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Abstract. Three imidazolium-based ionic liquids of the type [Cnmim][NTf2]
with different alkyl chain lengths (n = 1, 2 and 8) at the first position of the
imidazolium ring were studied applying infrared, linear Raman and multiplex
coherent anti-Stokes Raman scattering spectroscopy. The focus has been on
the CH-stretching region of the imidazolium ring, which is supposed to carry
information about a possible hydrogen bonding network in the ionic liquid. The
measurements are compared with calculations of the corresponding anharmonic
vibrational spectra for a cluster of [C2mim][NTf2] consisting of four ion pairs.
The results support the hypothesis of weak hydrogen bonding involving the
C(4)–H and C(5)–H groups and somewhat stronger hydrogen bonds of the
C(2)–H groups.
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1. Introduction

Ionic liquids (ILs) have unique and fascinating properties that provide a remarkable opportunity
for their application to modern science and technology [1–7]. These liquid materials offer a wide
range of possible applications, for example, as solvents for reaction and material processing, as
extraction media or as the working fluid in mechanical processes. The physical properties and
solvent behavior of ILs are the key features for any application. The structure and properties of
these Coulomb systems are mainly determined by the type and strength of the intermolecular
interactions between anions and cations. In particular, the subtle balance between Coulomb
forces, hydrogen bonds (HBs) and dispersion forces is of great importance for understanding
ILs. It is assumed that, in particular, hydrogen bonding has an important role in the properties
and reaction dynamics of these Coulomb systems [8–11]. Strong evidence for the existence of
hydrogen bonding is provided by x-ray diffraction, mid-infrared (IR) and NMR spectroscopy.
The observed indications of hydrogen bonding in imidazolium-based ILs are shorter C–H
anion distances, red shifted C–H stretching frequencies and downfield shifted C–H proton
chemical shifts [12–22]. However, it has been argued that the corresponding signatures in the
IR spectra can also result from other contributions and that hydrogen bonding is not essential
for understanding the properties of ILs [23–27]. The strength and properties of the anion–cation
interaction including hydrogen bonding have also been studied by theoretical methods [28–31].

In particular, the C–H stretching vibrations in imidazolium-based ILs should give some
information about the existence and strength of hydrogen bonding in this Coulomb system. So
far, the interpretation of the C–H region is highly controversial [32, 33]. Exemplarily, let us
consider ILs of the type [1-alkyl-3-methyl imidazolium][bis(trifluoromethanesulfonyl)imide]
(see scheme 1) with the acronyms [Cnmim][NTf2], where n = 1, 2 or 8 denotes the length of
the alkyl chain at the first position of the imidazolium ring.

Their IR spectra of the C–H stretching region show contributions between 2800 and
3000 cm−1, which can be clearly referred to as the CH2 and CH3 stretching vibrations of the
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Scheme 1. Nomenclature used for [1-alkyl-3-methyl imidazolium][NTf2] ILs
investigated in this work.

Scheme 2. Interpretation of the frequency region of C–H stretching vibrations
in imidazolium-based ILs as suggested by Grondin et al [32].

alkyl groups at the nitrogen atoms of the imidazolium ring. For the adjacent frequency range
between 3100 and 3200 cm−1, two main interpretations are given (scheme 2). Grondin et al [32]
claim that the high-frequency contributions at 3160 ± 15 cm−1 can be assigned exclusively
to all C–H stretching vibrations of the imidazolium cation (C(2)–H, C(4)–H and C(5)–H),
whereas the absorption at 3120 ± 15 cm−1 results, as indicated in scheme 2, from overtones
(2R1, 2R2) and combination tones (R1 + R2) of two in-plane ring vibrations R1 and R2 which
form Fermi resonances with the C–H stretching vibrations. Albeit that Fermi resonances of such
combination and overtone transitions might contribute in the region at 3120 cm−1, Ludwig et al
claim that only a single vibrational band at 3160 cm−1 cannot account for the three C(2)–H,
C(4)–H and C(5)–H stretches [33]. They suggest that the band can be assigned to the C(4)–H
and C(5)–H stretches, whereas the C(2)–H vibrational mode is shifted by about 50 cm−1 to
lower frequencies due to its stronger acidic character and thus falls into the frequency range of
the overtones and combination tones. A red-shift of the C(2)–H stretching frequency relative to
those of C(4)–H and C(5)–H is in accordance with a stronger NMR downfield proton chemical
shift of about 1 ppm for C(2)–H compared to C(4,5)–H [21]. A further indication of this notion
has already been observed by Grondin et al [32]. In isotopic substitution experiments, they
could record the C(2)–D, C(4)–D and C(5)–D stretching vibrational modes in the frequency
range between 2250 and 2400 cm−1. The advantage of these experiments is that this frequency
range is not overcrowded by overtones and combination tones of the imidazolium ring. Grondin
et al observed the C(2)–D vibrational band at 2350–2355 cm−1 and the C(4,5)–D vibrational
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bands at 2388–2393 cm−1. Thus, the C(2)–D frequencies are clearly red-shifted by 38 cm−1.
Following the equation of the simple harmonic oscillator and taking into account the difference
in reduced masses (Grondin et al estimated an isotopic ratio of 1.33), a frequency shift of
1ν = 50.5 cm−1 for the vibrational bands of C–H bonds is expected, in agreement with the
suggestions of Ludwig et al [27, 33].

To conclude, in the frequency range between 3100 and 3200 cm−1, Fermi resonances of
C–H stretching modes with combinations and overtones of ring vibrations seem to cause
complicated vibrational signatures and prohibit a straightforward assignment. To clarify the
situation and to obtain a reliable assignment we record the spectra of ILs with different
alkyl chains in this frequency range by a variety of spectroscopic methods and compare the
results with anharmonic calculations of the vibrational frequencies. Besides linear Fourier
transform (FT) IR and FT-Raman spectroscopy, we also apply multiplex coherent anti-Stokes
Raman scattering (CARS) spectroscopy using ultrashort laser pulses, which gives a different
contrast owing to its nonlinear character and its sensitivity to vibrational coherences and their
dephasing [34–36]. In this way a better interpretation of the vibrational bands in the C–H
stretching region and a molecular understanding of the interactions in these Coulomb systems
are achieved.

2. Experimental techniques

2.1. The preparation and handling of ionic liquids

The studied ILs, which include the same anion bis(trifluoromethylsulfonyl)imide (NTf−2 ) but
various cations, i.e. 1,3-dimethyl imidazolium, 1-ethyl-3-methyl imidazolium and 1-octyl-3-
methyl imidazolium, were of commercial origin (Iolitec GmbH, Denzlingen, Germany) with a
stated purity of >98%. All substances were additionally dried in vacuum (p = 8 × 10−3 mbar)
for approximately 24 h. The water content was then determined by Karl–Fischer titration and
was less than 200 ppm in all cases. Further purification was not carried out.

2.2. Infrared measurements

Fourier transform infrared (FTIR) measurements were carried out with a Bruker Vertex 70
FTIR spectrometer. The equipment for the IR measurements consists of a potassium bromide
beam splitter and a room temperature DLATGS (deuterated l-alanine doped triglycene sulfate)
detector with preamplifier. The accessible spectral region for this configuration lies between
1000 and 4500 cm−1. An LOT-Oriel variable-temperature cell equipped with calcium fluoride
(CaF2) windows having a path length of 0.012 mm was used for the IR measurements in
transmission. For each spectrum 100 scans were recorded at a spectral resolution of 1 cm−1.

2.3. Linear Raman measurements

The Bruker Vertex 70 FTIR spectrometer is equipped with an extension for Raman
measurements, the RAM II FT-Raman module. For the linear Raman measurements an Nd:YAG
laser (1064 nm) with a power of 1 W from Klastech was used. The signal was detected at a
nitrogen-cooled highly sensitive germanium diode detector. This RAM II configuration provides
a spectral range of 50–4000 cm−1 and 400 scans were taken at a resolution of 1 cm−1. For a
reliable comparison, all spectra were recorded at 298 K.

New Journal of Physics 14 (2012) 105026 (http://www.njp.org/)
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Figure 1. Cluster model of [C2mim][NTf2] (geometry at a stationary point at
the B3LYP/6-31 + G(d) level of theory). The three HBs are marked whose IR
spectral signatures are in the focus of the anharmonic vibrational model.

2.4. Coherent anti-Stokes Raman scattering

In addition to linear Raman measurements, time-resolved multiplex CARS with ultrashort
excitation and narrowband probing is applied. This technique provides higher spectral contrast
compared to linear Raman and allows for the characterization of dephasing kinetics of molecular
vibrations [35, 36]. The CARS setup is described in detail in [37]. It is based on a femtosecond
noncollinear optical parametric amplifier (NOPA) generating sub-50 fs Stokes pulses and a
modified picosecond NOPA providing Raman pump and probe pulses with a bandwidth of about
20 cm−1. The broadband Stokes pulses have a central wavelength of 604 nm and the pump and
probe pulses are tuned to 510 nm. The pulse energies are a few hundreds of nJ. The three beams
are arranged in a folded BOXCARS geometry for phase matching and focused onto the sample
to a common spot with a diameter of about 100 µm. The Stokes and the pump pulses excite
vibrational coherences of Raman active modes in the CH-stretching region. The interaction of
the vibrational coherences with the probe pulses results in a nonlinear polarization and the laser-
like CARS signal. The signal is coupled into a spectrograph by a glass fiber and recorded by an
array detector. The Raman probe can be time delayed with respect to the Stokes and pump pulses
to reduce the non-resonant background and to measure the decoherence time of the vibrational
excitation.

3. Theoretical model

Anharmonic vibrational spectra have been calculated for a cluster model comprising four ion
pairs ([C2mim][NTf2]) in gas phase. As shown in figure 1 this cluster supports a motif where
all three C–H groups are hydrogen bonded to neighboring anions. In principle at least trimers
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Figure 2. Normal mode displacement vectors and harmonic frequencies of those
coordinates that comprise the five-dimensional model used for the interpretation
of the C–H stretching region of the IR spectrum of [C2mim][NTf2].

are required to saturate the three potential proton donor positions at the imidazolium cation.
However, in our case the bulk phase behavior (as obtained from the x-ray structures of the solid
material [38]) could best be described by a tetrameric ion-pair aggregate of the [C2mim][NTf2].
The starting point for the generation of a potential energy surface (PES) has been the
equilibrium structure as obtained from a geometry optimization at the B3LYP/6-31 + G(d) level
of theory. The marked HBs are found to have the following bond lengths/angles: 2.03 Å/174◦,
C(2)–H . . . O, 2.47 Å/138◦, C(4)–H . . . O, 2.75 Å/135◦, C(5)–H . . . O. Note that in the common
terminology these HBs would be classified as being of moderate to weak strength [39].

For the anharmonic vibrational calculation, we will use a description in terms of normal
mode displacements of a set of target modes with the respective normal mode vectors spanning
the PESs. Since the focus is on the C–H stretching region containing the signatures of the HBs
marked in figure 1, we have chosen the corresponding three normal modes shown in figure 2
as Q3–Q5. Anticipating a coupling of these modes to overtones and combination transitions of
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in-plane ring vibrations of imidazolium [27, 33], we have included the two modes Q1 and Q2

corresponding to modes R1 and R2 discussed above (cf the upper panel of figure 2) to arrive at
a five-dimensional model, Q = (Q1, . . . , Q5).

Neglecting rotational effects and freezing all other normal modes of the cluster at their
equilibrium positions, the Hamiltonian can be written as (using dimensionless normal mode
coordinates) [40]

H =

5∑
i=1

h̄ωi

2

∂2

∂ Q2
i

+ V (Q) . (1)

In general, the PES can be expressed in terms of a correlation order expansion (see,
e.g., [41])

V (Q) =

∑
i

V (1) (Qi) +
∑
i< j

V (2)
(
Qi , Q j

)
+ · · · . (2)

In the following, we will not aim at a quantitative comparison with experiment. After all,
the cluster model cannot capture all aspects of the bulk liquid. Hence we will not only restrict
ourselves to an expansion up to two-mode correlations, but also include only certain two-mode
terms, i.e. those involving the interaction of the two ring deformation modes with the three C–H
stretching vibrations. Thus, we use the following approximation for the two-mode PES:∑

i< j

V (2)
(
Qi , Q j

)
≈

2∑
i=1

5∑
j=3

V (2)
(
Qi , Q j

)
. (3)

For the three vector components of the dipole moment surface (DMS), dk=x,y,z(Q), we
have applied the same expansion. PES and DMS are generated on a grid comprising 14 points
along the C–H stretching coordinates and 11 points for the ring deformation modes. Thus, in
total, 844 single-point calculations have been performed (B3LYP/6-31 + G(d)) using Gaussian
03 [42]. Subsequently, one- and two-dimensional surfaces have been fitted by a third-order
spline interpolation.

Selected eigenstates and transition dipole moments are calculated as follows. First, zero-
order states are determined according to the one-mode potentials[

h̄ωi

2

∂2

∂ Q2
i

+ V (1) (Qi)

] ∣∣χi,ni

〉
= Ei,ni

∣∣χi,ni

〉
, ni = 1, . . . , Ni , i = 1, . . . , 5.

(4)

This task is accomplished by using the Fourier-grid-Hamiltonian method using 21 grid
points on the fitted PES in the ranges specified in figure 6 [43]. Subsequently, this basis
is used to express the two-dimensional eigenfunctions for the selected cuts of the PES,
equation (3), i.e.

|9α〉 =

Ni∑
ni =1

N j∑
n j =1

Cα,ni n j

∣∣χi,ni

〉 ∣∣χ j,n j

〉
. (5)

Convergence for the transitions in the CH-stretching range could be obtained by choosing
Ni = 4 for modes Q1 and Q2 and Ni = 3 for modes Q3–Q5. Using the resulting Ni × N j

eigenvalues and eigenfunctions the IR transition intensities shown below are defined as

I (ω) = ω
∑

k=x,y,z

∑
α

|〈9α| dk (Q) |91〉|
2
δ (h̄ω − E1 − Eα) , (6)
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Figure 3. FTIR spectra of [Cnmim][NTf2] imidazolium-based ILs with n = 1, 2
and 8. Left panel: the in-plane ring vibrational modes Q1 and Q2 are observed
in the frequency range between 1550 and 1600 cm−1. Right panel: the overtones
and combination tones of the in-plane vibrational modes along with the CH-
stretching vibrational modes are recorded in the frequency range between 3100
and 3200 cm−1.

with the spectra drawn as stick spectra normalized to the maximum peak in the considered
range. The transitions will be classified according the notation (ν1, ν2, ν3, ν4, ν5), where νi are
the number of quanta in mode Qi .

4. Experimental results

Figure 3 shows the two spectral regions between 1500 and 1650 cm−1 and between 3050 and
3250 cm−1 of the FTIR spectra of the three investigated [Cnmim][NTf2] imidazolium-based ILs
with n = 1, 2 and 8. In the first region a band around 1575 ± 15 cm−1 is observed which exhibits
a wing extending to the blue and which seems to have a double-peak structure in the case of
[C2mim][NTf2] and [C8mim][NTf2]. As shown below, these features can be assigned to two
in-plane vibrations Q1 and Q2 of the imidazolium ring.

In the second region, which covers the C–H stretching contributions of the imidazolium
ring, the spectra of the three ILs exhibit two main features. The first one is at approximately
3120 ± 15 cm−1 and seems to consist, in all cases, of two strongly overlapping bands. The
second feature appears more in the blue at approximately 3160 ± 15 cm−1. In the case of
[C2mim][NTf2] and [C8mim][NTf2], it exhibits a shoulder in the blue wing. The assignment
of these features is discussed below.

In figure 4 the Raman spectra of the three investigated ILs are presented for the two spectral
regions between 1500 and 1650 cm−1 and between 3080 and 3250 cm−1. They resemble the IR
spectra, but also exhibit some interesting differences. At 1575 ± 15 cm−1 a band due to the in-
plane ring vibrations is observed and around 3120 cm−1 a broad feature appears which seems
to consist of two bands. In all three ILs, a further band is detected at 3180 ± 15 cm−1, while an
additional peak at 3160 ± 15 cm−1 can only be clearly identified in the case of [C2mim][NTf2]
and [C8mim][NTf2]. Care has to be taken when comparing the intensities of the Raman bands

New Journal of Physics 14 (2012) 105026 (http://www.njp.org/)

http://www.njp.org/


9

Figure 4. FT-Raman spectra of [Cnmim][NTf2] imidazolium-based ILs with
n = 1, 2 and 8. Left panel: the in-plane ring vibrational modes Q1 and Q2 are
observed in the frequency range between 1550 and 1600 cm−1. Right panel: the
overtones and combination tones of the in-plane vibrational modes along with
the CH-stretching vibrational modes are recorded in the frequency range between
3100 and 3200 cm−1.

with the IR bands in the spectral range above 3080 cm−1 since the C–H stretching region of
the alkyl groups is just below this frequency and exhibits strong Raman bands. The wings
of these contributions may give rise to an underlying background and raise the spectral features
of interest in a slope-like manner.

Figure 5(a) shows CARS spectra of [C2mim][NTf2] in the C–H stretching region of the
imidazolium ring for different delay times between the vibrational excitation by the Raman
pump and Stokes pulse and the signal generation by the Raman probe pulse. The same spectra
but normalized to their maxima are depicted again in figure 5(b) for better visibility of weak
features. At time zero and early delay times, broad and overlapping bands are observed. With
increasing time the signal decays quickly and the spectra change their shape. The structures
become more pronounced, and the bands adopt smaller widths and shift slightly to the blue.
This behavior results from the interference between a nonresonant background and the resonant
contributions [34, 36, 37]. The former one is due to the instantaneous electronic response of the
sample and exhibits a weak frequency dependence. At a resonant contribution the difference
frequency between the CARS signal and the Raman probe equals the vibrational frequency of
a mode carrying Raman intensity. Since the resonant contributions are phase shifted by π/2
with respect to the nonresonant background, the vibrational signatures of the CARS spectra
are strongly distorted at short delay times and the signal maxima red-shifted with respect to
the Raman resonances. While the nonresonant background decreases with time according to the
cross correlation between Stokes and probe pulses, the resonant contributions decay after the
cross correlation with half of the vibrational decoherence time [34, 35].

At delay times above 1.3 ps, where the temporal overlap between Stokes and probe pulses
is negligible, the spectral positions of the observed features fit to the bands appearing in the
linear Raman spectrum although the intensity ratios are quite different and the line widths are
reduced. These differences result from several effects. One reason is the different dephasing and
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Figure 5. (a) CARS spectra of [C2mim][NTf2] in the C–H stretching region of
the imidazolium ring for different delay times between the CARS pump process
and the probe pulse. (b) The same spectra as in panel (a) but normalized to the
maximum and vertically shifted for better visibility. (c) Comparison of the CARS
spectra of the three considered ILs for a delay time of 1.4 ps. The spectra are
normalized with respect to their maximum and vertically shifted.

lifetimes of the distinct vibrational modes. For example, we extracted from the time-dependent
CARS signal a decoherence time of 0.5 ps for the transition at 3180 ± 15 cm−1, whereas the
other bands decay so fast that a reliable determination of the corresponding time constants
is not possible. Differences between CARS and Raman spectra also result from the fact that
the CARS intensity scales with the square of the Raman cross section which suppresses weak
bands. In addition, the widths of bands in the CARS spectra are given by the spectral width of
the probe pulse and can be smaller than the vibrational line widths [36]. This leads not only to
a clearer separation of overlapping bands but also to a reduction of background signals caused
by wings of strong Raman lines in the neighborhood, such as e.g. C–H stretching vibrations of
alkyl groups, which seem to increase the intensity of the bands around 3120 cm−1 in the linear
Raman spectra.

A comparison of the CARS spectra of all three investigated imidazolium-based ILs is
shown in figure 5(c) for a delay time of 1.4 ps. The band at 3180 ± 15 cm−1 dominates the
spectra and fits nicely to the corresponding feature in the Raman spectra. For [C2mim][NTf2]
and [C8mim][NTf2], a weak band is observed at slightly lower wave numbers, which is missing
in the case of [C1mim][NTf2], confirming the observations of the Raman experiments. Further
to the red, two more weak bands appear well separated in the spectra of [C2mim][NTf2] and
[C8mim][NTf2]. In the case of [C1mim][NTf2] they are stronger, closer together and overlap,
again in agreement with the Raman spectra. Overall, the comparison between linear Raman and
CARS, where weak contributions and background are suppressed, is useful in identifying the
relevant features.

New Journal of Physics 14 (2012) 105026 (http://www.njp.org/)

http://www.njp.org/


11

Table 1. Harmonic and anharmonic frequencies (in cm−1) as well as normalized
intensities (in parentheses), calculated using diagonal anharmonicities only
(V (1)(Qi)) as well as various cuts through two-dimensional potentials
(V (2)(Qi , Q j)). Note that harmonic and one-dimensional anharmonic transitions
for the ring deformation modes are given after the scaling of the fundamental
transition (see text). Only intensities exceeding 0.01 are reported. The
experimental values are taken from the IR spectrum.

(ν1, ν2, ν3, ν4, ν5) Harmonic V (1)(Qi ) V (2)(Q1, Q3) V (2)(Q1, Q4) V (2)(Q2, Q3) Experiment

(0,0,0,0,1) 3311 (0.11) 3224 (0.03) – – – 3173
(0,0,0,1,0) 3277 (0.37) 3189 (0.31) – 3201 (1.00) – 3158
(2,0,0,0,0) 3148 (0.00) 3150 (0.00) 3148 (0.05) 3138 (0.06) – 3125
(0,2,0,0,0) 3138 (0.00) 3140 (0.00) – – 3141 (0.12) 3125
(0,0,1,0,0) 3216 (1.00) 3093 (1.00) 3090 (1.00) – 3087 (1.00) 3104

5. Results and discussion

5.1. Assignment of the recorded vibrational bands

Let us first discuss the feature around 3160 ± 15 cm−1. In the case of [C2mim][NTf2] and
[C8mim][NTf2] the Raman and CARS spectra clearly indicate that it consists of two bands. In
the corresponding IR spectra the band at 3160 cm−1 exhibits a shoulder at its blue wing pointing
also to two contributions but with an inversed intensity ratio compared to the CARS spectra, i.e.
the band at longer wavelengths is now dominating. In the case of [C1mim][NTf2] all spectra
reveal around 3180 ± 15 cm−1 only one band that is particularly clearly seen in the CARS
spectrum (figure 5(c)). However, the band in the IR spectrum is red-shifted by about 10–20 cm−1

with respect to the corresponding Raman and CARS bands. The cation of [C1mim][NTf2]
has two methyl groups at the imidazolium ring and exhibits a mirror symmetry, whereas the
two alkyl groups of the [C2mim] and [C8mim] cations are different from each other and the
symmetry of the imidazolium ring is slightly broken (cf scheme 1). Therefore, it is likely that the
differences between [C1mim] and the other two cations in the spectral region around 3160 cm−1

are linked to the symmetry properties of the molecules and the different selection rules of the
IR and Raman transitions. In the case of [C1mim][NTf2] the C(4)–H and C(5)–H stretching
modes are completely equivalent as long as the environment does not break the symmetry. The
corresponding normal modes should therefore be symmetric and anti-symmetric combinations
of the C(4)–H and C(5)–H stretching vibrations. In principle, both modes can be Raman as well
as IR active. However, from the calculations we know that the symmetric stretch is better seen
in Raman, whereas the asymmetric stretch gives higher intensities in IR. Therefore, we identify
the mode responsible for the Raman band at 3180 ± 15 cm−1 with the symmetric and the mode
causing the IR band at 3160 ± 15 cm−1 with the anti-symmetric stretching vibration. In the case
of [C2mim][NTf2] and [C8mim][NTf2] the symmetry is broken and both modes should carry
Raman as well as IR intensity (cf figure 2). However, the disturbance of the symmetry is not
very strong and the intensity distribution should still reflect the original symmetry (cf table 1).
This is in accord with the observation that the Raman and CARS spectra of [C2mim][NTf2] and
[C8mim][NTf2] exhibit a weak Raman band slightly red-shifted with respect to the strong band
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Figure 6. One-dimensional potentials (dashed) and probability densities for the
lowest eigenstates (solid, equation (4)) of modes Q2 and Q3 (dimensionless
coordinates, grid boundaries for other modes are chosen accordingly).

at 3180 ± 15 cm−1 which is missing in the [C1mim][NTf2] spectra, while the corresponding IR
spectra show a shoulder in the blue wing of the band at 3160 ± 15 cm−1 which is absent in
the case of [C1mim][NTf2]. Both bands are red-shifted with respect to the frequency of a free
C(4/5)–H stretching mode of the imidazolium ring [27]. This indicates that both C–H groups
are involved in weak HBs as indicated in figure 1.

The situation is different for the feature around 3120 ± 15 cm−1, which consists of two
contributions in the case of all the investigated ILs and independent of the applied spectroscopic
method. So it cannot simply be assigned to the C(2)–H stretching mode. The IR and Raman
spectra reveal strong features around 1575 ± 15 cm−1 due to in-plane ring modes, indicating
that nearby 3120 cm−1 overtones of these modes are expected. However, they should carry only
low intensity and it would be surprising if the corresponding bands are of comparable strength
to the fundamentals of the C–H stretching vibrations. But the overtones can mix with the C–H
stretching modes and form Fermi resonances if the difference in frequency is small and the
corresponding PES anharmonic (see below). Therefore, we conclude that the double structure
results from the C(2)–H stretching vibration and possible Fermi resonances of C–H modes with
overtones of the in-plane ring modes. Accordingly, the C(2)–H stretching mode is more red-
shifted than the C(4)–H and C(5)–H stretching vibrations. This provides strong evidence that
the C(2)–H group is involved in a stronger but still moderate HB.

5.2. Comparison with simulated spectra

In the following, we show that the assignment given above is also strongly supported by
simulations of the spectra, which take anharmonicities into account. There are two effects
shaping the IR spectrum in the CH-stretching range: firstly, the diagonal anharmonicity, which
is partly due to H-bonding; and secondly, the Fermi resonance interaction of the CH-stretching
fundamental and ring deformation overtone transitions. In figure 6 we show the anharmonic one-
mode potentials for two representative modes together with the probability densities of the zero-
order eigenstates. For the ring deformation mode Q2 we notice a pronounced harmonic character
(the same holds for Q1, not shown). The fundamental transition is calculated at 1621 cm−1,
which almost agrees with the harmonic value of 1616 cm−1. For Q1 we have 1611 cm−1

versus the harmonic value of 1606 cm−1. Comparing these two values with the experimental
spectrum, we observe a blue-shift. Since the experimental assignment is considered to be certain
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(cf figure 3), we have scaled the two normal mode coordinates so as to obtain agreement with
respect to the fundamental ring deformation transitions. Since Q1 and Q2 have an anharmonic
IR intensity ratio of 0.75, a scaling of Q2 to the lower frequency peak at 1569 cm−1 and of Q1

to the higher frequency peak at 1574 cm−1 has been performed. In passing, we note that this
scaling is in the range of what is usally applied when using DFT-based harmonic frequencies.

For the C(2)–H-stretching mode, Q3, a pronounced anharmonicity is observed in figure 6
causing a red-shift from the harmonic transition frequency of 3216 cm−1 down to 3093 cm−1.
Similar albeit smaller red-shifts are found for the other C–H stretching fundamental transitions.

The results of the anharmonic calculations are compiled in table 1. As far as the overtone
transitions of the ring deformation modes at 3150 and 3140 cm−1 for Q1 and Q2, respectively,
are concerned we note that the effect of diagonal anharmonicity (mechanical and electronic) is
essentially negligible, i.e. the overtone transitions have no noticeable intensity.

Next, we discuss the effect of a Fermi resonance interaction based on selected PES and
DMS cuts. Here we focus on those mode combinations that give rise to some intensity in the ring
deformation overtone transitions, see table 1. This includes the interactions between the pairs
(Q1, Q3), (Q1, Q4), (Q2, Q3), which can be rationalized by looking at the atomic displacements
in figure 2. The main conclusion to be drawn from table 1 is that Fermi resonance interaction
between both the C(2)–H and the C(5)–H stretching fundamental and the overtone transitions
of the two ring deformation modes influences the absorption spectrum in the considered range.

The present theoretical results combine previous assessments of this spectral range which
had a focus either on H-bonding in a cluster model [33] or on Fermi-resonance interaction
in isolated imidazolium [27]. The effect of both, H-bonding and condensed phase ‘packing’,
can be estimated by comparing with the gas phase imidazolium cation studied in [27]. These
authors report anharmonic frequencies of 3181 cm−1 for the C(2)–H fundamental and 3196 and
3176 cm−1 for the in-phase and out-of-phase C(4,5)–H vibrations, respectively. Compared to the
results given in table 1, we note that the situation is not clear-cut for the C(4,5)–H vibrations,
but for the C(2)–H case a clear difference is observed and the red-shift of about 90 cm−1 can be
predominantly assigned to an effect of H-bonding on the O atom of the nearest NTf2 anion.
In passing, we note that this is in accord with the stronger acidicity of the C(2)–H site as
compared with C(4/5)–H. Hence, the present calculations of anharmonic vibrational spectra
performed for a [C2mim][NTf2] cluster provide evidence for the combined effect of H-bonding
and Fermi-resonance interactions. Only after inclusion of the diagonal anharmonicity are the
CH-stretching fundamentals found in the range observed in the experiment. Further, accounting
for the Fermi resonance coupling gives rise to a peak in the gap between the C(2)–H and
the C(4/5)–H stretching fundamental transitions. Although the results are in semi-quantitative
agreement with experiment, the present simple model does not provide the correct intensities.
Inspecting the results obtained after inclusion of the diagonal anharmonicity in table 1, we note
that the overtone transitions of the ring deformation modes are essentially in the middle of
the gap formed by the C(2)–H and C(5)–H fundamentals. Having a gap of about 40–50 cm−1,
the conditions for Fermi resonance are rather unfavorable. Here slight changes might have a
substantial effect on the oscillator strength. In principle, one could attempt to scale the CH-
stretching fundamentals with the goal of reproducing the spectra. While this procedure is
applicable to the well assignable ring deformation fundamental transitions, it would render the
model to become empirical in the CH-stretching region.
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6. Summary and conclusions

The three different imidazolium-based ILs [Cnmim][NTf2] with n = 1, 2 and 8 have been
studied applying IR, linear Raman and multiplex CARS spectroscopy and the results are
compared with simulated anharmonic vibrational spectra based on five modes of a cluster
consisting of four [C2mim][NTf2] ion pairs. The Raman band at 3180 ± 15 cm−1 and the IR band
at 3160 ± 15 cm−1 are assigned to the more or less symmetric and anti-symmetric combinations
of the C(4)–H and C(5)–H stretching vibration of the imidazolium ring. The feature around
3120 ± 15 cm−1 consists of two bands and results from the C(2)–H stretching mode and Fermi
resonances of the C–H stretching vibrations with overtones of in-plane ring deformations. The
calculations indicate that this feature cannot stem from pure overtones, since the PESs of the ring
deformation modes are both nearly harmonic and their overtones should not have any intensity
by themselves. In addition, the Fermi resonances are mainly due to coupling with the C(2)–H
stretching mode. Our results strongly support the important role played by hydrogen bonding in
ILs. In particular, it was found that the C(4)–H and C(5)–H groups are involved in weak HBs,
while the HB of the C(2)–H group is somewhat stronger.

In conclusion, it was demonstrated that the combination of various vibrational
spectroscopic techniques and anharmonic frequency calculations allows us to disentangle
congested vibrational signatures.
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