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Abstract. We address the problem of estimating pure qubit states with non-
ideal (noisy) measurements in the multiple-copy scenario, where the data consist
of a number N of identically prepared qubits. We show that the average fidelity
of the estimates can increase significantly if the estimation protocol allows
for inconclusive answers, or abstentions. We present the optimal protocol and
compute its fidelity for a given probability of abstention. The improvement over
standard estimation, without abstention, can be viewed as an effective noise
reduction. These and other results are illustrated for small values of N . For
asymptotically large N , we derive analytical expressions of the fidelity and
the probability of abstention and show that for a fixed fidelity gain the latter
decreases with N at an exponential rate given by a Kulback–Leibler (relative)
entropy. As a byproduct, we give an asymptotic expression in terms of this
very entropy of the probability that a system of N qubits, all prepared in the same
state, has a given total angular momentum. We also discuss an extreme situation
where noise increases with N and where estimation with abstention provides the
most significant improvement as compared to the standard approach.
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1. Introduction

Knowing the state of a system is a key task in quantum information processing. An unknown
quantum state can only be unveiled by means of measurements. These, however, provide only
partial knowledge about the system and, furthermore, this information gain comes always at the
expense of destroying the state. Only when a reasonably large number N of identically prepared
copies of the system are available, is an accurate estimation of the state possible. For a given N ,
the aim then is to find the measurement protocol that yields the best estimate of the input state.

The standard estimation optimization problem is suited for a situation where, say, an
experimentalist is confronted with an unknown state of a system of which she is asked to provide
an estimate, based, of course, on the results of a measurement of her choice. A quantitative
assessment of her performance is usually given by the expected value of the fidelity (or some
other distinguishability measure) between the unknown input and her guess (see below). Hence,
it is implicitly assumed that the experimentalist is obliged to provide such a guess regardless
of the measurement outcome she obtains. In this context, many results have been obtained in a
large variety of scenarios over the last few years [1–12].

Here, we will study a variation of this setting suited for a situation where the
experimentalist is allowed to decide whether to provide a guess or abstain from doing so. Of
course, this decision cannot be based on the actual state of the system (which is unknown by
definition) but rather on the result of a measurement. This relaxation of the original setting
is very useful because it enables the experimentalist to post-select her measurement outcomes
in order to provide a more accurate guess. That is, the possibility of abstaining enables her
to discard instances where the measurement outcome turns out to be not informative enough.
We will find that abstention can provide an important advantage, especially in noisy scenarios.
The problem of ‘state estimation with abstention’2 is especially relevant in situations where the
experimentalist can afford to re-run the experiment, i.e. she can easily prepare a new instance
of the problem, or where she prioritizes having high-quality estimates.

Post-selection is a widely used tool in quantum information, particularly in experimental
scenarios, where one has special demands or constraints. A form of abstention has already
been explored in state discrimination [13], another important quantum statistical inference

2 We thank G Chiribella for suggesting this word.
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primitive. Discrimination aims at identifying in which one, out of a set of known quantum
states, a system has been prepared. Two fundamental approaches are usually considered: the so-
called ‘minimum-error’, where the experimentalist always has to provide a conclusive answer,
at the expense, of course, of being wrong with a certain probability [14], and ‘unambiguous
discrimination’, where no errors are permitted, but instead an inconclusive answer (abstention)
may be given with some probability [15]. By varying the allowed rate of inconclusive
answers [16–19], we may go from one approach to the other [20–22]. The possibility of
abstaining has been studied in [23] for phase estimation, and in [24] for direction estimation
with arbitrary pure input signals. In both cases the results show a significant improvement over
the standard (without abstention) approach.

In this work we consider the optimal estimation of a completely unknown pure qubit
state when N copies of it are available for measurement and when a certain rate (probability
and rate will be used interchangeably throughout the paper) of abstention Q is permitted. Our
approach can be viewed as a probabilistic purification that succeeds with probability Q (similar
probabilistic maps for broadcasting and cloning have been employed, for instance, in [25–27]).
We will show that in an ideal noise-free scenario, abstention does not improve the estimation
accuracy. However, it does in a realistic noisy scenario, as we claimed above. Here we will
consider a simplified model where noisy measurements will be replaced by local depolarizing
channels followed by ideal measurements.

The paper is organized as follows. In section 2, we consider estimation without abstention.
More precisely, we obtain the protocol that gives the best estimate of the state of a qubit based
on non-ideal measurements on N independent and identically prepared systems. In section 3,
estimation with abstention is introduced, and the optimal protocol for a fixed value of the
abstention rate Q is obtained. We study the asymptotic regime of large N and derive the
corresponding maximum fidelity and probability of abstention. As an example, we also consider
a scenario where abstention gives a drastic improvement. This is the case when noise increases
with N in such a way that the fidelity of the estimation approaches a finite value less than 1 as
N becomes large. We close the paper with some brief conclusions and present an outlook for
future work.

2. No abstention

Let us consider N copies of a completely unknown pure qubit state |En〉 (throughout the paper En
will denote a unit Bloch vector) that we wish to estimate by performing a realistic, and therefore
noisy, quantum measurement. We model it as an ideal measurement preceded by the single-qubit
depolarizing channel acting on every copy:

E(ρ) = (1 − η)ρ +
η

3
(σxρσx + σyρσy + σzρσz), (1)

where with probability 1 − η no error occurs, while with probability η the state is affected by
either a bit-flip, a phase-flip or both. This error probability η is assumed to be known by the
experimentalist; therefore, for the purpose of analyzing the effects of noise in the estimation
process, we will transfer its effect to the input states and optimize the estimation protocol over
ideal measurements. Hence, we will consider input states of the form

ρ(En) = r |En〉〈En| + (1 − r)
1

2
=

1 + r En · Eσ

2
, (2)
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with r = 1 − (4/3)η. In other words, we will assume that the input states either do not change
with probability r or they become completely randomized with probability 1 − r = (4/3)η. The
original problem is thus equivalent to the estimation of a pure state |En〉 (or of a uniformly
distributed Boch vector En) based on the outcomes of an appropriate ideal measurement on N
copies of the mixed state ρ(En) in equation (2), i.e. on the state ρ(En)⊗N

= τ(En).
For each measurement outcome χ an estimate |Enχ〉 is provided according to some guessing

rule χ → |Enχ〉. We choose to quantify the quality of the estimate by means of the squared
overlap

f (En, Enχ) = | 〈En| Enχ〉|
2, (3)

also known as the fidelity. The overall quality of the estimation protocol is then given by the
average fidelity

F =

∑
χ

∫
dn f (En, Enχ) p(χ |En), (4)

where dn = sinθ dθ dφ/(4π) is the uniform probability distribution on the two-sphere and
p(χ |En) is the conditional probability of obtaining the outcome χ if the input state is τ(En). This
probability is given by the Born rule p(χ |En) = tr[5χτ(En)], where 5χ > 0 are the elements of a
positive operator valued measure (POVM). They satisfy the completeness relation

∑
χ 5χ = 1,

where 1 denotes the identity operator in the space spanned by the input states {τ(En)}. The index
χ may be discrete, continuous or both.

A protocol (i.e. a measurement {5χ} and a guessing rule χ →
∣∣Enχ

〉
) is said to be optimal if

it maximizes F . For pure states, r = 1, the maximum fidelity is well known [3]:

F =
N + 1

N + 2
= 1 −

1

N
+O(N−2). (5)

It is also known that the (continuous) covariant POVM [3]

5(Es) = (2J + 1)U (Es) |J J 〉〈J J | U†(Es) (6)

(with the obvious guessing rule 5(Es) → |Es〉) is optimal. In (6), we use the standard notation,
where {| jm〉}

j
m=− j is the eigenbasis of the total angular momentum operators J 2 and Jz.

We denote by U (Es) = [u(Es)]⊗N , u(Es) ∈ SU(2) (the unitary representation of) the rotation that
maps the unit (Bloch) vector ẑ into Es (thus u(Es)| 1

2
1
2〉 = |Es〉), and we have also introduced the

definition J ≡ N/2. Note that the POVM {5(Es)} acts on the symmetric subspace of largest total
angular momentum J , of dimension 2J + 1 = N + 1. In terms of J , (5) can also be written as

F =
1

2

(
1 +

J

J + 1

)
≡

1

2
(1 + 1J ) . (7)

Mixed states span a much larger Hilbert space and the computation becomes more
involved. Due to the permutational invariance of the input state, it greatly simplifies in the total
angular momentum basis, where τ(En) is block-diagonal [9]. We have

τ(En) =

J∑
j= jmin

p jτ j(En) ⊗
1( j)

rep

n j
, (8)

where τ j(En) is the normalized mixed state

τ j(En) =
1

Z j

j∑
m=− j

Rm U (En) | jm〉 〈 jm| U †(En), (9)
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with the definitions

Z j =

j∑
m=− j

Rm
=

R j+1
− R− j

R − 1
, R =

1 + r

1 − r
> 1. (10)

The projector 1( j)
rep stands for the various occurrences of the irreducible representation of total

angular momentum j . It has dimension n j given by

n j =

(
2J

J − j

)
−

(
2J

J − j − 1

)

=

(
2J

J − j

)
2 j + 1

J + j + 1
. (11)

In the sum (9), j runs from jmin = 0 ( jmin = 1/2) for N even (odd) to the maximum total
angular momentum J , in contrast to the pure state case where only the maximum value J
appears. The numbers p j > 0 are the probabilities that the state τ(En) has quantum number j , i.e.
p j = tr[1 jτ(En)], where 1 j =

∑ j
m=− j | jm〉〈 jm| ⊗ 1( j)

rep is the projector onto the corresponding
eigenspace, The probabilities read

p j =

(
1 − r 2

4

)J

n j Z j

=

(
1 − r 2

4

)J (
2J

J − j

)
2 j + 1

J + j + 1

R j+1
− R− j

R − 1
. (12)

One can easily check that
∑

j p j = 1, as it should be.
Because of the block diagonal form of the input states, an obvious optimal measurement

consists of a direct sum of covariant POVMs,

5(Es) =

J⊕
j= jmin

5 j(Es) ⊗ 1( j)
rep, (13)

where each of them is a straightforward generalization of equation(6):

5 j(Es) = (2 j + 1) U (Es) | j j〉〈 j j | U†(Es). (14)

One can easily check that the completeness condition
∫

ds 5(Es) = 1 holds. The total fidelity
then is

F =
1

2

1 +
J∑

j= jmin

p j1 j

 , (15)

where [1]

1 j =
〈Jz〉 j

j + 1
=

tr[Jz τ j(ẑ)]

j + 1
. (16)

A straightforward calculation gives

〈Jz〉 j =
1

Z j

j∑
m=− j

m Rm
= j −

1

R − 1
+

2 j + 1

R2 j+1 − 1
. (17)
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Note that for pure states, one has R → ∞, and in turn 〈Jz〉J → J , in agreement
with equation (7).

As will be shown in the next section, for asymptotically large N the probability p j peaks
at a value of j ' r J , which gives the dominant and subdominant contributions to the sum
in (15). Up to order 1/N , and discarding exponentially vanishing contributions (e.g. ∼ R−r J ),
the asymptotic fidelity turns out to be

F = 1 −
1

Nr

r + 1

2r
+ · · · . (18)

This result is interesting on its own and, to the best of our knowledge, has not been presented
before. Note that for pure states (r = 1), equation (18) agrees with the asymptotic expression of
the fidelity in equation (5).

3. Abstention

In this section we focus on estimation protocols where the experimentalist is allowed to abstain,
i.e. refrain from giving an answer, if the outcome of the measurement she has carried out
cannot provide a good enough estimate of the unknown state. Obviously, F cannot decrease
by excluding these abstentions from the average. In noisy scenarios, such as that considered in
this paper, F actually increases, as will be shown below. Our aim is to quantify this gain and
find the optimal protocol. In our approach, the probability of abstention, Q, is kept fixed, rather
than unrestricted, since usually in practical situations one cannot afford to discard an unlimited
amount of resources/state preparations.

3.1. The general framework

To enable the possibility of abstaining, the POVM representing the measurement must include
the abstention operator, which we denote by 50, in addition to the operators {5χ}, each of
which are associated with a specific estimate |Enχ〉. Thus, the completeness relation reads∑

χ

5χ + 50 = 1. (19)

The probability of abstention (abstention rate) and that of producing an estimate (acceptance
rate) are then given, respectively, by

Q =

∫
dn tr

[
50τ(En)

]
and Q̄ = 1 − Q, (20)

and the mean fidelity defined in (4) now becomes

F(Q) =
1

Q̄

∑
χ

∫
dn f (En, Enχ)tr

[
5χτ(En)

]
, (21)

where note that the sum does not include the 50 operator and Q̄ takes into account the
abstentions excluded from the average.

We next note that for any unitary transformation U of the type defined after equation (6),
the operators {U5χU †, U50U †

} give the same value of Q and F(Q) as the original
set {5χ , 50}, provided we change the guessing rule as Enχ →RU Enχ , where RU is the SO(3)
rotation whose unitary representation is U . Therefore, one can easily prove that 50 (the set

New Journal of Physics 14 (2012) 105015 (http://www.njp.org/)

http://www.njp.org/


7

{5χ}) can always be chosen to be SU(2) invariant (covariant) by simply averaging over U . In
other words, with no loss of generality, the POVM elements that provide a guess |Es〉 can be
chosen as

5̃(Es) = U (Es) 5 U †(Es), (22)

where 5> 0 is the so-called seed of the POVM (in particular, note that 5̃(ẑ) = 5). The
abstention operator then reads

50 = 1 −

∫
ds 5̃(Es), (23)

which is manifestly rotationally invariant (as claimed above). It is thus proportional to the
identity on each invariant subspace

50 =

J⊕
j= jmin

a j1 j , (24)

where a j are coefficients that satisfy the condition 06 a j 6 1 and 1 j is the projector onto the
corresponding eigenspace j previously defined. We can also choose 5̃(Es) to have the block-
diagonal form of the input state τ(En), namely,

5̃(Es) =

J⊕
j= jmin

5̃ j(Es) ⊗ 1( j)
rep. (25)

For a given {a j}, the optimality of 5 j(Es), defined in equation (14), clearly ensures that

5̃ j(Es) = (1 − a j)5 j(Es) (26)

are also optimal for estimation with abstention. We have from (20) that the abstention
probability is simply

Q =

J∑
j= jmin

p ja j , (27)

where p j is given in equation (12). The coefficients a j can be understood as the probabilities
of abstention conditional on the input state having total angular momentum j , i.e. a j =

p(abstention| j). Similarly, for a given j , the probability of producing an estimate, or accepting,
is ā j = 1 − a j = p (acceptance| j).

From equation (21) we obtain

F(Q) =
1

2

1 +
J∑

j= jmin

p j1̃ j

 , (28)

where

1̃ j =
1 − a j

1 − Q
1 j =

ā j

Q̄
1 j , (29)

and the quantity 1 j is given in equations (16) and (17). Thus, we are only left with the
free parameters a j , which have to be optimized in order to maximize F(Q), subject to the
constraints 06 a j 6 1 and (27). Somehow expected, one can show that 1 j is a monotonically
increasing function of j , i.e. 1 j−1 < 1 j ; therefore the largest contribution to the fidelity is
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given by 1J . This corresponds to āJ = 1 and ā j = 0, j < J . Hence, for an unrestricted
probability of abstention, the optimal protocol discards any contribution with j < J . This
protocol, however, would provide an estimate with a probability that decreases exponentially
with N , for r < 1, as pJ ' (1/r)[(1 + r)/2]N+1. Note that in a noiseless scenario, r = 1, there is
only the contribution j = J , which is already the optimal one and therefore abstention is of no
use in such a case.

Clearly, for finite Q there can be contributions from other total angular momentum
eigenspaces ( j < J ) compatible with equation (27). Recalling the monotonicity of 1 j , and by
convexity, it is obvious from equations (28) and (29) that there must exist an angular momentum
threshold j∗ such that ā j = 0 (ā j = 1), if j < j∗ ( j > j∗). The value j∗ is determined through
equation (27) to be

j∗
= max

 j such that Q −

j−1∑
j ′= jmin

p j ′ > 0

 . (30)

Thus, we have

a j =


1, j < j∗,

p−1
j

Q −

j∗
−1∑

j ′= jmin

p j ′

 , j = j∗,

0, j > j∗.

(31)

In a more physical language, the optimal strategy consists actually of two successive
measurements. The experimentalist first makes a weak measurement to find the total angular
momentum j of the input state τ(En) and decides to abstain (provide a guess) if j < j∗ ( j > j∗).
If j = j∗, she simply decides randomly, by tossing a Bernoulli coin with probability a j∗ of
coming up heads, and if heads (tails) show up, abstain (provide a guess). In order to provide the
actual guess, if she decides to do so, she makes the optimal POVM measurement {5(Es)} (or
just {5 j(Es)}) in equation (13) on the state τ j(En) that resulted from the first measurement.

3.2. A small number of copies

In figure 1 we plot the fidelity gain due to abstention [F(Q) − F(0)]/F(0) = 1F/F(0)

versus Q for N = 6, 8, and purities of r = 0.3 and 0.7. The structure of equation (31) is apparent
from these plots: at Q = 0 (a j = 0 for all j) there is, naturally, no gain; kinks sequentially appear
at the precise values of Q where a new coefficient a j in (31) becomes positive (and j∗ increases
by one); the curves are convex between successive kinks, where the one a j that has become
positive, a j∗ , keeps increasing. This pattern repeats until the abstention rate Q reaches a critical
value Qcrit at which j∗

= J ,

Qcrit = 1 − pJ = 1 −
1

r

(
1 + r

2

)2J+1

+
1

r

(
1 − r

2

)2J+1

(32)

(see equation (12)). Increasing Q further will not provide any additional gain, as the flat plateaus
of figure 1 illustrate. This is so, since one can view the optimal abstention protocol as a
filtering process where the low angular momentum components of the input state are filtered out.
Hence, keeping the maximum value of j = J is the optimal filtering beyond which no further
improvement is possible. Figure 1(a) shows that in noisy scenarios, e.g. r = 0.3, abstention can
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Figure 1. Fidelity gain 1F/F(0) = [F(Q) − F(0)]/F(0) as a function of Q for
N = 6 (solid line) and N = 8 (dashed line) and purities of r = 0.3 in (a) and
r = 0.7 in (b).

Figure 2. Fidelity gain as a function of N for various values of r , indicated in
the legend, and for Q > Qcrit.

increase the fidelity quite notably, up to 15%. For higher purities the gain is more moderate, as
shown in figure 1(b). The enhancement in this case is about 4–5% but with an abstention rate
slightly above 50%. Further results are shown in figure 2, where we plot the fidelity gain as a
function of the number of copies N for abstention rates larger than Qcrit, and for various values
of the purity r . All the curves have a maximum at a value of N that varies with the purity. The
lower the purity, the higher the value of N at which the maximum occurs (e.g. for r = 0.3 the
maximum gain occurs at N = 12; for r = 0.1 the maximum is off scale at the right of the figure).

As we have seen, the possibility of abstaining enables us to reach values of the fidelity that
otherwise we could only attain with lower levels of noise. To quantify this effective reduction of
noise, let us define an effective purity reff by the implicit equation F(reff, N , 0) = F(r, N , Q).
That is, for an estimation setting, given by r , N and Q, reff is the purity of the input states that
would provide the same fidelity if the standard strategy without abstention (Q = 0) were used
instead. Since r is related to the probability of error η in our model of noisy measurements
in (1), an increase of the effective purity corresponds to an effective reduction of the amount of
noise in the measurement through the relation ηeff = (3/4)(1 − reff). Figure 3 shows a plot of the
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Figure 3. Effective purity reff as a function of the abstention rate Q
for N = 5 (dotted), 10 (dashed) and 30 (solid), and for purities of r =

0.01, 0.1, 0.3, 0.5, 0.7 and 0.9, which can be read off from the values of reff

at Q = 0.

effective purity reff as a function of Q for various values of r and N . As can be seen, reff increases
faster at low values of N , but it saturates earlier (lower Qcrit), reaching a lower value. For low
N and for a wide range of purities, 0.1. r . 0.9, we observe a constant effective increase of
the purity, reff ≈ r + 0.2, for reasonable values of the abstention rate Q. As N increases one
has to go to higher values of the abstention rate, Q ∼ Qcrit, to have a significant gain. Hence, a
moderate abstention rate is most effective in noisy scenarios when a small, but fair, number of
copies are available.

Finally, let us point out that the protocol we have presented requires a projection on the
total angular momentum eigenspaces. This is a non-local measurement that nonetheless can
be implemented efficiently [31]. In a more extreme scenario where there are no restrictions
on the abstention rate, one can attain the maximum fidelity with an even simpler strategy:
make a local Stern–Gerlach measurement on every qubit (say, of the z-component of the
spin) and abstain unless all outcomes agree. This strategy renders an abstention probability
of Q = 1 − [(1 + r)/2]N , which might be comparable to Qcrit in equation (32).

3.3. The asymptotic regime

We next compute the analytical expressions of the fidelity in the large N limit. Here it is useful
to define the variable x as

x =
j

J
, 06 x 6 1, (33)

New Journal of Physics 14 (2012) 105015 (http://www.njp.org/)

http://www.njp.org/


11

which becomes continuous in the limit N → ∞ (J → ∞). In this case, we can replace p j by
the continuous probability distribution in [0, 1] defined by

p(x) = J p j=x J , (34)

so that
∫ 1

0 dx p(x) = 1 as N goes to infinity. Equation (28) can then be approximated by its
continuous version, which reads

F =
1

2

[
1 +

∫ 1

0
dx p(x)1̃(x)

]
, (35)

where

1̃(x) = 1̃ j=x J , (36)

where recall that 1̃ j is given in equation (29). From equation (31) we see that asymptotically ā j

becomes the step function θ(x − x∗), where x∗
= j∗/J , and we have used the standard definition

θ(x) =

{
1, x > 0,

0, x < 0.
(37)

With this, equation (29) becomes

1̃(x) =
θ(x − x∗)

Q̄
1(x), (38)

and, in turn,

F =
1

2

[
1 +

1

Q̄

∫ 1

x∗

dx p(x)1(x)

]
. (39)

It also follows from (27) that

Q̄ =

∫ 1

0
dx p(x)θ(x − x∗) =

∫ 1

x∗

dx p(x). (40)

At this point, we need to find a good approximation to p(x) that would enable us to obtain
the explicit form for the asymptotic fidelity. From equation (12), and using the Stirling formula,
we obtain

p(x) '

√
N

2π

1
√

1 − x2

x(1 + r)

r(1 + x)
e−N H( 1+x

2 ‖
1+r

2 ), (41)

where H(s ‖ t) is the (binary) relative entropy

H(s ‖ t) = s log
s

t
+ (1 − s) log

1 − s

1 − t
, (42)

and the approximation is valid for both x and r in the open unit interval (0, 1). The appearance
of a relative entropy3 in equation (41) can be understood as follows. Our N -copy input state
(diagonal in the canonical Jn basis) can be thought of as a classical coin tossing distribution
of N identical coins with a bias of (1 + r)/2. From the theory of types [30], it is well
known that the probability to obtain k heads is given by the Kulback–Leibler distance (or
relative entropy) between the empirical distribution { f = k/N , 1 − f } and the distribution
{(1 + r)/2, (1 − r)/2}. That is, p(k) ∼ exp{−N H [ f ‖ (1 + r)/2]} to first order in the exponent.

3 It has also been noticed in the more general setting [28] and known as ‘the estimation theorem’ [29].
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Figure 4. Plots of 1(x) (blue line with solid circles) and p(x) (red line with
empty circles) for N = 100 and r = 0.5. The circles represent the quantities 1 j

and J p j as a function of x = j/J . The shaded area indicates the acceptance
region for an abstention rate Q ∼ 93%.

The number of heads k is in one-to-one correspondence with the magnetic quantum number,
m = k − J , and the conditioned probability p( j |m) is strongly peaked at m = j , as one can
easily check. It follows that the probability that the input state has total angular momentum
j , given by p( j) =

∑
m p( j |m)p(m), will be asymptotically determined by the probability

distribution p(m), which has a convenient expression in terms of the typical and the empirical
distribution of up/down outcomes.

From equation (41) it follows that p(x) is peaked at the value x = r , i.e. at j = r J , as
shown in figure 4 and stated without a proof in section 2. Actually, around the peak, x ∼ r , the
exponent becomes quadratic and p(x) approaches the Gaussian distribution

p(x) '

√
N

2π(1 − r 2)
e

−N (x−r)2

2(1−r2) , (43)

as also follows from the central limit theorem, whereas it falls off exponentially elsewhere.
It is now apparent that, asymptotically, abstention has negligible impact if components with

j below r J are filtered out (x∗ < r ), since the main contribution to the fidelity, which comes
from the peak around x ' r , is not excluded from the integral in equation (39) (only the left
exponentially decaying tail is). For the same reason (see equation (40)), Q̄ ' 1 (the abstention
rate Q is exponentially small), and equation (39) yields

F = 1 −
1

2N

r + 1

r 2
+ · · · for x∗ < r, (44)

which is the same expression as the asymptotic fidelity of the protocol without abstention,
equation (18).

It is then clear that, in order to have a discernible improvement in the fidelity, the abstention
threshold x∗ must lie on the right of the peak of the probability distribution. The fidelity in (39)
then can be written as

F '
1

2

[
1 +

p(x∗)

Q̄
1(x∗)

]
'

1

2

[
1 + 1(x∗)

]
, x∗ > r, (45)
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where we have used that for x > x∗ > r and for large enough N , p(x) falls off exponentially
and the integral can be approximated by the value of the integrand at its lower limit. By the very
same argument equation (40) gives

Q̄ ' p(x∗), (46)

which has also been used in (45). Using now (41) we obtain that in the asymptotic limit of many
copies, the rate at which our protocol provides a guess is

Q̄ ∼ exp

[
−N H

(
1 + x∗

2

∥∥∥∥1 + r

2

)]
. (47)

Recalling equations (16) and (17) we obtain the optimal fidelity

F = 1 −
1

2N x∗

r + 1

r
+ · · · , for r 6 x∗ 6 1, (48)

for a value of Q given by (47). For x∗
= r the results (18) and (44) are recovered, whereas for

x∗
→ 1 (Q > Qcrit) the maximum average fidelity is attained:

Fmax = 1 −
1

2N

r + 1

r
+ · · · . (49)

The advantage provided by our estimation with the abstention protocol can be quantified
by the effective number of copies that the standard protocol without abstention would require to
achieve the same fidelity: Neff = (x∗/r)N , where x∗

∈ [r, 1) is determined by the abstention rate
Q through (47). For high noise levels (low purity, r � 1) our protocol provides an important
saving of resources/copies, as Neff/N = 1/r � 1, whereas for nearly ideal detectors the saving
in this asymptotic regime is more modest.

Alternatively, the advantage discussed above can also be quantified by the effective
measurement-noise reduction, or equivalently, the effective purity reff (see section 3.2).
Using (48) one can easily find a simple expression for the effective purity in the asymptotic
limit and for large abstention rate: reff = (r +

√
4r + 5r 2)/[2(1 + r)]. In the limit of very low

noise levels the errors probability η (recall equation (1)) is effectively reduced by a factor of
three, i.e. ηeff = η/3, while in the opposite limit of very noisy measurements, one finds that
reff =

√
r .

3.4. Other regimes

In the previous section we have seen how a gain in fidelity can be obtained provided the
‘acceptance’ rate Q̄ falls off exponentially as N becomes very large. Here we give an example
where this gain takes place even at finite Q̄.

At a fixed noise level (purity r ), the fidelity is an increasing function of N . However,
one could imagine an experimental setup where the noise (purity) also increases (decreases)
with N . If this is so, the asymptotic fidelity could be strictly less than one, or in other words,
perfect estimation could be unattainable even with unbounded resources. This is the case in our
example, were we assume that r = a/

√
N , a being a positive constant. Note that the threshold

x∗ must also scale as 1/
√

N in order to have a reasonably low abstention rate. Therefore, it is
convenient to use a new variable ξ =

√
N x =

√
N j/J = 2 j/

√
N instead. Then, the probability

distribution in this new variable is

p(ξ) =

√
N

2
p j=ξ

√
N/2, with r =

a
√

N
. (50)
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Recalling equation (12) and using the Stirling formula this equation gives

p(ξ) =
e−

(
ξ−a
√

2

)2

− e−

(
ξ+a
√

2

)2

√
2πa

ξ (51)

to leading order in inverse powers of N . The subleading terms are of order N−1/2 and will be
neglected here. For a given threshold value ξ ∗

= 2 j∗/
√

N the abstention rate is

Q =

∫ ξ∗

0
p(ξ) dξ =

1

2

(
erf ξ ∗

+ + erf ξ ∗

−

)
−

e−ξ∗
−

2
− e−ξ∗

+
2

√
2πa

, (52)

where ξ ∗

±
= (ξ ∗

± a)/
√

2 and erf x is the error function.
From equations (16) and (17) we have in this same regime and at leading order

1(ξ) = 1 j=ξ
√

N/2 = 1 −
2

1 − e2aξ
−

1

aξ
. (53)

With the above, the fidelity (28) (or rather, the counterpart of (35)) is

F =
1

2

[
1 +

∫
∞

0
dξ p(ξ)1̃(ξ)

]
=

1

2

[
1 +

1

Q̄

∫
∞

ξ∗

dξ p(ξ)1(ξ)

]
, (54)

where the last integral can be computed to be

1∗
≡

∫
∞

ξ∗

1(ξ)p(ξ) dξ (55)

=
1 − a2

2a2

(
erf ξ ∗

−
− erf ξ ∗

+

)
+

e−ξ∗
−

2
+ e−ξ∗

+
2

√
2πa

.

We can finally write the fidelity as

F =
1

2

(
1 +

1∗

1 − Q

)
+O(N−1/2). (56)

As shown in (52) and (55), both Q and 1∗ are functions of the filtering threshold ξ ∗, which is
just a properly scaled version of the original threshold j∗. Finding the maximum fidelity for a
given rate of abstention Q requires inverting equation (52) to obtain ξ ∗(Q), but this cannot be
done analytically and one has to resort to numerical methods.

In figure 5 we plot F as a function of Q for a = 1. The increase of the fidelity in the
asymptotic regime of large N is clearly seen: e.g., an abstention rate of 50% yields a rise of about
10%, and it goes up to about 30% for higher (but still reasonable) values of Q. The figure also
shows the agreement between the approximate form of the fidelity given by equations (52)–(56)
and the numerical evaluation of its exact expression in (28).

It should be noted that in the regime described here a rise of the input size N fails to
replicate the fidelity improvement that results from increasing the rate of abstention (no Neff

can be defined in this regime); thus abstention appears to be the only means by which one can
improve estimation.

New Journal of Physics 14 (2012) 105015 (http://www.njp.org/)

http://www.njp.org/


15

Figure 5. Plot of the fidelity as a function of Q for r = a/
√

N , with the
choice a = 1.0, N = 106 (red circles). The solid line (in blue) is the leading term
in equation (56) plotted as a function of Q (a parametric plot of the pairs (Q, F),
as given by equations (52) and (56)).

4. Conclusions

In this work we have addressed optimal estimation of pure qubit states when abstention from
providing an outcome is allowed. We have considered a reasonably realistic multiple copy
scenario, where a sample of N identically prepared systems go through a non-ideal (noisy)
process of measurement. We have shown that in the limit of zero noise, abstention does not
help to improve estimation (it does not hamper it either). However, abstention turns out to
counterbalance the adverse effect of errors in a noisy process of measurement. We have shown
that, in general, abstention is most useful for inputs of a few copies and for error rates of the
order of a few per cent. For example, for N = 6 and a value of the error probability of η = 0.5
(per qubit), one can easily attain fidelity gains of the order of 15% with an abstention rate
of Q = 4/5. As N increases, one needs to allow for higher abstention rates to obtain a significant
improvement. We have given analytical asymptotic expressions of the fidelity valid in the limit
of a large number of copies. In this limit, abstention can have the effect of increasing the number
of copies by a constant fraction: Neff/N = x∗/r (x∗ > r ), with an acceptance rate Q̄ given by
the relative entropy: −(1/N ) log Q̄ = H [(1 + x∗)/2 ‖ (1 + r)/2]. For low levels of noise, this
amounts to reducing the error probability η by a factor of up to three.

We have also considered a scenario where the noise (per qubit) increases with the number
of copies in such a way that perfect estimation is unattainable (limN→∞F < 1). In this case one
can obtain a significant enhancement of the asymptotic fidelity (a few per cent) even for finite
abstention probabilities Q < 1. Moreover, in such a scenario abstention appears to be the only
way to improve estimation.

In broader parameter estimation contexts, where, e.g., phase or direction information is
encoded in more general many-particle states, abstention may have a much more dramatic effect.
These issues will be analyzed in a separate publication [24].
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[23] Fiurášek J 2006 New. J. Phys. 8 192
[24] Gendra B, Ronco-Bonvehi E, Calsamiglia J, Munoz-Tapia R and Bagan E arXiv:1209.5736
[25] D’Ariano G M, Macchiavello C and Perinotti P 2005 Phys. Rev. Lett. 95 060503
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