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Abstract. We have studied experimentally the collective behavior of self-
propelling liquid droplets, which closely mimic the locomotion of some
protozoal organisms, the so-called squirmers. For the sake of simplicity, we
concentrate on quasi-two-dimensional (2D) settings, although our swimmers
provide a fully 3D propulsion scheme. At an areal density of 0.46, we find strong
polar correlation of the locomotion velocities of neighboring droplets, which
decays over less than one droplet diameter. When the areal density is increased
to 0.78, distinct peaks show up in the angular correlation function, which point
to the formation of ordered rafts. This shows that pronounced textures, beyond
what has been seen in simulations so far, may show up in crowds of simple model
squirmers, despite the simplicity of their (purely physical) mutual interaction.

S Online supplementary data available from stacks.iop.org/NJP/13/073021/
mmedia
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1. Introduction

Large-scale patterns emerging in a crowd of interacting self-driven elements are known for a
wide range of biological systems, such as a host of sparrows, a school of fish, an army of ants or
bacterial colonies. The complexity of the active elements thereby varies considerably, and so do
their mutual interactions. The latter can be sorted in purely physical effects, such as hard core
repulsion or hydrodynamic interaction, and biological signaling, such as olfactoric and visual
signals, or chemotaxis, which is present in many microbial settings. The striking similarity in
the swarming behavior of a wide range of active elements has significantly increased the interest
in understanding the basic mechanisms of pattern and texture formation in such systems.

While theoretical works have concentrated on active elements which were greatly
simplified in their shape and interactions [1, 2–8], most experiments to date have been
performed with bacterial colonies [9–13]. This is due to the great importance of understanding
the collective behavior of micro-organisms and also because bacterial colonies are the only
relatively simple active elements that can be obtained in sufficient numbers. Even a bacterium,
however, is much more complex than model elements used so far in theories. Consequently, it
is not yet clear which aspects of their collective behavior are due to physical interactions and
which aspects can be traced back to more complex biological signaling.

It would therefore be desirable to perform experiments with artificial active elements,
the properties and interactions of which can be well controlled and adequately described by
simple physical models. Furthermore, such model systems have the potential for minimizing the
individual variations pertinent to biological systems. In the search for such elements, one should
try to mimic actual biological organisms in order to maximize the relevance and comparability
of the system. In this context, organisms such as cyanobacteria, paramecium and volvox are
particularly inspiring. They belong to a class of swimmers referred to as squirmers, and are
driven by tangential and/or radial deformations of the cell surface [3, 14, 15]. Squirming motion
is particularly appealing for the study of the hydrodynamics of micro-scale swimming, since
the velocities in the near and far field around such a swimming organism can be described well
analytically [4, 16, 17], and are similar to the flow fields around moving spherical objects. Such
squirming organisms may thus be modeled by self-propelling liquid droplets, which is what we
pursue in the present paper.

2. Squirming droplets

We present a simple model squirmer consisting of an aqueous droplet moving in an oil
‘background’ phase. Propulsion arises due to the spontaneous bromination of mono-olein (rac-
glycerol-1-mono-oleate) as the surfactant. The latter is abundant in the oil phase, such that the
droplet interface is covered by a dense surfactant monolayer. The bromine ‘fuel’ is supplied
from inside the droplet, such that bromination proceeds mainly at the droplet surface. It results
in saturation of the C=C double bond in the alkyl chain of the surfactant, thereby rendering it
a weaker surfactant. As we will see below, this results in a self-sustained bromination gradient
along the drop surface, which propels the droplet due to Marangoni stresses.

We demonstrate this squirmer scheme with nanoliter droplets containing 25 mM l−1

bromine water in a continuous oil phase of squalane containing 50 mM l−1 mono-olein (MO).
The critical micelle concentration is 1.5 mM l−1. The droplets are confined by two hydrophobic
glass plates to a quasi-two-dimensional (2D) space, thus simplifying droplet tracking. Although
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Figure 1. Top: path of a single squirmer droplet. The persistence length is clearly
large compared to the droplet radius, indicating propelled motion (scale bar:
300 µm). Bottom: time lapse series of seven droplets in a micro-channel. When
two droplets collide, they change direction without a noticeable reduction in
velocity.

we thereby confine the droplets to a space of reduced dimension, it should be kept in mind
that their propulsion mechanism is inherently 3D, thereby closely mimicking the behavior of
protozoal organisms. This clearly distinguishes our system from ‘striders’ which are inherently
bound to an interface [18–22]. The top panel of figure 1 shows the trajectory of a single squirmer
droplet over a duration of 400 s. The velocity of the droplet is about 15 µm s−1. The trajectory
is reminiscent of a random walk, with a persistence length that is larger than the droplet size
and clearly far beyond what would be expected for Brownian motion. A particularly important
observation is that the trajectory crosses itself. This is in sharp contrast to other schemes, where
the propulsion mechanism itself changes the surrounding medium strongly enough to prevent
self-crossing of the path [18]. That nothing like this happens here is demonstrated even more
convincingly in the lower panel, which shows a time lapse representation of seven droplets
moving in a micro-channel. As two drops touch each other, they reverse their direction of
motion and perambulate the channel again, without significant reduction in velocity. This can
be attributed to the abundance of surfactant in the oil phase, which ensures that the medium
is only minutely changed by the ‘exhaust’ of the squirmers. This property makes our system
particularly well suited for the study of collective behavior.

3. Mechanism of locomotion

In order to gain some insights into the propulsion mechanism, let us consider a spherical droplet
with radius R. The total coverage, c, of the droplet surface with the MO, either brominated or
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not, is assumed to be roughly constant and in equilibrium with the micellar phase in the oil.
The brominated fractional coverage shall be called b. If the droplet moves, there is (in the rest
frame of the droplet) an axisymmetric flow field, u(θ), along its surface. The equation of motion
for b is

∂b

∂t
= k(b0 − b) + div(Di grad b − ub), (1)

where b0 is the equilibrium coverage with brominated mono-olein (brMO). It is determined by
the bromine supply from inside the droplet and the rate constant, k, of the escape of brMO into
the oil phase. The first term on the rhs of equation (1) describes the balance between bromination
and brMO escape. The second term describes the change in bromination density of the surfactant
layer due to transport along the droplet surface. Di is the diffusivity of the surfactant within the
interface.

The droplet motion and the surface flow, u(θ), are accompanied by a flow pattern within
the droplet as well as in the neighboring oil, which can be calculated analytically once u(θ) is
known [23, 24]. The corresponding viscous tangential stress exerted on the drop surface must
be balanced by the Marangoni stress, grad γ (θ) = Mgrad b(θ), where γ is the surface tension
of the surfactant-laden oil/water interface, and M = dγ /db is the Marangoni coefficient of the
system. Expanding the bromination density in spherical harmonics,

b(θ) =

∞∑
m=0

bm Pm(cos θ), (2)

we can then express the velocity field [23, 24] at the interface as

u(θ) =
M

µ sin θ

∞∑
m=1

m(m + 1)bmC−1/2
m+1 (cos θ)

2m + 1
, (3)

where Cα
n denotes Gegenbauer polynomials, and µ is a prefactor containing the liquid viscosities

outside and inside the droplet. Inserting this into equation (1) and exploiting the orthogonality
relations of Gegenbauer and Legendre polynomials, we obtain

dbm

dt
=

[
m(m + 1)

(
b0 M

(2m + 1)Rµ
−

Di

R2

)
− k

]
bm, (4)

for all m > 0 and small bm . We see that the different modes decouple, as far as linear stability
is concerned. As long as b0 M is small enough, the expression in brackets is negative, and the
resting state is stable against fluctuations. However, when b0 M exceeds a critical value, the
resting state is unstable, and the droplet spontaneously starts to move. It is straightforward to
see that for k < 3Di/R2, this happens first for the lowest mode at m = 1. In order to determine
the flow profile around a squirming drop, we performed particle image velocimetry using a
standard setup (ILA GmbH, Germany). The result as displayed in the bottom panel of figure 2
shows that the flow profile indeed resembles a field as expected for the lowest-order mode,
m = 1 [16].

4. Properties of squirming droplets

Before we turn our attention to the collective behavior of the squirmer droplets introduced
above, we have to dwell some more on their properties. To discuss the steady-state droplet
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Figure 2. Top: schematic representation of a micro-droplet squirmer.
Bromination increases the tension of the droplet surface from 1.3 to 2.7 mN m−1.
The convective flow pattern (shown in the rest frame of the droplet) is
accompanied by a gradient in the bromination density. The corresponding
Marangoni stress propels the droplet. Bottom: the velocity field around a droplet
squirmer. The magnitude of the flow velocity (color code) and streamlines along
a horizontal section through the center of a squirmer droplet are shown. Scale
bar: 100 µm; velocity scale (right) in µm s−1.

velocity, V , we first reconsider the total surfactant coverage, c. This adjusts itself as a balance
between the molecular adsorption energy at the water/oil interface and the mutual repulsion
of the adsorbed surfactant molecules. The equilibrium coverage thus represents a minimum of
the interfacial energy. As a consequence, the interfacial tension will not change to first order if
c is varied. Small deviations of c from its equilibrium value, which come about necessarily
for any finite V , will thus be replenished by the surrounding oil phase without substantial
Marangoni stresses. For a flow pattern such as the one shown in figure 2, for example, we
approximately have div u ∝ cos θ . The density of the surfactant in the oil phase thus takes the
form ρ ≈ ρ0 + δρ f (r)cos θ , where δρ ∝ V . Here, f (r) is some function of the radius. If Dm

is the diffusivity of the micelles in the oil, the diffusion current, Dm∂ρ/∂r , must balance the
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Figure 3. Squirmer velocity in units of µm s−1, as a function of surfactant
concentration, where each point is an average of 50 different squirmer droplets,
each of diameter 80 µm. The dashed line corresponds to the theoretical
prediction (see text).

depletion rate at the drop interface, c div u =
3V c
2R cos θ [16]. As long as this holds, the only

source of appreciable Marangoni stresses is the gradient in bromination density, b(θ). The drop
thus keeps speeding up according to equation (4).

This comes to an end when δρ ≈ ρ0. The surfactant layer at the leading end of the drop
surface can then not be replenished anymore, and c reaches substantially below its equilibrium
value. This leads to an increase of surface tension accompanied by a ‘backward’ Marangoni
stress, and thus eventually to a saturation of the velocity. According to the reasoning above,
we expect that V ≈ 2ρ0 Dm/3c. There is no literature value for the diffusivity of MO micelles
in squalane, but we can estimate it on the basis of the Stokes–Einstein relation assuming
the radius of the micelles to be similar to the length of an MO molecule (2.3 nm). Using
36 mPas for the viscosity of the squalane, we obtain Dm = 2.6 × 10−12 m2 s−1. We thus predict
V/ρ0 ≈ 0.27 µm s−1

mM l−1 from the simple consideration above.
In order to measure V (ρ0), we used a reaction scheme similar to the Belousov–Zhabotinski

reaction, with reactant concentrations adjusted so as to prevent chemical oscillations to
occur (50 mM sulfuric acid, 28 mM sodium bromate, 400 mM malonic acid and 2.7 mM
ferroin) [25, 26]. This results in a rather constant bromine release rate in the aqueous phase
for an extended period of time. Figure 3 shows the dependence of the droplet velocity as a
function of the MO concentration in the oil phase. The initial linear increase is in quantitative
agreement with the above prediction (dashed line). As the surfactant density is further increased,
the complex exchange processes between the water/oil interface and the micelles will finally
become the rate-limiting step. As a consequence, the velocity is expected to level off, which is
again in agreement with our data.

It is therefore clear that the bromination profile across the droplet surface, b(θ), will no
longer be determined by the fastest growing mode as suggested by equation (4). Instead, it will
acquire a complex shape accounting for the nonlinearity of equation (1). It is still unknown
how large the nonlinear contributions to b(θ) will be. As a consequence, a quantitative estimate
of the driving force, b0 M , on the basis of the steady-state velocities might easily be orders of
magnitude off reality. The task of quantifying the driving force and its relationship with the
other quantities characterizing our squirmer is left for future work.
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Figure 4. Top view of a typical experiment. The droplet diameter was 80 µm.
The surfactant concentration was 200 mM l−1 in order to minimize the sensitivity
of the droplet motion to the MO and brMO concentrations. The red arrows
indicate the momentary direction of the droplet motion.

During an experiment, the concentration of brMO gradually builds up from the ‘exhaust’
of the many squirmers in a poorly controllable and spatially inhomogeneous fashion. Since the
majority of the brMO becomes trapped in the MO micelles, its effect is mainly to reduce the
effective concentration of MO in the oil. Figure 3 tells us that by choosing a high surfactant
concentration, where there is almost no sensitivity of the squirmer velocity to the surfactant
density, we can also minimize the sensitivity of the velocity to the concentration of brMO,
thereby minimizing any unwanted (global) crosstalk between the squirmers. This latter property
provides another key feature of our system that makes it particularly suited for experimental
studies of collective motion.

5. Collective behavior

Let us therefore now turn to an investigation of the collective behavior of our squirming
droplets. It is a long-standing debate whether physical effects, such as hydrodynamic
interactions, are sufficient to explain textures observed in the swarming behavior of bacteria
and other micro-organisms, without having to invoke chemotaxis or other genuinely biological
effects [2, 4, 5, 12]. Using our model squirmers instead of bacteria, we can tackle this problem
from the reverse side, asking for the textures we can observe in dense populations of model
squirmers, which are guaranteed to be free of biological interactions. As we will see, there is
indeed considerable structure to be unveiled even for such simple systems.

We restrict ourselves to effectively 2D systems here, not only for the sake of simplicity, but
also because most of the studies to date have concentrated on the 2D case. Our samples were
prepared by creating shallow wells of a few millimeters diameter and a depth just slightly larger
than the droplet diameter in poly-dimethyl-siloxane (PDMS) rubber by standard soft lithography
techniques. Bonding the PDMS to a glass slide resulted in a flat compartment, which in addition
was connected by a narrow channel to a step emulsification unit [27], where droplets were
produced and subsequently transported through the channel into the sample well. Figure 44

shows a typical sample. The red arrows indicate the direction of motion of each droplet.

4 See also the supplementary movie, available at stacks.iop.org/NJP/13/073021/mmedia.
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Figure 5. The angular correlation of the droplet motion, Cϑ , as a function of
the scaled distance of the droplet centers, r/d. Note that d = 2R is the droplet
diameter. The red curve corresponds to an areal droplet density of 0.46 and the
black curve to a density of 0.78. The black arrows are at multiples of 1.08 droplet
diameters. The inset shows a semi-logarithmic plot of the decay of the correlation
data. The red line corresponds to a decay length of 0.6 droplet diameter and
the straight asymptote of the black line represents a decay length of 2.5 droplet
diameters. An oscillation with a period of 1.08 droplet diameters (decaying
exponentially over 0.9 droplet diameter) has been superimposed to fit the data.

As time proceeds, the formation of rather long-lived clusters of different sizes is
observed [28]. The most striking feature, however, is the significant polar alignment of the
velocities of neighboring droplets. In order to quantify this alignment, we use the angular
correlation function

Cϑ(r) :=
〈
δ(r− | ri − r j |) cos ϑi j

〉
t,i j

, (5)

which describes the propensity of velocities of neighboring particles to align with respect to
each other. The average runs over all droplet pairs, (i j), as well as over time, t . ϑ is the angle
between the velocities of droplets i and j and depends on time for each droplet pair.

On the basis of earlier theoretical work, we might under certain circumstances expect
a significant polar correlation of the velocities of neighboring droplets [3, 4], just from the
hydrodynamic interaction of the squirmers with each other. That this is indeed the case can be
seen in figure 5. The red curve corresponds to a moderate density of 0.46, which we define as
the fraction with respect to the density corresponding to a hexagonal close packing in the plane.
We see that there is significant correlation for small distances. More specifically, the angular
correlation function decays approximately exponentially away from the contact distance (which
is equal to one droplet diameter, d = 2R), as can be seen from the inset. The decay constant is
about 0.6 droplet diameters (red line in the inset). The angular correlation thus decays almost
completely over one interparticle distance, suggesting that the correlation of the velocities is
mediated by the pair interaction of the particles. In fact, it has been predicted theoretically that
two adjacent droplets that are propelling themselves by means of low-order spherical harmonic
flow fields may attract each other into a bound state in which they are swimming with virtually
parallel velocities [3]. We provide here the first experimental corroboration of this prediction
using a purely ‘physical’ system.
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There are, however, also pronounced differences to simulation data. Ishikawa and
Pedley [4] performed simulations of the collective behavior of spherical droplets with full
hydrodynamic interactions, swimming in a monolayer. This system is very similar to ours, but
the monolayer in the simulation was freely suspended in the 3D ‘liquid’, such that there was no
nearby wall as in our case. This gives rise to long-range hydrodynamic interactions and provides
a straightforward explanation as to why they found velocity correlations ranging up to more than
five droplet diameters, in marked contrast to our results.

Correlations become more pronounced as the density of the droplets is increased to an
areal density of 0.78. As the black curve in figure 5 shows, we observe two significant changes.
Firstly, the range of the correlation becomes significantly larger, extending clearly beyond four
droplet diameters. Secondly, we observe the appearance of distinct peaks in the correlation
function. The black arrows are at multiples of 1.08 droplet diameters, which is close to what
one would expect in the case of lateral ‘layering’ effects. Also this marked texture, which may
be described as ordered rafts, has not been reported previously from simulations of similar
systems. An obvious possible reason is the particularly high areal density in our experiment (it
was up to 0.5 in the study by Ishikawa and Pedley [4]). As the inset shows, the decay length
of the polar correlation is now about 2.5 droplet diameters (slope of the black asymptotic line)
and has therefore increased by a factor of four. The amplitude of the superposed oscillations
(describing the lateral layering) decays exponentially over 0.9 droplet diameters. These results
suggest the presence of a phase transition occurring at a density somewhere between 0.46 and
0.78, at which a qualitative change in the correlation behavior takes place. Experiments are
under way to search for this transition.

6. Conclusions

We have introduced a novel type of artificial squirmer that is particulary well suited for the
study of collective phenomena of micro-swimmers. The collective behavior of these squirmers
shows strong velocity correlations, which are qualitatively similar to recent simulation results.
There are, however, distinct differences, which can be attributed in part to simplifications that
had to be made in the simulations. Of particular interest is the occurrence of ordered rafts, with
a lateral correlation extending over more than four droplet diameters. We have not yet been
able to characterize the flow field of this swimmer precisely. Once this has been achieved, a
more detailed comparison with theory and simulation will be possible, including the effects of
different spherical harmonics in the flow field of the squirmer [1, 4, 16].
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