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Abstract. We construct an efficient autonomous quantum-circuit design
algorithm for creating efficient quantum circuits to simulate Hamiltonian many-
body quantum dynamics for arbitrary input states. The resultant quantum
circuits have optimal space complexity and employ a sequence of gates
that is close to optimal with respect to time complexity. We also devise
an algorithm that exploits commutativity to optimize the circuits for parallel
execution. As examples, we show how our autonomous algorithm constructs
circuits for simulating the dynamics of Kitaev’s honeycomb model and
the Bardeen–Cooper–Schrieffer model of superconductivity. Furthermore, we
provide numerical evidence that the rigorously proven upper bounds for the
simulation error here and in previous work may sometimes overestimate the error
by orders of magnitude compared to the best achievable performance for some
physics-inspired simulations.
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1. Introduction

Feynman proposed quantum computing as a means to ‘imitate’ quantum dynamics in order to
overcome apparent intractability of universal quantum simulation on classical computers [1].
He conjectured that a universal quantum simulator (UQS) could efficiently simulate quantum
evolution. Lloyd formalized Feynman’s concept by employing a Trotter ordered-operator
expansion to convert continuous time evolution into a quantum circuit C comprising unitary
quantum gates [2]. The UQS is now also referred to as ‘digital quantum simulation’, both
theoretically [3–6] and experimentally [7]. The adjective ‘digital’ is used to contrast with the
term ‘analogue quantum simulation’, which aims to emulate evolution of a Hamiltonian Ĥ
in a custom-designed experiment [8–12]. The importance and near-future feasibility of the
(digital) UQS, albeit without quantum error correction, drives experimental efforts to create
these simulators for restricted types of Ĥ [7].

We present the first autonomous algorithm to design circuits for simulating the evolution
generated by a general n-qubit k-local Hamiltonian Ĥ (n) within a pre-specified tolerance ε. An
n-qubit k-local Ĥ (n) is defined to be a linear combination of m Hamiltonians ĥ

(n)

j , each acting
on n qubits as an identity operator 1 on all but k ∈ polylog(n) qubits [13], and polylog(n) is
a polynomial function of log n. Our tolerance ε is the worst-case two-norm distance between
the true evolved state under the specified evolution and the simulated output state, maximized
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over all allowed input states. We also show in section 8 that these worst-case error bounds that
go into these estimates can overestimate the error for random two-local Hamiltonians by orders
of magnitude, which suggests that UQS experiments may be much more feasible than previous
simulation work has suggested [14–18].

In our analysis, we consider two independent cases of universal gate sets. One case
corresponds to a finite set comprising a single two-qubit entangling gate plus a finite number
of one-qubit gates. The second case incorporates a single two-qubit entangling gate plus both
discrete and continuously-parameterized single-qubit gates. Strictly speaking only a finite gate
set should be permitted for quantum error correction and scalability, but there is a trend in
experimental studies to report quantum simulation with continuously-parameterized single-
qubit gates. We want our algorithm to be relevant both to the strict case of a finite gate set
and to experimental efforts that employ continuous tunability.

Our resultant circuits are not only efficient (meaning that the circuit size scales
polynomially with the number of simulated qubits for fixed k) but also uses the smallest number
of qubits possible given the size of the system being simulated. Additionally, the circuit size
also scales near-optimally with the run-time t of the simulation.

This minimization over space and time costs (number of qubits required in the simulator
and number of gates) is important for making quantum simulators as close as possible to
practical implementation. Each additional qubit and each additional gate can be challenging
to implement in practice so reducing these costs is not only important for proving that the
scaling is efficient hence possible in principle but also to reduce the costs to make the simulation
feasible with small simulators in the near future. Our minimum run-time algorithm is also
improved by parallelizing gates by grouping commuting terms in the Trotter decomposition
of the evolutionary operator, thus enhancing the near-term feasibility of the quantum simulator.
Our work thus enables feasibility of UQS circuits. Experimental UQS circuits will be valuable
to predict resultant states under Ĥ -evolution or to provide UQS-generated states as inputs
to quantum algorithms for purposes such as acquiring spectral properties or eigenstates of
Hamiltonians [19] or to determine particle scattering, e.g. in a relativistic quantum field
theory [20, 21]. The ground state is regarded as the most important eigenstate as it uniquely
determines all properties of the system [22] and could be used to solve outstanding condensed-
matter problems such as determining the energy gap for general Bardeen–Cooper–Schrieffer
(BCS) superconductivity models of finite systems [23]. Dynamical simulation algorithms have
been devised to simulate ground-state properties via adiabatic state preparation [23] or via
dissipative interaction with the environment [4, 5].

2. Algorithm for designing the quantum simulator circuit

2.1. Concept

Our algorithm yields a string representing a quantum circuit that comprises a sequence of
quantum gates to simulate k-local Hamiltonian evolution within fixed two-norm distance ε.
The n-qubit k-local Hamiltonian is expressed in the Pauli operator basis as

Ĥ (n)
=

m∑
j=1

a j ĥ
(n)

j , ĥ
(n)

j =⊗
n
`=14̂

(n)

j` , (1)
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with 4
(n)

j` ∈ {1, X, Y, Z} such that

X =

[
0 1
1 0

]
, Y = i

[
0 −1
1 0

]
, Z =

[
1 0
0 −1

]
. (2)

The total number of non-identity Pauli operators in each ĥ
(n)

j is at most an n-independent
constant k.

Our algorithm is designed to produce a poly(n)-size description of a quantum circuit that
implements a unitary Ũ (n)(t) such that

‖ exp(−iĤ (n)t)− Ũ (n)(t)‖6 ε, (3)

where ‖ · ‖ denotes the two-norm. This condition implies that the trace distance between the
ideal evolution and the simulated evolution is at most ε for any initial state [17, 18]. Below we
discuss the algorithmic input, processing and output.

2.2. Input

The algorithm requires the following inputs:

n: number of qubits in the system;

k: locality parameter of the Hamiltonian;

t : evolution time for the simulation;

ε: worst-case two-norm error tolerance (distance) between the true evolved state and the
simulated state;

$ ; specifies which single-qubit gate set to use, namely {H, T = Z−1/4
} or the continuously

parameterized set {H, Rz(θ)}, with Z = Rz(π/2);

[Ĥ (n)]: bit-string representation of the n-qubit k-local Hamiltonian.

The Hamiltonian [Ĥ (n)] is entered into the algorithm as a bit string no larger than a poly(n)-
size representation for this input to be efficient. Our algorithm accepts the Hamiltonian Ĥ (n)

input as the bit-string representation

[Ĥ (n)] :=
{(

a j , l j , S j

)
; j = 1, . . . , m

}
, (4)

with

l j =
(
lX j , lY j , lZ j

)
(5)

the vector corresponding to the numbers of each type of Pauli operators in ĥ
(n)

j and

S j =
(
SX j , SY j , SZ j

)
(6)

with SX j , SY j and SZ j the strings corresponding to the positions of each of the X , Y and Z

operators respectively in ĥ
(n)

j .

In equation (4), substrings representing Hamiltonians ĥ
(n)

j appear as triplets of strings.
These triplets are delimited by parentheses thus ensuring easy parsing of the overall string
for [Ĥ (n)]. Whereas a general matrix representation of Ĥ (n) is exponentially large in n, our
representation [Ĥ (n)] of this k-local Hamiltonian has poly(n) size.
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As an example of this encoding, consider the three-qubit Hamiltonian

Ĥ (n=3)
= X ⊗ X ⊗1 + 2 Y ⊗ Y ⊗1 + 4 Y ⊗1⊗ Z (7)

with m = 3. This Hamiltonian is represented as

a = (1, 2, 4),

l1 = (2, 0, 0), SX1 = (1, 2),

l2 = (0, 2, 0), SY 2 = (1, 2),

l3 = (0, 1, 1), SY 3 = (1), SZ3 = (3) (8)

and all other strings are empty.
Our algorithm can compute the number of time steps r of equal duration t

r so that the
evolution from 0 to t is broken down into a sequence of finite steps. Furthermore our algorithm
employs the Trotter–Suzuki (TS) ordered-exponential decomposition [17, 18, 24, 25] of order χ

to simulate the evolution sequentially over each of the r time steps. However, our algorithm
determines r and χ based on optimizing an upper bound on tolerance, and superior choices of r
and χ are possible but not by using our algorithm or any other known algorithm. We provide
numerical evidence of this fact, for random two-body Hamiltonians, in section 8.

As the user of our algorithm might wish to employ or test other choices of r and χ , we
design the algorithm so that the user can override our choices of r and χ . If our algorithmically
determined value of r is overridden, the guarantee that the quantum simulations yields a
resultant state within tolerance ε no longer holds. Therefore, overriding the algorithm’s r comes
with the warning that the error in the quantum simulation is unknown. Specifically setting r = 0
and χ = 0 causes our algorithm to determine optimal r and χ values based on minimizing the
number of gates required to guarantee that the simulated state has two-norm error less than ε

for any input state. Positive values of r and χ override our algorithmic determination of these
parameters and use the input values instead.

The purpose of the input variable $ is to enable circuit design that strictly uses a finite
gate set in accordance with principles of quantum error correction and scalability [26] or
to include a continuously-parameterized single-qubit gate, namely rotations by θ around the
z-axis using unitary operator Rz(θ), in accordance with prevalent experimental practice [7].
More generally one could consider the case that $ is any desired universal gate set, but here we
restrict our attention to just two single-qubit gates, either {H, T = Z−1/4

} or {H, Rz(θ)}, so $ is
a binary, or logical, variable. In our algorithm, both of these sets are accompanied by two-qubit
controlled-not gate CNOTi j with the i labeling the control qubit and j labeling the target qubit.

2.3. Output

Our algorithm yields an output string [C] that represents the resultant quantum circuit. This
quantum circuit is a sequence of quantum gates that simulate the dynamics of the quantum
system for an arbitrary input state. In our algorithm the basic quantum gates are members either
of the finite-size universal instruction set {H, T, CNOT} or the continuously-parameterized set
{H, Rz(θ), CNOT}.

The single-qubit gates are represented in the output as a string of the form ‘H x’ or ‘T x’
with x a bit string labeling the qubit acted upon by gate T or H , respectively. These gates,
along with the identity 1, which is not explicitly stated in the circuit, can be parallelized
and concatenated to form circuits. For example, the string H1T 2 represents a circuit that first
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performs the Hadamard operation on qubit 1 then a π/8–gate on qubit 2. The CNOT operation is
represented similarly with the string ‘CNOTx ,y’ representing the quantum operation CNOTxy .
For the case of the gate set that includes continuously parameterized single-qubit z-rotation
gates, Rz(θ), in the output, The action of Rz(θ) on qubit x is represented as the string ‘RZ [θ ], x’
where [θ ] is a string representing the rotation angle θ .

2.4. Processing

Our circuit-design algorithm proceeds through three stages.

1. Hamiltonian sorting algorithm: Mutually commuting terms in H (n) are grouped together
resulting in parallelized quantum simulation that reduces total runtime.

2. TS algorithm: U (n)(t) := exp{−iĤ (n)t} is decomposed into a sequence of exponentials of
Pauli operators.

3. Circuit-design algorithm for Pauli-exponentials: Determine the quantum circuit and
convert into output string [C].

These algorithmic stages are described in the following sections.

2.5. Summary

An algorithm consists of input and output with the output obtained by processing the input. We
have been careful to discuss the input and output as bit strings as our algorithm is classical and
runs on a classical computer. The output of the algorithm is a design procedure to construct a
quantum simulator circuit that would simulate the evolution of a quantum state. In the following
sections we describe the algorithmic stages.

3. Trotter–Suzuki (TS) formulae

In this section we discuss the second stage of the algorithm, which concerns decomposing the
TS ordered-operator exponential into a sequence of exponentials of tensor products of Pauli
operators. The second stage of the algorithm is discussed first because the first stage groups
these TS terms so understanding the second stage helps to understand the terms being grouped
in the first stage.

We use the TS method to determine a product of exponentials of ĥ
(n)

j that approximates
U (n)(t) within two-norm distance ε [17, 18, 24]. The total time of evolution t is divided into r
time intervals each of equal duration

1t =
t

r
. (9)

For Ũ (n)
χ the χ th-order TS iterate approximating the n-qubit unitary evolution U (n), the distance

between the ‘true’ evolution operator U (n)(t) and the TS approximated evolution operator is

∥∥U (n)(t)−U (n)
χ (1t)r

∥∥ ∈ O

(
t2χ+1

r 2χ

)
. (10)
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The iterative TS formula for generating Uχ is well known [24]. The formulae are widely used
in quantum simulation algorithms because they generate an approximation

U (n)
χ (1t)= exp

{
−ia j1 ĥ

(n)

j1
t1

}
exp

{
−ia j2 ĥ

(n)

j2
t2

}
· · · exp

{
−ia jM ĥ

(n)

jM
tM

}
, (11)

which is a product of unitary evolutions, for Hamiltonians ĥ
(n)

j1
represented by the sequence ji

and a sequence of times ti . The TS formulae comprises a sequence of exponentials of Pauli
operators that have simple circuits for quantum computer implementation [26].

Specifically, the approximation U (n)
χ ( t

r ) is constructed iteratively for the Hamiltonian

H (n)
=
∑m

j=1 a j ĥ
(n)

j via

U (n)

1 (1t) =
m∏

j=1

exp

{
−ia j ĥ

(n)

j

1t

2

} 1∏
j=m

exp

{
−ia j ĥ

(n)

j

1t

2

}
,

U (n)
p (1t) =

[
U (n)

p−1

(
spt

r

)]2

U (n)

p−1

(
(1− 4sp)

t

r

)[
U (n)

p−1

(
spt

r

)]2

(12)

with

sp =
1

4− 41/(2p−1)
(13)

and the integer p obeys 1 < p 6 χ . We emphasize this form of the TS formula because it is
important for our grouping algorithm that the order of the exponentials in the product formula
matches the order of the exponentials in the Hamiltonian.

We express this TS stage of the algorithm as an outline of a computer program. The
program’s input is the bit-string representation [Ĥ (n)] of the n-qubit Hamiltonian, the desired
order of the Suzuki iteration χ , the evolution time t and the number of intervals r , which together
yield the time step 1t (9). The program’s output bit-string representation for the χ th-order
approximation to the true evolution:

[U (n)
χ (1t)]≡ (a jM , l jM , S jM , tM)(a jM−1, l jM−1, S jM−1, tM−1) · · · (a j1, l j1, S j1, t1) (14)

with M = 2m5χ−1 following from the recursive form of the TS formulae (12) [24]. The
representation in (14) stores each exponential in the approximation as a sequence of strings
that represent a Hamiltonian term a jh

(n)

j and then the duration of the evolution step (stored to
finite precision). Our representation stores the exponentials in order of their execution; although,
in this case, the symmetry of the TS formulae implies that we could also store them in reverse
order without changing the result. The TS algorithm that generates a TS approximation of the
form (14) is given by algorithm 1.

The performance of the resulting simulation depends strongly on the chosen values for r
and χ . If r = 0 or χ = 0, our program determines suitable values of r or χ ; otherwise this
program uses the user-supplied values. Given a specified value of χ , then

r =

⌈
(2m(5/3)χ−1χ( max j |a j |t))

1+1/2χ

(ε/2)1/2χ

⌉
(15)

is optimal [14, 16], which guarantees that [14]∥∥∥U (n)(t)−
(

Ũ (n)(1t)
)r∥∥∥

2
6

ε

2
(16)
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Algorithm 1. TS algorithm.
Input:

[Ĥ (n)]: bit-string representation of the Hamiltonian
1t : time duration
χ : iteration order of Suzuki’s method [24]

Output:
SuzInt: array of exponentials.

function TrotterSuzuki([Ĥ (n)], 1t , χ )
return SuzInt← sequence of exponentials [U (n)

χ (1t)] (14) using Suzuki’s procedure [24].
end function

provided that

ε 6 2mχ(5/3)χ−1 max
j
|a j |t . (17)

We employ the value of r in (15) as the default value of r for the algorithm and take our default
value of χ to be

χ =

⌈√
log25/3(m maxi |ai |t/ε)

2

⌉
(18)

because it causes the number of operations in the simulation to scale nearly linearly with t [14].
The value of r given in (15) can be larger than necessary for certain Hamiltonians (as

shown in section 8). If a guarantee that the error is less than the tolerance ε is not required,
then choosing r smaller than the optimal value given in (15) could suffice and thereby reduce
runtime.

4. Hamiltonian sorting algorithm

Now we return to the first stage of the algorithm, which aims to reduce runtime by grouping
TS terms based on generation by commuting Hamiltonians. In other words, TS terms are
grouped together to parallelize the quantum simulation circuit. The benefits of grouping terms
and exploiting parallelism is most notable in the case of physically local Hamiltonians, where
we show that parallelism typically leads to a near-quadratic improvement to the scaling of the
time required to simulate the quantum system’s evolution.

The algorithm achieves this grouping by decomposing the Hamiltonian (1) into m̄ groups
of terms as

Ĥ (n)
=

m̄∑
j=1

ĝ
(n)

j , ĝ
(n)

j =

∑
l∈G j

al ĥ
(n)

l , (19)

such that all ĥ
(n)

l ∈ G j mutually commute.
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Algorithm 2. Hamiltonian sorting algorithm.
Input:

[Ĥ (n)]: bit-string representation of the Hamiltonian
n: number of qubits
m: number of Hamiltonian terms summed to make [Ĥ (n)]

Output:
[Ĥ (n)

sorted]: sorted representation of the Hamiltonian with mutually commuting terms combined
in groups

function SortH([Ĥ (n)], n, m)
ms← 1.
G1← (a1, l1, S1).
for j From 2 to m do

isAssigned← 0.
for p from 1 to ms do

if isAssigned= 0 then F Checks if term commutes with terms in G p

isAssigned← 1 if
∑

v 6=w

∣∣Sv i ∩ Sw j

∣∣ for each (ai , l i , Si) in G p.
if isAssigned= 1 then

G p← Concatenation of G p with (a j , l j , S j). F Assigns term to G p.
end if

end if
end for
if isAssigned= 0 then F Checks if new ‘group’ of commuting Hamiltonians is

needed
ms← ms + 1.
Gms ← (a j , l j , S j).

end if
end for
return [Hsorted]← Concatenation of G1, . . . , Gms .

end function

The TS algorithm can then be used to determine a sequence of exponentials of ĝ(n)

j , namely
the sum of the terms in each commuting set that simulates

exp
(
−iĤ (n)t

)
= exp

−i
m̄∑

j=1

ĝ(n)

j t

 (20)

within error ε. Product-formula approximations are not needed to decompose the exponential
of each group into a product of exponentials of Pauli-operations as each ĥ

(n)

j in any given group
mutually commutes. In other words

exp
(
−iĝ(n)

i t
)
= exp

−i
∑
j∈Gi

ĥ
(n)

j t

=∏
j∈Gi

exp
(
−iĥ

(n)

j t
)

(21)

for any value of t .
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Finally, we note that explicitly grouping the terms in Ĥ (n) into ĝ(n) is unnecessary. Instead
it suffices to sort the terms in the Hamiltonian by group membership (i.e. terms that are assigned
to group G1 appear first in [Ĥ (n)], then terms in G2 appear next and so forth). If we use (12) to
construct the TS formulae, then the resulting simulation will sort the steps in the simulation
into commuting groups of operations. As commuting operations can often be executed in
parallel, this procedure reduces the time required to execute the circuit in systems that can
use parallelism.

In the first stage of the algorithm our program accepts the string Si , as introduced in
section 2, to determine if two terms in Ĥ (n) commute. The Hamiltonians ĥ

(n)

i and ĥ
(n)

j commute
if and only if, for the dummy variables v, w ∈ {X, Y, Z},∑

v 6=w

∣∣Sv i ∩ Sw j

∣∣≡ 0 (mod 2), (22)

where | • | denotes the size of a set •.
As a clarifying example, consider the Hamiltonian (7). The first two terms in (7) commute

because of the anti-commutativity of Pauli-operators and because both terms have differing
actions on an even number of qubits. Criterion (22) also tells us that they commute because∑

v 6=w

|Sv1 ∩ Sw2| = |Sx 1 ∩ Sy2| = 2≡ 0 (mod 2). (23)

On the other hand, the second and third terms do not commute as∑
v 6=w

|Sv2 ∩ Sw3| = |Sy2 ∩ Sz3| = 1≡ 1 (mod 2). (24)

Criterion (22) accounts for the commutativity of Hamiltonians that act on disjoint sets of qubits
as well as other commuting Hamiltonians such as the star and plaquette operators in the toric
code [27]. A proof of the general validity of (22) as a criterion for commutativity is given
in appendix. If desired, a more restrictive grouping condition∑

v 6=w

|Sv i ∩ Sw j | ≡ 0 (25)

can be used only to group together operations that have actions on disjoint sets of qubits.
The criterion for commutativity in (22) can be used to find an efficient classical algorithm

for grouping {ĥ
(n)

j } into groups of mutually commuting Hamiltonians, which we describe below
formally. This grouping algorithm is efficient because m is polynomially large in n for local-
Hamiltonians and (22) can be efficiently evaluated.

The depth of the resulting quantum circuit depends on the value of m̄ for the Hamiltonian.
The reductions in the depth vary with the number of groups required for the Hamiltonian in
question. The question can, however, be addressed for the cases of generic k-local or physically
k-local Hamiltonians (by generic we mean k-local Hamiltonians that include every possible
p-body interaction for p 6 k.).

We estimate the worst-case scaling of m̄ for generic k-local Ĥ (n) by using the more
restrictive grouping condition that ĥ

(n)

i and ĥ
(n)

j are assigned to the same group only if
condition (25) is satisfied. This requirement will generically result in a smaller value of m̄
than our grouping algorithm will yield. In this case, at most bn/kc k-body terms can be
assigned to each group for k-local interactions. Terms with (k− 1)-body interactions (or fewer)
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Figure 1. Quantum circuit for implementing exp(−iφX ⊗ Y ⊗1⊗ Z) for an
arbitrary dimensionless evolution time φ with H the Hadamard gate, T ` a
concatenation of ` π/8 gates and RZ(2φ) a qubit rotation of φ about Z .

can be neglected because n is assumed to be large and the vast majority of terms in the
k-local Hamiltonian are k-body. Specifically, there are O(nk−1) terms with only (k− 1)-body
interactions or fewer and O(nk) terms with k-body interactions, which means that we can
neglect terms that are only (k− 1)-local for generic Hamiltonians in the limit of large n.

The number of k-body Hamiltonians that can be assigned to each group before
the Hamiltonians violate the grouping criterion (22), scales as 2(n/k), with 2 the
Bachmann–Landau notation for indicating that a function of this order is asymptotically
bounded above and below by n/k up to multiplicative constants. For k a constant

m̄ ∈ O

(
nk

n/k

)
= O(nk−1). (26)

Physically local Hamiltonians are constrained such that each qubit interacts with at most
a constant number of qubits. This implies that there are O(n) k-body terms present in
physically k-local Hamiltonians. Therefore, the number of groups required for physically-local
Hamiltonians scales as

m̄ ∈ O

(
n

n/k

)
= O(1), (27)

which we will see constitutes a nearly-quadratic reduction in the circuit depth for some
simulations.

5. Implementing TS formulae

The main primitive element of the circuit-design algorithm is a basic circuit element C`
corresponding to a particular sequence of gates in our gate set to simulate evolution due to each
exp{−ia j` ĥ

(n)

j`
t`} in the output of the subroutine described in section 3. The circuit construction

that we use is an optimized version of that presented in [26]. Underpinning this primitive C` is
the conversion of Pauli gate operations to operations in our gate set [4–6].

The simplest way to explain this step is by example:

U (n=4)

` (φ)= exp (−iφX ⊗ Y ⊗1⊗ Z) (28)

shown in figure 1. This circuit allows for a continuously parameterized phase-rotation gate
Rz(2φ)= exp(−iφZ), but of course a proper quantum algorithm would work with a finite gate
set. However, the gate RZ(2φ) can be reduced to a finite gate set using the constructive version
of the Solovay–Kitaev algorithm [28]. Our algorithm takes a logical variable,$ ∈ {0, 1} as an
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input that specifies the gate set from which the gates in the output should be drawn and uses the
Dawson–Nielsen algorithm [28] to convert the continuous rotation gates into discrete gates if
gate set 0 is chosen. We label the gate sets

$ = 0: {H, T, CNOT},

$ = 1: {H, Rz(θ), CNOT : θ ∈ [0, 2π)}.

The circuit primitive for C`, as illustrated in figure 1, is constructed by first choosing one of
the system qubits to be the ‘parity qubit’. The role of this qubit is to track the parity of qubits
affected by ĥ

(n)

j`
when expressed in the eigenbasis of ĥ

(n)

j`
. This parity is required to perform

U (n)

` (a j`t`) using diagonalization [4–6]. The parity qubit is always chosen to be the qubit with
the largest label amongst this set that is non-trivially affected by the Hamiltonian. We say that a
qubit is trivially affected by a Hamiltonian if it acts as the identity on that qubit. As an example,
the fourth (bottom) qubit is chosen to be the parity qubit for the Hamiltonian in figure 1.

The method we use to construct the simulation circuit is given in algorithm 3. Specifically
this stage of the algorithm produces a bit-string representation for a circuit approximating
exp{−iaih

(n)

i ti} where aih
(n)

i is a term in Ĥ (n). The algorithm for this is provided below.

6. Main algorithm

6.1. Complete procedure

We now construct the circuit-design algorithm, which employs the programs described
in the previous three sections. The algorithm begins by using algorithm 2 to sort the terms
in the Hamiltonian, which ensures that neighboring entries in the list of terms that comprise the
Hamiltonian commute (if possible). The next step uses the TS algorithm to find a sequence of
simulations of the ĥ

(n)

j`
that approximates e−iĤ (n)t . The final step utilizes algorithm 3 to find a

quantum circuit that approximates each of the exp{−iĥ
(n)

j`
t`} to yield a complete description of

the overall simulation circuit. The procedure is described in greater detail in algorithm 4.
The efficiency of our main algorithm depends on whether r and 2m5χ0−1 are polynomially

large. It is straightforward to see by substitution that the default values used for both of these
quantities scale polynomially with the simulation parameters, and hence is efficient. On the
other hand, if the default values of r and χ are not used then the above algorithm may not be
efficient.

6.2. Cost estimates

We now provide upper bounds for the scaling of the circuit-size of the circuits yielded by our
design algorithm using the default values χ0 and r0, which are chosen to guarantee that the
simulation time scales near-linearly with t and the error is at most ε/2 respectively. There are
three costs that we consider: the number of gates in the resulting circuit, Nop, the time required
to execute the circuit using parallelism, τ , and the number of qubits required which in our case
is trivially n. We assess the remaining costs Nop and τ below.

The value of Nop is bounded above by the number of circuit primitives, C`, needed to
simulate the evolution multiplied by the maximum cost of implementing a circuit primitive.
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Algorithm 3. Circuit-design algorithm for Pauli-exponentials.
Input:

(ai , l i , Si , ti): bit-string representation of the exponential
$ : determines which gate set should be used
δ: error-tolerance for the Solovay–Kitaev algorithm

Output:
[Ci ]: simulation circuit for exp(−iĥ

(n)

i ti)

function PCircuit((ai , l i , Si , ti),$ , δ)
[Ci ]←∅. F Sets [Ci ] to the empty-string.
for each string ` in Si,x do

[Ci ]← [Ci ]H`. F Concatenates [Ci ] with Hadamard on qubits that ĥ
(n)

i acts as X on.
end for
for each string ` in Si,y do

[Ci ]← [Ci ]T `T `T `T `T `T `H`. F Applies diagonalizing rotation to each qubit on
which the term acts as Y .

end for
`max←max(` ∈ Si).
for each ` in Si \ {`max} do F Identifies parity qubit.

[Ci ]← [Ci ]CNOT`, `max.
end for
if $=1 then

SK← output of the Solovay–Kitaev algorithm for Rz(2ai ti) acting on qubit `max with
error tolerance δ.

[Ci ]← [Ci ]SK.
else

[Ci ]← [Ci ]RZ(2ai ti), `max.
end if
for each ` in Si \ {`max} do

[Ci ]← [Ci ]CNOT`, `max.
end for
for each string ` in Si,y do

[Ci ]← [Ci ]H`T `T `.
end for
for each string ` in Si,x do

[Ci ]← [Ci ]H`.
end for
return [Ci ].

end function

The cost for implementing each circuit primitive C` for a k-local Ĥ requires at most 10k single-
qubit gates, 2k− 2 CNOT gates and one RZ rotation. This worst-case estimate is given by
the cost of simulating a ĥ

(n)

j that acts as Y on k qubits because Y -interactions are the most
expensive to simulate using our algorithm for finding C`. The Solovay–Kitaev algorithm of
Dawson and Nielsen [28] gives the cost of implementing the continuous gate RZ(2φ) within
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Algorithm 4. Main algorithm.
Input:

[Ĥ (n)]: bit-string representation of the Hamiltonian
n: the number of qubits
t : evolution time
ε: error tolerance
r : number of time steps F r = 0 guarantees error is at most ε

χ : iteration order of TS formula F χ = 0 guarantees near-linear time scaling.
$ : logical value that indicates whether the discrete or continuous gate set is used

Output:
[C]: simulation circuit for exp(−iĤ (n)

i t)
function Main([Ĥ (n)], n, t, r, χ, ε, $ )

[Ctemp]←∅.
m← number of terms in Ĥ (n).
[Ĥ (n)]← SortH([Ĥ (n)], n, m). F See algorithm 2.
amax←maxi |ai |.
if χ = 0 then

χ←

⌈√
log25/3(

mamaxt
ε )

2

⌉
. F Computes default value of χ

end if
if r = 0 then

r←
⌈

2(2m(5/3)χ−1χamaxt)1+1/(2χ)

(ε/2)1/(2χ)

⌉
. F Computes default value of r

end if
if ε > 2mχ(5/3)χ−1 max j |a j |t then

ε← 2mχ(5/3)χ−1 max j |a j |t .
end if
SuzInt← TrotterSuzuki([Ĥ (n)], t

r , χ). F See algorithm 1.
for j = 1 to 2m5χ−1 do F Finds circuit for one time step.

[Ctemp]← [Ctemp]PCircuit
(

SuzInt( j), $, ε

(4m5χ−1r)

)
. F See algorithm 3.

end for
[C]← [Ctemp].
for j = 1 to r − 1 do F Finds complete simulation circuit.

[C]← [C][Ctemp].
end for
return [C].

end function

tolerance ε/(4m5χ0−1r0) as

NSK ∈ O

(
log4

(
4m5χ0−1(2m(5/3)χ0−1χamaxt)1+1/(2χ0)

2ε(ε/2)1/(2χ0)

))
. (29)

As

χ0 =

⌈√
log25/3(mamaxt/ε)

2

⌉
, (30)
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we have that log(5χ0) ∈ O(
√

log(mamaxt/ε)). Then using the properties of logarithms, we find
that

NSK ∈ O

(
log4

(
m maxi |ai |t

ε

))
. (31)

The total number of operations used to implement each primitive circuit C` within tolerance ε is
thus O(k + NSK). As C= CM · · · C1, the total number of operations in C scales as O(M(k + NSK)).
Finally, U (n)(t) is simulated by Cr so the total number of operations scales as

Nop ∈ O
(
2m5χ0−1r0(k + NSK)

)
. (32)

We then substitute the value of r0 into this expression to find that,

Nop ∈
(k + NSK)m2+o(1) (maxi |ai |t)

1+o(1)

εo(1)
, (33)

with εo(1), mo(1) and (maxi |ai |t)o(1) representing quantities that scale sub-polynomially but not
quite poly-logarithmically. As NSK varies sub-polynomially with respect to all parameters and
k is a constant, NSK + k can be incorporated into (m maxi |ai |t/ε)

o(1) in relation (33). This leads
to the conclusion that

Nop ∈
(k + NSK)m2+o(1) (maxi |ai |t)

1+o(1)

εo(1)
∈

m2+o(1) (maxi |ai |t)
1+o(1)

εo(1)
. (34)

The performance of our circuit-design algorithm is enhanced if a reasonable extra restriction is
placed on the k-local Ĥ . The upper bound m is different for k-local versus physically k-local Ĥ
as we now see. For k-local Ĥ (n),

m 6
k∑

q=1

3q

(
n

q

)
∈ O(nk), (35)

because there are at most 3q(
n
q ) q-body terms in Ĥ (n) for q = 1, . . . , k. The scaling m ∈ O(nk)

arises from standard inequalities for binomial sums and, as k is a constant, then so is 3k . If Ĥ (n)

is physically k-local, m ∈ O(n) because each qubit interacts with at most a constant number of
neighbors.

We can then eliminate m from (33) by noting that, if Ĥ (n) is k-local, then m ∈ O(nk) for k
a constant, and

Nop ∈
nk(2+o(1)) (maxi |ai |t)

1+o(1)

εo(1)
. (36)

If Ĥ (n) is physically k-local and k is constant, then m ∈ O(n). We substitute this scaling into (33)
to obtain

Nop ∈
n2+o(1) (maxi |ai |t)

1+o(1)

εo(1)
. (37)

Comparing (36) to (37) shows that the simulation cost is dramatically reduced for Ĥ (n)

physically k-local rather than just k-local. This cost reduction does not occur from a
modification of the algorithm, but rather a more careful costing of the performance of our
algorithm.

In fact the circuits generated by our algorithm are optimal, or near-optimal, in three distinct
ways. Firstly, they exhibit near-optimal scaling with t because linear scaling is known to be a
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lower bound for general quantum simulation [17, 18, 29]. Secondly, they have optimal space
complexity because a minimum of n-qubits of memory is needed to simulate the quantum
dynamics of an n qubit system. Finally, the n-scaling of (36) and (37) is unlikely to be surpassed
by other general purpose TS-based simulation algorithms because the scaling with n is derived
from the value of m for the Hamiltonian [17, 18].

The fact that better scaling with n cannot be obtained by using a superior decomposition
method for the Hamiltonian follows from Vizing’s edge-coloring graph algorithm [30], which
states that a graph with maximum degree d cannot be colored using fewer than d colors.
This implies that a d-sparse Hamiltonian can be decomposed into at best d one-sparse matrices.
A k-local Hamiltonian can be at most O(nk) sparse, which implies that O(nk) terms will be
present in the Hamiltonian using the optimal decomposition method. This value of m coincides
with the value that our algorithm finds for simulating k-local Hamiltonians; hence our algorithm
is unlikely to be significantly surpassed by other algorithms that use similar strategies.

Now we will examine the scaling of the time required to implement the resultant quantum
circuits on quantum computers that can exploit parallelism. Without grouping, the depth of
the quantum circuits yielded by our algorithm scales with m is at worst m2+o(1). Although our
grouping step does not change the circuit size, it causes the depth of the resulting circuits to
scale as m̄m1+o(1), where m̄ may be smaller than m.

The factor of m1+o(1) remaining in the scaling comes from the upper-bound used to estimate
error in the TS formulae, which does not change if grouping is used. Thus, parallel execution
of the exponents in each group can be used to reduce the scaling of the execution time of the
quantum simulation, τ , for k-local Hamiltonians to

τ ∈
nk(2+o(1))−1 (maxi |ai |t)

1+o(1)

εo(1)
, (38)

and for the case of physically k-local Hamiltonians it becomes

τ ∈
n1+o(1) (maxi |ai |t)

1+o(1)

εo(1)
, (39)

which scales nearly-quadratically better with n than what we would expect if grouping were not
used.

7. Examples

We now examine the performance of our circuit construction algorithm when applied to
simulating the quantum dynamics of two important physical systems. Specifically, we examine
simulating Kitaev’s honeycomb model and pairing models similar to the BCS model of
superconductivity.

7.1. Simulating Kitaev’s honeycomb model

Consider Kitaev’s honeycomb model [27] described by the Hamiltonian

Ĥ (n)
=−Jx

∑
x−link

X i X j − Jy

∑
y−link

Yi Y j − Jz

∑
z−link

Z i Z j ,

with the links shown in the honeycomb-lattice representation depicted in figure 2.
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Figure 2. Kitaev’s honeycomb lattice with each vertex representing a physical
qubit and each edge representing an interaction between two qubits denoted by
x-, y- and z-links.

Although exactly solvable [27], the ground state has applications for topological error
correction and is difficult to experimentally prepare. Our simulation circuits can then be used
(in conjunction with a ground-state preparation method such as adiabatic state preparation [23]
or the Abrams Lloyd algorithm [19]) to prepare the ground states of such Hamiltonians.

The resulting sequence of exponentials yielded by our circuit design algorithm yields a
sequence of exponentials of X i X j , Yi Y j and Z i Z j . Figure 3 gives the simulation circuits that
our algorithm uses to simulate each of these exponentials. We can use these diagrams to find the
number of operations used in the simulation by using the fact that each term in the Hamiltonian
appears 2(5)χ−1 times in the TS formula and that there are n/2 different X X , Y Y and Z Z
interaction terms in the Hamiltonian.

As r TS formulae are used in the simulation, the total number of times each of these three
types of interactions appears is n5χ−1r . The total number of gates required for the simulation
can be found by multiplying the number of interactions of each type by the number of gates
needed to simulate that type of interactions (explicit constructions for these circuits are given
in figure 3). The total number of operations required to simulate the Honeycomb model is
summarized below.

• Hadamard gates: 8n5χ−1r ,

• T gates: 16n5χ−1r ,

• Z-rotation gates: 3n5χ−1r ,

• CNOT gates: 6n5χ−1r ,

where r is the number of time steps used in the simulation and χ is the iteration order of the
TS formula used in the simulation. If r is chosen as per (15) then the error is promised to be
less than ε/2 given ε is sufficiently small [17, 18]; however, other choices of r are possible if
rigorous guarantees that the simulation error is less than ε are not desired.

We can then directly estimate the scaling of the circuit size with the simulation parameters
if χ and r are taken to be the default values for our algorithm. Kitaev’s honeycomb-model
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Figure 3. Circuits for simulating evolution due to exponentials of the terms
present in the honeycomb model or pairing models: (a) simulates e−iYi Y j φ,
(b) simulates e−iX i X j φ and (c) simulates e−iZi Z j φ. Exponentials of the form
e−iZ pφ can be trivially simulated with an Rz rotation.

Hamiltonian is physically two-local with m 6 3n/2. Combining the observation that

max
i
|ai |6max

{
|Jx |, |Jy|, |Jz|

}
, (40)

with (37) implies that our circuit-design algorithm yields C for simulating U (n)(t) within error
tolerance ε and with a circuit size that scales as

Nop ∈ n2+o(1)
(
max{|Jx |, |Jy|, |Jz|}t

)1+o(1)
/εo(1), (41)

elementary gates from G acting on only n qubits. This scaling is significantly better than previous
algorithms, which had a bound on the number of gates in O(n4log∗n) and utilize quantum
oracles that may be difficult to implement [17, 18].

7.2. Simulating pairing models

Our second example simulates general pairing Hamiltonian evolution, which is central to studies
of superconductivity in many-body systems. A notable example of such Hamiltonians is the
BCS Hamiltonian, which describes the interaction of electrons on a lattice according to [31, 32]

Ĥ BCS =
1

2

n∑
p=1

Ep(a
†
pap + a†

−pa−p) +
n∑

p,l=1

Vpl â
†
pâ†
−pâl â−l, (42)

where â p is the fermionic annihilation operator for a fermion in states p = ( p,↑) and −p =
(− p,↓) with p the particle’s momentum and ↑ and ↓ its spin, N̂ p is the number operator for
fermions in state p, Ep is the on-site interaction strength and Vpl is the interaction strength
between neighboring fermions.

The general BCS Hamiltonian (42) can be mapped to a spin system by using each spin to
represent the presence or absence of a fermion in that mode. Wu et al [23] show that a large
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class of pairing models that subsume the BCS Hamiltonian can be expressed as

Hp =
1

2

n∑
p=1

γp Z p +
∑
r=±

n∑
l>p=1

V r
pl

(
X p X l + rYpYl

)
,

for X p, Yp and Z p the Pauli X , Y and Z operators applied to qubit p. Specifically, the BCS
Hamiltonian has V−pl = 0 and γp = Ep + Vpp.

As in the previous example, our circuit design algorithm yields a sequence of exponentials
of the different terms in the Hamiltonian. The circuit implementations of the resulting
exponentials can also be seen in figure 3. By multiplying the total number of exponentials of
each type by the number of gates used in the implementation of each exponential and collecting
the result, we find that our algorithm yields a circuit containing the following numbers of gates:

• Hadamard gates: 16n(n− 1)5χ−1r ,

• T gates: 32n(n− 1)5χ−1r ,

• Z-rotation gates: 2n(2n− 1)5χ−1r ,

• CNOT gates: 8n(n− 1)5χ−1r ,

where the algorithms cited scaling is found by choosing r as per equation (15) and substituting
the asymptotic scaling of r for χ chosen approximately optimally [17, 18]. The value of χ that
reduces the total number of gates can be found by minimizing the sum of these gate counts over
all χ .

Previously, circuit design yielded circuits with O(n5t2) gates with no promises about the
accuracy of the simulation [23]. The circuits yielded by our algorithm are polynomially shorter
than this previous best method. This follows from the fact that Hp is two-local and hence
m ∈ O(n2), which implies that our algorithm yields a circuit with complexity

Nop ∈
n4+o(1)

(
maxp,l,r{|γp|, |V r

pl |}t
)1+o(1)

εo(1)
, (43)

when the default values of r and χ are used.
Our algorithm can thus generate efficient quantum circuits for simulating the dynamics of

general BCS Hamiltonians. Our resultant circuits can be used in conjunction with eigenvector
simulation techniques or adiabatic state preparation to approximate the ground state of a
quantum system and can thus be useful for autonomously determining whether classes of pairing
models afford exotic types of superconductivity.

8. Numerical estimates of error in low-order TS formulae for two-body Hamiltonians

The results of the previous section suggest that quantum simulations of pairing Hamiltonians
may be difficult for large n because the number of required operations scales, at most, as n4+o(1);
however, we do not know whether this upperbound is tight. Here we provide numerical evidence
that the error bounds on which this scaling is based can substantially overestimate the error in
the TS formula for a given simulation. The upper bound in question is used to estimate the
number of time steps, r , needed in the simulation and therefore we will conclude that the upper
bounds for r cited in [14, 17, 18] are too loose for some practical cases.

We analyze the TS error for Hamiltonians chosen randomly from an ensemble of two-
body Hamiltonians that have their a j independently distributed according to a Gaussian with
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Figure 4. This plot shows the mean error or mean upper bound for the error
incurred when using the lowest-order TS formula on 50 randomly generated two-
body Hamiltonians acting on four qubits that were sampled from our Gaussian
ensemble of Hamiltonians. This result shows that the lowest-order TS formula
given in (44) can be too loose by as much as six orders of magnitude when
applied to simulations of two-local Hamiltonians.

mean zero and unit variance. We choose two-body, rather than two-local Hamiltonians, for
simplicity because the one-body terms present in two-local Hamiltonians become less relevant
to the random Hamiltonians that we consider as n increases. Their elimination therefore allows
us to estimate the scaling of the error and ‖H (n)

‖ over a larger range of n.
We estimate the error invoked by using the two lowest-order TS formulae by numerically

sampling random two-body Hamiltonians taken from our Gaussian ensemble. The error in the
formula is measured by the two-norm of the difference between the formula and the correct
exponential for the randomly generated Hamiltonian. We then repeat this for fifty different
randomly generated Hamiltonians for evolutions of duration t = 10−4 to t = 10−1 for 2–8
qubits. Higher-order integrators can be studied similarly, but low-order integrators are often
the most significant for the current generation of experiments [33]. The error bound for the
Strang–splitting (denoted U (n)

1 ) in [14] gives∥∥∥∥U (n)

1

(
t

r

)
− exp

(
−iĤ (n) t

r

)∥∥∥∥6 2

(
3 m maxi |ai |t

2r

)3

. (44)

We find from figure 4 that the bound is, on average, too loose by approximately six orders
of magnitude for t ∈ [10−4, 10−1] for random two-body Hamiltonians acting on n qubits. This
implies that much tighter estimates of the error in the TS formulae are needed to accurately
estimate the performance of simulation algorithms.

Numerical estimates of the error are obtained by fitting the data in figure 5 that the average
error for randomly sampled two-local Hamiltonians acting on 2–8 qubits is well modeled by∥∥∥∥U (n)

(
t

r

)
−U (n)

1

(
t

r

)∥∥∥∥≈ (‖Ĥ (n)
‖

t
r )

3

3n2
, (45)

for U (n)

1 (the lowest-order TS formula). We see from the error bounds in figure 5 that the estimate
of the error in U1(t/r) within an order of magnitude of the actual error for most of the randomly
selected Hamiltonians.
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Figure 5. This plot shows the mean error in the lowest-order TS formula as a
function of the duration of each time step and the approximation (45) where each
point is randomly drawn from a Gaussian ensemble of two-body Hamiltonians.
Error bars are computed via the standard deviations of the measured results for
the ensembles and only the upper bar is plotted because the standard deviation is
comparable or exceeds the mean value for all of these data points. The data are
therefore within statistical error of our approximation.

Similarly, we find by fitting polynomial functions to the data in figure 6 that∥∥∥∥U (n)

(
t

r

)
−U (n)

2

(
t

r

)∥∥∥∥≈ 1

3000

(
‖Ĥ (n)

‖
t
r

√
n

)5

, (46)

for random two-local Hamiltonians. We can also find approximate forms for the error scaling
for higher-order integrators, although doing so becomes more difficult as numerical precision
restricts the range of t that can be used to assess the scaling.

The total number of time steps needed to approximately simulate the Hamiltonian evolution
within Trotter-error ε/2 using U (n)

1 or U (n)

2 follow directly from expressions (45) and (46). The
simulation errors are at most additive throughout the evolution, as each operator in the product
formula is unitary. This implies that the total error is at most ε/2 for the case where U (n)

1 is
used if

r

(
(‖Ĥ (n)

‖
t
r )

3

3n2

)
/

ε

2
. (47)

Solving for r gives the following approximate requirement for the number of time steps needed
to satisfy the required tolerance

r '

√
2

3n2ε

(
‖Ĥ (n)

‖t
)1.5

. (48)
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Figure 6. This plot shows the mean error in the second-lowest-order TS formula
as a function of the duration of each time step and the approximation (46) for a
set of 50 randomly generated two-local Hamiltonians sampled from our Gaussian
ensemble for each data point. We observe that the data is within statistical error
of the fit in (46).

The corresponding approximate requirement on r for U (n)

2 is

r '
1

30

(
540

n2.5ε

)1/4 (
‖Ĥ (n)

‖t
)1.25

. (49)

These estimates of r can be used in place of the default value in algorithm 4; although we cannot
rigorously guarantee that they will provide error at most ε.

Since there are five times as many exponentials in U (n)

1 (t/r) than there are exponentials
in U (n)

2 (t/r), inequalities (48) and (49) suggest that U (n)

1 provides a shorter sequence of
exponentials than the sequence consisting of r U (n)

2 formulae if√
2‖Ĥ (n)‖t

3n2ε
6

5

30

(
540‖Ĥ (n)

‖t

n2.5ε

)1/4

, (50)

which is guaranteed if

ε >
16‖Ĥ (n)

‖t

15n3/2
. (51)

If inequality (51) is not satisfied, then higher-order formulae such as U (n)

2 are likely to yield
more efficient simulation circuits. Present simulation experiments, however, are often confined
to short evolutions with relatively large error tolerances (because direct comparison with
numerical results is possible). As a result, low-order approximations remain relevant for present
experiments.

Tables 1 and 2 provide estimates of the number of exponentials that need to be implemented
by algorithm 3 in a simulation of a random two-body Hamiltonian. We vary the number of
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Table 1. Extrapolated number of exponentials of ĥ
(n)

j that have to be implemented
to simulate a random two-body Hamiltonian with a j ∼ N(0, 1) for ε = 0.01 and
t = 0.1.

n Nexp for U (n)
1 Nexp for U (n)

2 Ratio

2 36 90 0.40
4 432 540 0.80

10 8 190 8 100 1.01
40 786 240 421 200 1.87

100 14 523 300 7573 500 1.92

Table 2. Extrapolated number of exponentials of ĥ
(n)

j that have to be implemented
to simulate a typical random two-body Hamiltonian with a j ∼ N(0, 1) for ε =

10−6 and t = 0.01.

n Nexp for U (n)
1 Nexp for U (n)

2 Ratio

2 108 90 1.20
4 1 296 540 2.40

10 28 350 4050 7.00
40 2471 040 280 800 8.80

100 45 886 500 4455 000 10.3

qubits over an experimentally reasonable regime (n = 2, 4 and 10 qubits) and then extrapolate
the scaling beyond the limitations of existing classical simulators to 40 and 100 qubits. In order
to perform this extrapolation, we need to know the norm of the Hamiltonian. We find from data
fitting for cases up to 8 qubits that the ensemble average of the norm of our random two-body
Hamiltonians obeys

‖H (n)
‖ ≈ 1.3n5/3. (52)

Table 1 shows how the number of required exponentials varies if U2 is used instead of U1 for
a relatively modest value of ε and t , whereas table 2 presents the number of exponentials for a
shorter evolution with a very small value of ε. Note that although the time is kept constant for
these data sets, the (expected) norm of the Hamiltonian does not.

The number of operations required in the simulation scales (for fixed order TS formulae)
as O(n2r). Our numerical estimate of the ensemble mean of the norm of ‖H ‖ in (52) and the
approximate bounds for r in (48) and (49) lead us to the conclusion that the number of operations
required to simulate a random two-body Hamiltonian scales with n as o(n3.4) as opposed to the
n4+o(1) scaling predicted from the upper bounds for the error incurred by using either U (n)

1 (t/r)

or U (n)

2 (t/r). This suggests that the complexity of simulating random two-local Hamiltonians
may be polynomially smaller than previous work implies.

The results in table 1 indicates that using U (n)

1 (t/r) instead of U (n)

2 (t/r) leads to a
reduction in the simulation complexity for small values of n, but U (n)

2 (t/r) leads to more
efficient simulations for n > 40. In contrast, the data in table 2 shows that U2 is more efficient
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than U1 in every case considered except for the case where n = 2. We can therefore conclude that
low-order TS formulae can sometimes be more efficient than high-order formulae for relatively
undemanding simulation problems. The data also suggests that extremely small gate errors
(error on the order of 10−7 per gate) may be required to extend the DQS paradigm out to 40
qubits and beyond because millions of gates are expected to be required for relatively modest
simulations of two-local Hamiltonians.

9. Conclusion

In conclusion, we have designed an efficient classical algorithm for autonomous construction of
efficient quantum circuits to simulate state evolution. The circuits are costed in terms of a small
standard gate set and require neither a Hamiltonian oracle nor ancillary qubits, thereby making
the universal quantum simulator minimal in space cost. Furthermore, we show that the costing
is still too pessimistic in some cases and could be improved but some orders of magnitudes. The
algorithm also systematically searches out commuting terms in the Hamiltonian and groups
them to reduce the depths of the circuits yielded by our algorithm; thereby reducing the time
required to execute the circuits using parallelism.

Our circuit construction algorithm is a significant advance because it is straightforward to
implement the algorithm on a computer, it is highly efficient and it gives upper bounds for the
simulation error. Knowing error bounds is important for assessing the veracity of any quantum
simulation. Our work thus provides an important step towards constructing a practical, efficient
and trustworthy simulator of quantum dynamics.

There are several remaining open problems that have not been addressed by this work.
First is the issue of simulating time–dependent quantum systems. Such issues can be resolved
by employing TS formulae for ordered operator exponentials [14, 15] although the optimality
of those error bounds for actual circuits remains to be checked using algorithmic methods we
have introduced here.

Similarly, providing better upper bounds for r remains an important problem as our work
has shown that in physically significant cases these bounds can be far too pessimistic. Providing
such bounds would enable much more challenging simulation experiments to be performed in
cases where rigorous error bounds are required of the output states.

A final important extension of this work is discussing the optimization of the resulting
circuits that are yielded by the algorithm. Further optimization should be possible by using
circuit identities to simplify the resulting circuits. Finding autonomous methods to optimize the
output of such algorithms would be a significant asset in the development of a DQS that exceeds
the power of existing classical simulators of quantum systems.
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Appendix. Condition for commutation of Pauli operators

Here we prove that (22) gives a necessary and sufficient criterion for determining whether two
Hamiltonians that are tensor products of Pauli operators commute. This criterion is essential to
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our discussion of parallelizing the quantum simulation because we need to divide the simulation
into mutually commuting sections in order to exploit parallelism.

We simplify our discussion by removing from ĥ
(n)

i and ĥ
(n)

j every qubit that is either acted on
as the identity operator by at least one of the Hamiltonians or every qubit that both Hamiltonians
have the same action upon. These qubits are removed from consideration because they are not
needed to determine the commutation properties. After removing these irrelevant qubits, we
simplify the discussion by relabeling the remaining qubits to group them in six different groups.
These simplifications lead to the following representation for ĥ

(n)

i

ĥ
(n)

i ∼ X⊗|Sxi
⋂

Sy j |⊗ Y⊗|Syi
⋂

Sz j |⊗ Z⊗|Szi
⋂

Sx j |

⊗ X⊗|Sxi
⋂

Sz j |⊗ Y⊗|Syi
⋂

Sx j |⊗ Z⊗|Szi
⋂

Sy j |. (A.1)

The simplified expression for ĥ
(n)

j is

ĥ
(n)

j ∼ Y⊗|Sxi
⋂

Sy j |⊗ Z⊗|Syi
⋂

Sz j |⊗ X⊗|Szi
⋂

Sx j |

⊗ Z⊗|Sxi
⋂

Sz j |⊗ X⊗|Syi
⋂

Sx j |⊗ Y⊗|Szi
⋂

Sy j |. (A.2)

We can then evaluate the product of the two operators using the property that XY = iZ ,
Y Z = iX and Z X = iY and also using the anti-commutativity of Pauli–operators. This implies

ĥ
(n)

i ĥ
(n)

j ∼ (iZ)⊗|Sxi
⋂

Sy j |⊗ (iX)⊗|Syi
⋂

Sz j |⊗ (iY )⊗|Szi
⋂

Sx j |

⊗ (−iY )⊗|Sxi
⋂

Sz j |⊗ (−iZ)⊗|Syi
⋂

Sx j |⊗ (−iX)⊗|Szi
⋂

Sy j |. (A.3)

Conversely,

ĥ
(n)

j ĥ
(n)

i ∼ (−iZ)⊗|Sxi
⋂

Sy j |⊗ (−iX)⊗|Syi
⋂

Sz j |⊗ (−iY )⊗|Szi
⋂

Sx j |

⊗ (iY )⊗|Sxi
⋂

Sz j |⊗ (iZ)⊗|Syi
⋂

Sx j |⊗ (iX)⊗|Szi
⋂

Sy j |. (A.4)

We then see from (A.3) and (A.4) that [ĥ
(n)

i , ĥ
(n)

j ]= 0 if and only if

|Syi ∩ Sx j |+ |Sx i ∩ Sz j |+ |Sz i ∩ Sx y| ≡ |Sx i ∩ Sy j |+ |Sz i ∩ Sx j |+ |Syi ∩ Sz y| (mod 2),

(A.5)

which is equivalent to (22).
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