l)
e defined by (A.3) is calculated as

P̄ (l)
e =

∑
C(l)

P(C(l))×
1

2l R

2l R∑
u=1

P(Ŵ 6= u|W = u, C(l))

=
1

2l R

2l R∑
u=1

∑
C(l)

P(C(l))P(Ŵ 6= u|W = u, C(l))

=
1

2l R

2l R∑
u=1

P̄(Ŵ 6= u|W = u), (A.5)

where

P̄(Ŵ 6= u|W = u) :=
∑
C(l)

P(C(l))P(Ŵ 6= u|W = u, C(l)). (A.6)
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The codebook C(l) is determined by the codeletters xk(w) (16 w 6 2l R, 16 k 6 l). Due to the
way of randomly generating the code, the probability of obtaining the codebook C(l) such that
xk(w)= ξwk (16 w 6 2l R, 16 k 6 l) is given by

P(C(l))= P({xk(w)}w,k = {ξwk}w,k)

=

2l R∏
w=1

l∏
k=1

P(xk(w)= ξwk)

=

2l R∏
w=1

l∏
k=1

pE(x = ξwk|x
′
= x ′

k(w)). (A.7)

Let D(φx1 · · ·φxl ) be the result of the decoding measurement D(l) on the composite system
S1 · · · Sl in the state φx1 · · ·φxl . We have

P(Ŵ 6= u|W = u, C(l))= P(D(φx1(u) · · ·φxl (u)) 6= u|{xk(w)}w,k = {ξwk}w,k)

= P(D(φξu1 · · ·φξul ) 6= u), (A.8)

and we obtain

P̄(Ŵ 6= u|W = u)=

∑
{ξwk}w,k

P(D(φx1(u) · · ·φxl (u)) 6= u|{xk(w)}w,k = {ξwk}w,k)

× P({xk(w)}w,k = {ξwk}w,k)

=

∑
{ξuk}k

P(D(φξu1 · · ·φξul ) 6= u)× P({xk(u)}k = {ξuk}k)

=

∑
{ξuk}k

P(D(φξu1 · · ·φξul ) 6= u)×
l∏

k=1

pE(x = ξuk|x
′
= x ′

k(u)). (A.9)

On the other hand, the error probability for the message w when channel III is used with the
code (C ′(l),D′(l)) is given by

P ′(Ŵ 6= u|W = u)= P(D(φx ′

1(u) · · ·φx ′

l (u)) 6= u)

=

∑
{xk}k

P(D(φx1 · · ·φxl ) 6= u)×
l∏

k=1

pE(x = xk|x
′
= x ′

k(u)). (A.10)

From (A.9) and (A.10), we obtain that

P̄(Ŵ 6= u|W = u)= P ′(Ŵ 6= u|W = u), (A.11)

and consequently

P̄ (l)
e = P ′(l)

e . (A.12)

Therefore P̄ (l)
e → 0 when l → ∞. ut
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Lemma A.2. τ (l) → 0 in probability in the limit of l → ∞.

Proof. Let f (x)(l) and f (x ′)(l) be the letter frequency of the codebook C(l) and C ′(l), respectively.
We have∣∣ f (x)(l) − p(x)

∣∣ =

∣∣∣∣∣ f (x)(l) −
∑
x ′∈X ′

pE(x |x ′)p(x ′)

∣∣∣∣∣
6

∣∣∣∣∣ f (x)(l)−
∑
x ′∈X ′

f (x ′)(l) pE(x |x ′)

∣∣∣∣∣+
∣∣∣∣∣∑

x ′∈X ′

f (x ′)(l) pE(x |x ′)−
∑
x ′∈X ′

pE(x |x ′)p(x ′)

∣∣∣∣∣
6

∣∣∣∣∣ f (x)(l) −
∑
x ′∈X ′

f (x ′)(l) pE(x |x ′)

∣∣∣∣∣+∑
x ′∈X ′

pE(x |x ′)
∣∣ f (x ′)(l) − p(x ′)

∣∣ .
Define

f (x, x ′)(l) :=
|{(k, w)|xk(w)= x, x ′

k(w)= x ′, 16 k 6 l, 16 w 6 2l R
}|

l · 2l R

for x ∈ X , x ′
∈ X ′. By using the relation

f (x)(l) =
∑
x ′∈X ′

f (x ′)(l)
f (x, x ′)(l)

f (x ′)(l)
, (A.13)

we obtain

1(x)(l) : =

∣∣∣∣∣ f (x)(l) −
∑
x ′∈X ′

f (x ′)(l) pE(x |x ′)

∣∣∣∣∣
6

∑
x ′∈X ′

f (x ′)(l)
∣∣∣∣ f (x, x ′)(l)

f (x ′)(l)
− pE(x |x ′)

∣∣∣∣ . (A.14)

Applying the weak law of large numbers for each term in the sum, we have 1(x)(l) → 0
(l → ∞) in probability. We also have∑

x ′∈X ′

pE(x |x ′)
∣∣ f (x ′)(l) − p(x ′)

∣∣6 τ ′(l)
· |X ′

| (A.15)

and thus

lim
l→∞

∑
x ′∈X ′

pE(x |x ′)
∣∣ f (x ′)(l) − p(x ′)

∣∣ = 0. (A.16)

Therefore, we obtain that

τ (l) = max
x

∣∣ f (x)(l) − p(x)
∣∣ → 0 in probability. (A.17)

ut
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Theorem A.1. R is achievable with p(x) by channel I.

Proof. Take arbitrary ε, δ, η > 0. From lemmas A.1 and A.2, for a sufficiently large l we have

P̄ (l)
e < ε (A.18)

and

Pr{τ (l) < δ}> 1 − η. (A.19)

Define C (l)
δ := {C(l)|τ (l) < δ}. The average error probability averaged over all codebooks in C (l)

δ

is calculated as∑
C(l)∈C (l)

δ
P(C(l))PC(l)e∑

C(l)∈C (l)
δ

P(C(l))
=

P̄ (l)
e −

∑
C(l) /∈C (l)

δ
P(C(l))PC(l)e∑

C(l)∈C (l)
δ

P(C(l))
6

P̄ (l)
e∑

C(l)∈C (l)
δ

P(C(l))
<

ε

1 − η
.

Thus there exists at least one codebook C(l) ∈ C (l)
δ such that PC

(l)

e < ε ′
= ε/(1 − η) and,

by definition, τ (l) < δ. Hence there exists a sequence of (2l R, l) codes for channel I such that
P (l)

e → 0 and τ ′(l)
→ 0 when l → ∞, and thus R is achievable with p(x) by channel I. ut

Appendix B. Beyond the global state assumption

In this appendix, we generalize the results presented in the main sections to general probabilistic
theories which do not satisfy the global state assumption. Suppose that there are l independent
copies of a channel that outputs the system S in the state φx according to the input X = x . If
the input sequence is x1 · · · xl , the state of the output system S1 · · · Sl is φx1 · · ·φxl . However,
without the global state assumption, this does not specify the ‘global’ state of the composite
system: it only specifies the state of the composite system for product measurements. Thus
it is not sufficient to determine the rate of the channel. To avoid this difficulty, we introduce
the notion of ‘consistency’ of the states. Let 8x1···xl be a global state of S1 · · · Sl . We say that
8x1···xl is consistent with φx1 · · ·φxl if the two states exhibit the same statistics for any product
measurement. 8(l) := {8x1···xl }x1···xl∈X l is said to be consistent with {φx1 · · ·φxl }x1···xl∈X l if 8x1···xl

is consistent with φx1 · · ·φxl for all x1 · · · xl ∈ X l . With a slight abuse of terminology, we say
that 8 := {8(l)

}
∞

l=1 is consistent with {φx}x∈X if 8(l) is consistent with {φx1 · · ·φxl }x1···xl∈X l for
all l. Let 08 := {0

(l)
8 }

∞

l=1 be the sequence of the channel 0(l)8 that outputs the system S1 · · · Sl in
the state 8x1···xl ∈8(l)

∈8 according to the input X1 · · · X l = x1 · · · xl .

Definition B.1. A rate R is said to be achievable with p(x) for 8 if there exists a sequence of
(2l R, l) codes (C(l),D(l)) for 0(l)8 ∈ 08 such that

(i) P (l)
e → 0 when l → ∞,

(ii) τ (l) → 0 when l → ∞.

Definition B.2. A rate R is said to be achievable with p(x) if R is achievable with p(x) for all
8 that is consistent with {φx}x∈X .

We define the GMI by definition 4.2 and its existence is proved by theorem 4.1. The data
processing inequality (property 4.2) is proved as follows.
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Proof. The inequality IG(X : S)> IG(X : S′) under local transformation ES→S′ is proved as
follows.

IG(X : S′)= sup{R|R is achievable for all 8′ that is consistent with {E(φx)}x∈X }

6 sup{R|R is achievable for E(8) for all 8 that is consistent with {φx}x∈X }

6 sup{R|R is achievable for all 8 that is consistent with {φx}x∈X }

= IG(X : S). (B.1)

Here, E(8) := {E⊗l(8(l))}∞

l=1 and E⊗l(8(l)) := {E⊗l(8x1···xl )}x1···xl∈X l . The first inequality comes
from the fact that E(8) is consistent with {E(φx)}x∈X if8 is consistent with {φx}x∈X . The second
inequality is proved in the same way as the proof presented on page 8.

The inequality IG(X : S)> IG(X ′ : S) under local transformation EX→X ′ is proved as
follows.

IG(X
′ : S)= sup{R|R is achievable for all 8′ that is consistent with {φx ′}x ′∈X ′}

6 sup{R|R is achievable for 8X ′ for all 8 that is consistent with {φx}x∈X }

6 sup{R|R is achievable for all 8 that is consistent with {φx}x∈X }

= IG(X : S) (B.2)

Here, 8X ′ := {8
(l)
X ′}

∞

l=1 and 8(l)
X ′ := {8x ′

1···x
′

l
}x ′

1···x
′

l ∈X ′l , where 8x ′

1···x
′

l
is the mixture of 8x1···xl ∈

8(l)
∈8 with the probability

∏l
k=1 pE(xk|x ′

k). The first inequality comes from the fact that 8X ′

is consistent with {φx ′}x ′∈X ′ if 8 is consistent with {φx}x∈X . The second inequality is proved in
the same way as the proof in appendix A, where φx1 · · ·φxl is replaced by 8x1···xl . ut

The equivalence of no-supersignaling and no-signaling (theorem 6.1) is proved as follows.

Proof. Due to the no-signaling condition, there exists 8 that is consistent with {φxy}x∈X ,y∈Y ,
and satisfies I ′

acc(X
l : Sl)= 0 for all 0(l)8 ∈ 08. Here, 0(l)8 is a channel with an input system

X l and two output systems Y l and Sl . According to the input X l
= x l , the channel outputs

Y l
= yl with the probability

∏l
k=1 p(yk|xk) and the system Sl in the state 8x1 y1···xl yl ∈8(l)

∈8.
Consider a (2l R, l) code for the channel. In the same way as the proof of theorem 6.1, we
have (1 − P (l)

e )R 6 H ′(Y )+ 1/ l. If R is achievable with p(x) for 8, there exists a sequence
of (2l R, l) code for 0(l)8 that satisfies P (l)

e → 0 and H ′(Y )→ H(Y ) when l → ∞. Thus, for
any R that is achievable with p(x), we have R 6 H(Y ). It implies IG(X : Y, S)6 H(Y ) and
thus IG( EX : EM, B)6 m. Conversely, for m = 0, the no-supersignaling condition IG(X : B)= 0
implies the no-signaling condition. ut

Appendix C. State space of a qubit

Suppose that two independent and uniformly random bits X0, X1 are encoded in the state of
a qubit ρ̂x0x1

. Let {M̂
m

t }t=0,1 be the optimal measurement for decoding Xm (m = 0, 1), where
the mutual information IC(Xm : T ) between Xm and the measurement outcome T is maximized
when the measurement m is carried out. We assume that for all x0 and x1,

P(t = x0|m = 0, x0, x1)= tr
[

M̂
0

x0
ρ̂x0x1

]
=

1 +α

2
(06 α 6 1), (C.1)
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P(t = x1|m = 1, x0, x1)= tr
[

M̂
1

x1
ρ̂x0x1

]
=

1 +β

2
(06 β 6 1). (C.2)

In what follows, we prove that such a set of density operators {ρ̂x0x1
}x0,x1=0,1 and POVM

operators {M̂
m

t }m,t=0,1 exists if and only if α2 +β2 6 1. Considering the parameterization of a
qubit state using the Bloch sphere, the ‘if’ part is obviously verified. The ‘only if’ part is proved

as follows. Let r x0x1 be the Bloch vector representation of ρ̂x0x1
and u, v be those of M̂

0

0 and M̂
1

0,
respectively. Formally, we have

ρ̂x0x1
=

1

2
(I + r x0x1 · σ̂ ) (‖r x0x1‖6 1), (C.3)

M̂
0

t =
1

2
(I + (−1)t u · σ̂ ), (C.4)

and

M̂
1

t =
1

2
(I + (−1)tv · σ̂ ), (C.5)

where σ̂ = (σ̂ x , σ̂ y, σ̂ z). The optimality of the measurement implies that ‖u‖=‖v‖= 1. From
the conditions (C.1) and (C.2), we obtain that

u · r00 = u · r01 = −u · r10 = −u · r11 = α,

v · r00 = −v · r01 = v · r10 = −v · r11 = β.
(C.6)

Let r̄ x0x1 be the projection vectors of r x0x1 onto the two-dimensional subspace spanned by u
and v. Then we have

r̄00 + r̄11 = r̄01 + r̄10 = 0 (C.7)

and

u · (r̄00 − r̄01)= v · (r̄00 − r̄10)= 0. (C.8)

Due to the optimality of the decoding measurements, we also have u ‖ (r̄00 + r̄01) and
v ‖ (r̄00 + r̄10). Thus we obtain u · v = 0. Hence

α2 +β2
= (u · r̄ x0x1)

2 + (v · r̄ x0x1)
2 6 ‖r x0x1‖

2 6 1. (C.9)

Appendix D. Inclusion relation of the sets of no-signaling correlations

Inclusion relations of the sets of bipartite and multipartite no-signaling correlations are given
in (D.1).

NS =NSS ⊃ IC ⊇ CR⊇Q⊃ C (D.1)

(a) (b) (c) (d) (e)

NS is the set of all no-signaling correlations. NSS is the set of all no-signaling correlations
that satisfies the no-supersignaling condition. By ‘satisfy’ we mean that for any communication
protocol using that correlation, the condition is never violated. Similarly, IC and CR are the sets
of all no-signaling correlations that satisfy information causality and the chain rule, respectively.
Q and C are the sets of quantum and classical correlations, respectively. ⊃ represents the strict

New Journal of Physics 14 (2012) 113037 (http://www.njp.org/)

http://www.njp.org/


24

inclusion relation, and ⊇ indicates that we do not know whether the sets are equivalent or
strictly included. (a) is proved in section 6. (b) is proved in [4]. (c) follows from the discussion
in section 3. (d) is obvious and (e) is proved in [1]. Recently, it was proved from the observation
of tripartite nonlocal correlations that at least one of (c) and (d) is a strict inclusion [21, 22].
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