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Abstract. We systematically study the presence of narrow spectral features in
a wide variety of random laser samples. Less gain or stronger scattering are
shown to lead to a crossover from spiky to smooth spectra. A decomposition
of random laser spectra into a set of Lorentzians provides unprecedented detail
in the analysis of random laser spectra. We suggest an interpretation in terms of
mode competition that enables an understanding of the observed experimental
trends. In this interpretation, smooth random laser spectra are a consequence of
competing modes for which the loss and gain are proportional. Spectral spikes
are associated with modes that are uncoupled from the mode competition in the
bulk of the sample.
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1. Introduction

In random lasers, the combination of feedback by multiple scattering and gain leads to
lasing [1–3]. Spectrally narrow emission features (typical line width of features <1 nm) have
been found in a subset of the experiments on random lasers [4–6], whereas in other experiments
the emission is narrowed but smooth (typical line width ∼3 nm) [2, 7]. The origin of the narrow
spectral features, so called ‘spikes’, remains much debated in the multiple scattering community.
From a laser physics perspective the appearance of a smooth emission spectra is just as peculiar.
Understanding the crossover from smooth to ‘spiky’ spectra thus promises to give more insight
into both random lasers and multiple scattering of light in general [3].

Historically, experimental groups have been divided between two schools of thought
attributing spikes to either localized [4] or extended modes [6, 8]. More recently, three
pioneering experiments have led to alternative explanations for the observation of spikes
in random lasers. Fallert et al [9] argue that localized and extended modes can co-exist
while reaffirming that strong scattering of light is a prerequisite for random lasing. Tulek
et al [10] attribute lasing to resonators inside the sample [11] and argue that strong scattering
is detrimental to random lasing. In the work of Leonetti et al [12] the explanation in terms of
extended and localized modes is abandoned all together. The authors suggest that increasing
coupling between modes is decisive in changing a random laser with a ‘spiky’ emission
spectrum into a random laser with a smooth emission spectrum. Increased coupling can indeed
lead to a merger of all resonances into one single spike. The line width of such a coupled
system resonance is comparable to the line widths of uncoupled resonances. A coupling model
alone can therefore only partly explain the transition from emission spectra with narrow spectral
features to emission spectra with a single broad and smooth peak. Parallel to the ongoing
experimental research, great progress has also been made in understanding random lasers
theoretically. Several groups have shown that even the low-quality modes of a weakly scattering
sample can end up as lasing modes in lower dimensional systems [13–15]. Despite these
numerous studies in both theory and experiment, it remains a challenge to link insights in theory
to experiment and vice versa.

Puzzled by the rich variety of interpretations in the random lasing community, we decided
to investigate systematically how the gain length `g and the mean free path ` affect the
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occurrence of spikes in random lasers. We conjecture that the mean free path and gain length
are the decisive quantities in understanding the physics of a random laser, because together they
represent the two essential ingredients of any laser: feedback and gain. For this purpose, we
have fabricated random laser samples over a wide range of gain and scattering strengths. While
all other properties like material type, pump area and pump energy were kept fixed.

Statistical information on the properties of the narrow spectral features is important for the
connection between new theories and experimental observations. However, only a small number
of articles present such an analysis [10, 16, 17–22]. We characterize our random laser spectra
by fitting every spike to a Lorentzian. These fitted functions provide us with a rich data set on
the distribution of the spectral position and spectral spacing of spikes. Using a two-mode model
that includes gain competition we are able to explain our results qualitatively.

2. Experimental methods

The studied random laser system is a dye solution (Rhodamine 640 P in methanol) in which
elastically scattering titania particles (Ti-Pure R-900, DuPont) are dispersed. The characteristic
interaction length scales are calculated using ` = 1/ρσ . In this formula, ` is the gain length
(mean free path), ρ is the concentration of particles and σ is the stimulated emission cross
section (scattering cross section). The stimulated emission cross section of the dye is 4 ± 0.5 ×

10−20 m2 at k = 600 nm [7], and the scattering cross section of the colloids is ∼7 × 10−13 m2.
The gain lengths reported in this paper assume all dye molecules are excited to the upper laser
level and are therefore minimal values. In reality the gain length will be spatially dependent and
longer than these reported gain lengths.

In our experiment, we aim to find a transition from spiky to smooth spectra in the `–`g plane
by applying a bisectional algorithm with respect to the scattering strength of our samples. At a
fixed dye concentration, we start with a weakly and a strongly scattering sample. A new sample
is then prepared after measuring these two samples. The scattering strength of the new sample
is chosen such that it lies halfway in between those of the two closest measured samples that
show opposite spiking behavior. This way, we minimize the difference between the scattering
strength of our sample and the scattering strength for which the transition from smooth to spiky
spectra occurs.

The bisectional algorithm is applied on systems having calculated minimal gain lengths of
4, 8, 16, 24, 32 and 40 µm (dye concentrations ranging from 10 to 1 mM). A small amount (0.1 g
per 10 ml) of polyvinylpyrrolidone (PVP K-30) was added to the samples to ensure dispersive
stability over several hours.

Samples are pumped with light at a wavelength of 535 nm, using 5 ns long pulses at a
repetition rate of 20 Hz (Opolette). Emitted light is collected by the same lens that is used to
focus the pump light on the sample. All experiments are conducted above threshold, with a
pump power of 1.5 mW. The area of the slightly elliptical pump spot is 6.8 ± 1.4 × 103 µm2.
For every sample, 100 single shot spectra are recorded using a spectrometer that is operated at
a spectral resolution of either 1 nm or 0.1 ± 0.05 nm.

3. Data analysis and spike detection

The measured spectra are either smooth narrowed curves with respect to the below threshold
spectrum or narrowed curves with distinct spikes superimposed on them. We have fitted all

New Journal of Physics 14 (2012) 113031 (http://www.njp.org/)

http://www.njp.org/


4

604 606 608 610 612

0

500

1000

1500

2000

in
te

ns
ity

 (
a.

u.
)

data
component
fit

γ

 I0

 x0

604 606 608 610 612

−20

0

20

wavelength (nm)

re
si

du
al

s 
(%

)

Figure 1. (Upper panel) Example of a fitted high-resolution spectrum. The black
line is the original data, the blue curves are the individual components used
to fit the data and the red curve is the fitted sum of all components. The fit
parameters, height (I0), width (γ ) and position (x0) are shown. (Lower panel)
Residuals between the fit and the data. The gray area indicates a 5% deviation.

these individual spectra with Lorentzian lineshapes. After smoothing the data to remove noise,
the number and position of spikes is found by analyzing the second derivative of the data.
The locations of minima in the second derivative correspond to spikes in the spectrum. Only
minima that are considerably deviating (10% of the difference between the global extrema)
from their nearest maxima (larger than 0.1% of the original, smoothed data) are selected as
corresponding to spikes. Using this method, we find the width, amplitude and position of every
function representing either a spike or the narrowed background.

Figure 1 shows an example of a decomposed emission spectrum. The deviation of the
original data to the fit is within 5% for the majority of the spectrum. This level of accuracy
is typical for all spectra that have been analyzed. From this analysis, we conclude the fitting
routine is able to reliably fit the elements of spiky spectra.

4. Results

4.1. Phase diagram: separating smooth spectra from spiky spectra

To study whether or not samples exhibit spikes, we analyze the average number of detected
peaks. The inset in figure 2 shows the number of detected peaks per sample. A clear distinction
can be made that separates spiky from smooth spectra as indicated by the dashed line.
Sometimes more than one peak is detected in samples that on average are considered to be
smooth. These deviations are due to unavoidable uncertainties in the fitting routine. Therefore,
we only consider samples that on average have two or more detected peaks per spectrum as
‘spiky’ samples.

In figure 2, the appearance of spikes is shown as a function of the sample parameters `

and `g. A clear trend is observed in this graph: spikes appear only in samples on the right-hand
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Figure 2. The appearance of spikes is shown as a function of the mean free path
(`) and gain length (`g) of each sample, measured at 1 nm resolution. Filled discs
(•): samples with spikes. Open squares (�): samples without spikes. Spectra
showing more than two distinct peaks are considered to contain spikes. The
inset shows the average number of fitted functions per spectrum, the error bars
represent the standard deviation.

side of the diagram. This result already implies that strong multiple scattering is not a critical
necessity for inducing spikes. In contrast, the more diffusive the sample becomes, the less likely
it is that spikes will appear in the output spectrum. We note that both an increase in the transport
mean free path and a decrease in gain length lead to a less diffusive sample (` ≈ L with L
being the system length), because a decrease in gain length makes a sample more absorbing and
therefore leads to a shorter system length.

4.2. Spectral position of spikes

The obtained values for the fitting parameters allow us to study the statistics of spikes in much
more detail. We use the high-resolution data to make sure all spikes are well separated.

Firstly, we analyze the spectral position of spikes and the broader background on which
they reside. In figure 3(a), we show the spectral position distribution of both the fitted spikes
(white bars) and the fitted broader background (gray bars) for one sample. The spectral spread
for the position of the spikes is larger than the spectral spread for the position of the underlying
spectrum. Moreover, the spikes reside predominantly on the blue side of the broad profile.
The spectral positions are normally distributed. The distributions are fitted with Gaussians to
enable comparison between different samples. In figure 3(b), the mean and variance of the
spectral positions for the spikes are plotted versus the mean and variance of the underlying
broad background. From this graph, we deduce that the emission wavelength of spikes is on
average smaller than the central emission wavelength of the broad underlying profile for all
samples.

4.3. Spectral spacing between spikes

Secondly, the spectral spacing between neighboring random laser spikes is retrieved from the
fitted Lorentzian profiles. A typical distribution of spacing values for one sample is given in
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Figure 3. (a) Distribution of the central emission wavelength of spikes (open
bars) and broad background peaks (filled bars) for our model sample. Both
distributions are fitted with Gaussian profiles (black curves). (b) The mean of
the spectral distribution of spikes with respect to that of the corresponding
background peak. The length of the error bars is determined by the width of the
distributions; the spread in the position of the broad peak is much smaller than the
spread in spike position. The dotted line indicates equality of the wavelengths.
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Figure 4. A distribution of spectral spacing values collected from one sample
(bars). The curve represents Wigner’s surmise fitted to the data. Inset: mean
mode spacing as found by fitting Wigner’s surmise to all collections of mode
spacings. Samples with 1 = 0 cm−1 have smooth emission spectra.

figure 4. The spectral spacing between the spikes is clearly peaked around 10 cm−1. We therefore
deduce that level repulsion is present, a phenomenon previously reported for random lasers
[19, 23]. We fit the spectral spacing distribution to Wigner’s surmise with mean mode spacing
(1) as the fit parameter. The fitted values for 1 are collected for several samples and are shown
in the inset of figure 4. Surprisingly, we observe that the mean mode spacing is comparable for
all systems that show spikes: 1 = 10.2 ± 0.9 cm−1. Since this analysis is performed for systems
with different concentrations of scatterers and gain molecules, we conclude that the extent of
level repulsion does not significantly depend on the strength of scattering or gain.

The fitted values for 1 make it possible to compare our experimental results with
theoretical random matrix calculations. Zaitsev [24] studied the mode spacing of a two-mode
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random laser theoretically. He concluded that for wide gain profiles, the spacing of the lasing
modes does not depend on the spacing statistics of the passive system. His conclusion matches
our experimental observation of a constant spacing for a wide range of sample parameters.

5. Two-mode model with gain competition

In order to build a basis for understanding the transition from smooth to spiky spectra, a model
is set up consisting of just two laser modes. We stress that the presentation and discussion of
this model are aimed at providing an intuitive understanding for the transition, but do not yet
represent a rigorous theory. We first seek to answer how it is possible that emission spectra
are smooth in a diffusive random laser. Then we consider several reasons for the occurrence of
spikes in more weakly scattering media.

The quasi-modes in a diffusive sample have a wide range of decay times and overlap
spatially on the intensity level. We therefore postulate that in a random laser, modes with
different decay rates compete for the same gain. The number of photons in the two modes,
q1 and q2, with cavity decay rates, γ1 and γ2, are described by two rate equations that both
depend on the same number of molecules in the upper laser level N [25]:

dq1

dt
= −q1γ1 + β10Nq1 + β10N , (1)

dq2

dt
= −q2γ2 + β20Nq2 + β20N , (2)

dN

dt
= R − 0N − β10Nq1 − β20Nq2. (3)

Here we have considered a unit quantum efficiency gain medium with spontaneous emission
decay rate 0. The factors β1 and β2 describe which part of the spontaneous emission contributes
to the lasing process and thereby determine the gain a mode receives. In a conventional laser, this
β-factor is dependent on both the angular, β�, and spectral, βω, overlap between spontaneous
emission and the mode [26]: β = β�βω. We propose the solid angle normalized angular mode
profile of the mode f (θ, φ) as a convenient way to determine the geometrical part of the β-factor
by

β� =

[∫
f d�

]2

4π
∫

f 2 d�
. (4)

One of the unique properties of a truly diffusive random laser is the fact that on average
no angular mode selectivity takes place [7, 27]. Individual diffusive modes are speckle-like
and, as a consequence, a single mode is omnidirectional as well. Given the speckle intensity
Rayleigh distribution, all modes have a similar solid angle participation ratio, and therefore
β� is constant for all modes. In the particular case of a random laser that has constant β�,
the differences in the β-factor stem only from the spectral dependence of the β-factor. For the
high gain modes with their spectrum centered around the peak of the gain curve, the β-factor
then becomes proportional to the cavity decay rate. If we consider such a diffusive random
laser by putting γ1/β1 = γ2/β2 = κ , we find from a steady-state analysis of equations (1)–(3):
q1 = q2 = 0N/ [κ − 0N ]. Surprisingly, two modes with a possibly widely varying decay time
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contain the same number of photons and have the same threshold. In layman’s terms: modes
that waste but also earn a lot become just as rich as frugal modes that earn very little.

In a three-dimensional diffusive random laser with a large excitation volume, the number of
modes sharing the same gain medium is much larger than two. The number typically lies in the
order of thousands [25, 28]. In addition, these diffusive modes are relatively lossy causing the
spectral resonances to be spectrally broad and overlapping. If we extrapolate the aforementioned
model to a system with many modes, we can conclude that in a diffusive random laser with a
shared gain medium all modes close to the gain maximum end up with the same intensity. A
superposition of these overlapping resonances with similar intensities then leads to the smooth
output spectrum as observed in experiment.

To explain the observed spikes in random lasers we return to the simple model of two
modes. Starting from a situation where γ1/β1 = γ2/β2 = κ , there are two ways to let one mode
end up with more photons than the other mode. Firstly, by simply changing the ratio γi/βi (with
i ∈ {1, 2}) for the two modes. This ratio is decisive in determining which laser mode ends up
with the majority of photons and thus profits the most from the available gain. The mode with the
smallest ratio eats up the gain for the other mode, sometimes leading to a complete quenching of
the second mode. Secondly, one mode can become more prominent when the gain competition is
reduced by splitting up the gain in more than one reservoir. In this case, modes do not necessarily
overlap and modes can occupy widely varying volumes. For a completely uncoupled system the
number of photons in a lasing mode above threshold is given by R/γi + 1/βi , which shows that
in such a situation the mode with the lowest cavity decay rate eventually becomes the most
prominent in the spectrum.

To determine which of the two mechanisms is responsible for inducing spikes in our
experiment, we have another look at the results shown in figure 3(b). For every cavity decay rate,
there exists a spectral optimum where gain, absorption loss and cavity decay are balanced and
subsequently the threshold is lowest. This optimum shift towards the red for slow cavity decay
rates due to reabsorption losses [29]. At the blue side of the spectrum modes with fast cavity
decay rates dominate over modes with slow cavity decay rates, which have a larger threshold.
The fact that spikes appear systematically on the blue side of the spectrum, thus indicates that
photons in the modes responsible for the spikes have traversed relatively short paths in the
medium. The path length s is related to the cavity decay rate by si = c/γi . Apparently, and
somewhat counterintuitively, spectral spikes represent modes with a large cavity decay rate. In
a typical spectrum, several spikes appear simultaneously at the blue side of the spectrum, while
a broader smooth peak remains present at the red side. From this observation, we conclude that
mode competition cannot be ignored for modes with low cavity decay rates, while at the same
time mode competition starts to play a less dominant role for the high cavity decay rate modes.

Our experimental phase diagram shows that spectral spikes appear when the sample
becomes less diffusive. Once a random laser becomes less diffusive, that is ` ≈ L with L being
the system length, β� ceases to be constant and modes are not by definition spread out over
the whole sample. It is therefore likely that a compact mode with a short cavity decay time
is privileged over long cavity decay modes. The confinement of this mode allows it to escape
from the mode competition present amongst the other modes, enhancing its output. Multiple
spikes can then appear in the spectrum representing other well confined modes. However,
the more extended modes with low cavity decay rates are still competing for the same gain
in the bulk of the sample, which leads to a broader but smooth peak in the spectrum. Reports in
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the literature on the spatial structure of random laser modes [9, 16, 19] showing that the extent
of the modes associated with spikes are small compared to the excitation region, also support
our interpretation that the narrow spectral features are due to confined modes with a high β�.
A reduction of the system volume also facilitates the observation of narrow spectral features
as observed in several experimental studies [9, 16]. Firstly, due to a decrease in the number of
available modes and secondly, due to the fact that the system becomes less diffusive.

6. Discussion and conclusion

Our experimental observation of spikes being restricted to weakly scattering systems
unambiguously shows that multiple scattering of light prevents the appearance of spikes. The
results imply that spikes are caused by a process including only a low number of scattering
events. We introduce a phase diagram that confirms previous indications of the importance of the
ratio between the gain length and the mean free path in the literature [10, 30–32]. The statistics
of the narrow spectral features is still largely uncharted territory. Our work reveals how rich
the physics of random lasers becomes when studied systematically. We believe these statistical
analyses are key for creating more satisfying connections between theory and experiment in the
future.

The analysis of a simple two-mode model is able to explain the trends of our experiments
qualitatively. The combination of a shared gain medium and the absence of angular mode
selectivity in a purely diffusive random laser, leads to the simultaneous lasing of those modes
close to the gain maximum. This simultaneous lasing in its turn creates a smooth output
spectrum. Increasing either the gain or decreasing the transport mean free path moves the
system away from the diffusive regime and thereby destroys the assumption of no angular mode
selectivity and a completely shared gain medium. Individual modes become visible in the output
spectrum that are characterized by short cavity decay times.

Our interpretation of random lasing in terms of mode competition also explains the results
of some beautiful recent experiments [12]. Selectively feeding the modes in a random medium
from the outside, as done e.g. in [12] by a non-isotropic excitation scheme, allows some modes
to escape from the competition for gain inside the sample and to start lasing independently
from the other modes. Our model, in which two modes are entirely dependent on the same
gain reservoir, is undoubtedly an oversimplification of a random laser. In a typical random
laser, thousands of modes are present with various spatial extents. We have implicitly made the
assumption that such a system can effectively be studied by having one gain reservoir. Studying
the break down of this assumption will surely lead to new and interesting insights into random
lasers.
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