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Abstract. Quantum noise correlations have been employed in several areas
of physics, including condensed matter, quantum optics and ultracold atoms,
to reveal the non-classical states of the systems. To date, such analyses have
mostly focused on systems in equilibrium. In this paper, we show that quantum
noise is also a useful tool for characterizing and studying the non-equilibrium
dynamics of a one-dimensional (1D) system. We consider the Ramsey sequence
of 1D, two-component bosons, and obtain simple, analytical expressions for
time evolutions of the full distribution functions for this strongly correlated,
many-body system. The analysis can also be directly applied to the evolution
of interference patterns between two 1D quasi-coindensates created from a
single condensate through splitting. Using the tools developed in this paper,
we demonstrate that 1D dynamics in these systems exhibits the phenomenon
known as ‘prethermalization’, where the observables of non-equilibrium, long-
time transient states become indistinguishable from those of thermal equilibrium
states.
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1. Introduction

The probabilistic character of the Schrödinger wavefunctions manifests itself most directly
in quantum noise. In many-body systems, shot-to-shot variations of experimental observables
contain rich information about the underlying quantum states. Measurements of quantum noise
played a crucial role in establishing non-classical states of photons in quantum optics [1],
demonstrating quantum correlations and entanglement in electron interferometers [2] and
verifying fractional charge of quasi-particles in quantum Hall systems [3–5]. In atomic
physics to date, noise experiments have focused on systems in equilibrium. Recent works
include the analysis of counting statistics in atom lasers [6], the establishment of the
Hanbury–Brown–Twiss effect for both bosons and fermions [7], the analysis of quantum states
in optical lattices [8–12], the observation of momentum correlations in Fermi gases with
pairing [13] and the investigation of thermal and quantum fluctuations in one-dimensional (1D)
and two-dimensional (2D) condensates [14–21].
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In this paper, we demonstrate that analysis of quantum noise should also be a powerful
tool for analyzing non-equilibrium dynamics of strongly correlated systems. Here we study two
equivalent dynamical phenomena: one given by the interaction-induced decoherence dynamics
in Ramsey-type interferometer sequences for two-component Bose mixtures in 1D [22] and
another given by the evolution of interference patterns of two 1D condensates created through
the splitting of a single condensate [23, 24]. We obtain a complete time evolution of the full
distribution function of the amplitude of Ramsey fringes or interference patterns. In the case
of Ramsey fringes, the average amplitude of Ramsey fringes measures only the average value
of the transverse spin component. On the other hand, full distribution functions are determined
by higher-order correlation functions of the spins. Hence, full distribution functions contain
considerably more information about the time evolution of the system [24–27] and provide a
powerful probe of the nature of the quantum dynamics under study. In particular, we use simple
expressions of full distribution functions to demonstrate the phenomena of ‘prethermalization’
in these 1D systems, where observables in non-equilibrium long-time transient states become
indistinguishable from those in thermal equilibrium states.

1D systems with continuous symmetries, including superfluids and magnetic systems, have
a special place in the family of strongly correlated systems. Quantum and thermal fluctuations
are so extreme that long-range order is not possible in equilibrium. Such systems cannot be
analyzed using standard mean-field approaches, yet they can be studied through the application
of methods specific to 1D such as exact Bethe ansatz solutions [28–39], an effective description
using the Tomonaga–Luttinger and sine-Gordon models [40–45] and a numerical analysis using
density-matrix renormalization group and matrix product state methods [46]. Such systems
are often considered as general paradigms for understanding strongly correlated systems. 1D
systems also give rich examples of integrable systems, where due to the existence of an
infinite number of conserved quantities, equilibration does not take place [47–49]. Hence the
problem we consider in this paper is important for understanding fundamental issues such as
the quantum dynamics of strongly correlated systems and equilibration/non-equilibration of
many-body systems, as well as for possible applications of spinor condensates in spectroscopy,
interferometry and quantum information processing [50–52].

This work was motivated by recent experiments of Widera et al [22], who used two
hyperfine states of 87Rb atoms confined in 2D arrays of 1D tubes to perform Ramsey-type
interferometer sequences. They observed rapid decoherence of Ramsey fringes and the near
absence of spin echo. Their results could not be explained within single-mode approximation
that assumes a macroscopic Bose condensation into a single orbital state, but they could be
understood in terms of the multi-mode Tomonaga–Luttinger-type model. Yet the enhanced
decoherence rate and suppression of spin echo do not provide unambiguous evidence for
the origin of decoherence. In this paper, we suggest that crucial evidence for the multi-
mode dynamics as a source of decoherence should come from the time evolution of full
distribution functions of the Ramsey fringe amplitude. Such distribution functions should
be accessible in experiments on atom chips [14, 53–56] from the analysis of shot-to-shot
fluctuations.

This paper is organized as follows. In section 2, we describe two physically distinct,
but mathematically equivalent, dynamics in 1D systems: namely the dynamics of spins in a
Ramsey sequence and the dynamics of phase and contrast in interference patterns between two
split condensates created from a single condensate. We start by illustrating the basic physics
governing the dynamics studied in this paper and give a summary of the central results including
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the prediction of prethermalization phenomena. The formal descriptions of the details of the
theory for spin dynamics in the Ramsey sequence start from section 3, where we give the
Hamiltonian of the 1D system based on the Tomonaga–Luttinger approach. In section 4, we
derive the analytical expression for the time evolution of the full distribution function for a
simple case in which charge and spin degrees of freedom decouple. This decoupling limit
gives a good approximation to the experimental situation of Widera et al [22]. A summary
of the result in this decoupling limit has already been given in [52]. A more general case in
which spin and charge degrees of freedom mix is studied in section 5. Such mixing introduces
the dependence of spin distribution functions on the initial temperature of the system. All the
results obtained in sections 4 and 5 can be extended to the study of the dynamics of interference
patterns, using the mapping described in section 2. We describe the details of such dynamics of
interference patterns for split condensates in section 6. We demonstrate the prethermalization
phenomena and show that the interference contrasts of split condensates in a steady state have
distributions indistinguishable from those of thermal condensates at some effective temperature
Teff. We conclude the paper in section 7 with a discussion of possible extensions of this
work.

2. A description of one-dimensional (1D) dynamics and a summary of results

2.1. Ramsey dynamics

In this paper, we study the dynamics of 1D, interacting two-component Bose mixtures in the
Ramsey-type sequence. In analogy with spin-1/2 particles, we refer to one component as
spin-up and the other component as spin-down. In the experiment on cold atoms in [22], two
hyperfine states are used for these two components. In the following, we consider a generic
situation where there is no symmetry that relates spin-up and spin-down. In particular, unlike
fermions with spin-1/2, there is no SU(2) symmetry. In a typical experimental setup with cold
atoms, there is a harmonic confinement potential along the longitudinal direction of condensates,
but here we assume the absence of such a harmonic trap potential. Our consideration gives a
good approximation for the central region of cold atom experiments in the presence of such
potentials.

The Ramsey-type sequence is described as follows (figure 1):

1. All atoms are prepared in the spin-up state at low temperature.

2. A π/2 pulse is applied to rotate the spin of each atom into the x-direction.

3. Spins evolve for time t .

4. Spins in the transverse direction (x–y-plane) are measured.

In a typical experimental situation [22], the last measurement step is done by applying a π/2
pulse to map the transverse spin component into the z-direction, which then can be measured.
In the following discussions, we describe the dynamics in the rotating frame of the Larmor
frequency in which the chemical potentials of spin up and spin down are the same in the absence
of interactions. In this rotating frame, the evolution of spins in the third step is dictated by
the diffusion dynamics coming from interactions. Unlike the conventional use of the Ramsey
sequence in the context of precision measurements, here we employ the Ramsey sequence as a
probe of correlations in a 1D system.
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Figure 1. Ramsey sequence for the 1D system with two-component bosons
considered in this paper. (1) All atoms are prepared in the spin-up state; (2) a π/2
pulse is applied to rotate each atom into the x direction; (3) spins freely evolve
for time t . In actual experiments, the final π/2 pulse is applied to measure the
x component of the spins. The imaging step (4) is omitted in the illustration. In
this paper, spin operators refer to the ones before the final π/2 pulse.

The description of the spin dynamics starts from the highly excited state prepared after the
π/2 pulse of step 2. The subsequent dynamics during step 3 crucially depends on the nature of
the excitations in the system. In particular, the dynamics of a two-component Bose mixture in
1D is quite different from that in 3D. In 3D, bosons form a Bose–Einstein condensate (BEC)
at low temperature, and particles occupy a macroscopic number of the k = 0 mode. Then, the
spin diffusion of 3D BEC is dominated by the spatially homogeneous dynamics coming from
the single k = 0 mode. On the other hand, bosonic systems in 1D do not have the macroscopic
occupancy of the k = 0 mode, and their physics is dominated by strong fluctuations, to an extent
that the system cannot retain long-range phase coherence even at zero temperature [41]. Thus,
the spin dynamics of a 1D bosonic system necessarily involves a large number of modes with
different momenta and the spin becomes spatially inhomogeneous during step 3 above.

Such dynamics unique to 1D can be probed by the observation of transverse spin
components in the fourth step. Since we aim to capture the multi-mode nature of the dynamics
in 1D, we consider the observation of spins at length scale l, given by

Ŝa
l (t)=

∫ l/2

−l/2
dr Ŝa(r, t), (1)

where Ŝa(r, t)with a = x, y are the transverse components of spin operators after time evolution
of step 3 of duration t . We assume that l is much larger than the spin healing length ξs and much
smaller than the system size L to avoid finite size effects. Furthermore, we assume that the
number of particles within the length l, Nl , is large, so that the simultaneous measurements of
Ŝx

l (t) and Ŝy
l (t) are in principle possible. For large Nl , the non-commutativity of Ŝx

l and Ŝy
l gives
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corrections of the order of 1/
√

Nl compared to the average values. In this situation, it is also

possible to measure the magnitude of transverse spin components, Ŝ⊥

l =

√
(Ŝx

l )
2 + (Ŝy

l )
2, which

we will extensively study in the later sections.
Due to quantum and thermal fluctuations, the measurements of Ŝa

l (t) give different values
from shot to shot. After the π/2 pulse of step 2, the spins are prepared in the x-direction, so
the average of measurements yields 〈Ŝx

l (t = 0)〉 ≈ Nl/2 and 〈Ŝy
l (t = 0)〉 ≈ 0. In the rotating

frame of the Larmor frequency, the subsequent evolution does not change the expectation value
of the y component so that 〈Ŝy

l (t)〉 ≈ 0 throughout. The decay of the average 〈Ŝx
l (t)〉 during

the evolution in step 3 tells us the strength of spin diffusion in the system. The behavior of
〈Ŝa

l (t)〉 due to spin diffusion is similar for 1D and 3D, and the difference is quantitative rather
than qualitative. On the other hand, richer information about the dynamics of a 1D system is
contained in the noise of Ŝa

l (t). Such noise inherent to quantum systems is captured by higher
moments 〈(Ŝa

l (t))
n
〉. In this paper, we obtain the expression for the full distribution function

Pa
l (α, t), which can produce any moments of Ŝa

l (t) through the relation

〈(Ŝa
l (t))

n
〉 =

∫
dα Pa

l (α, t)αn, (2)

where Pa
l (α, t)dα represents the probability that the measurement of Ŝa

l (t) gives the value
between α and α + dα. We will see in section 4 that it is also possible to obtain the joint
distributions P x,y

l (α, β, t) of Ŝx
l (t) and Ŝy

l (t) as well as the distribution P⊥

l (α, t) of the squared
transverse magnitude (Ŝ⊥

l )
2.

Now we summarize the main results of this paper and give a qualitative description of
spin dynamics in the Ramsey sequence. Elementary excitations of spin modes in the system are
described in terms of linearly dispersing spin waves with momenta k and excitation energies
cs|k|, where cs is the spin-wave velocity. When certain symmetry conditions are satisfied (see
the discussion in section 4), spin and charge degrees of freedom decouple, and these spin waves
are free and they do not interact among themselves in the low-energy descriptions within the
so-called Tomonaga–Luttinger theory [41, 42]. Here, we describe the result in this decoupling
limit, but the qualitative picture does not change even after a coupling between spin and charge
is introduced, as we will see in section 5.

The initial state prepared after a π/2 pulse in step 2 in which all spins point in the x-
direction is far from the equilibrium state of the system, because interactions of spins are not
symmetric in terms of spin rotations. Thus, the initial state contains many excitations and the
subsequent dynamics of spins is determined by the time evolution of the spin waves. A spin wave
excitation with momentum k rotates spins with length scale ∼2π/k and time scale ∼1/(cs|k|).
The amplitude of fluctuations coming from the spin wave with momentum k is determined by
the initial state as well as the nature of spin wave excitations. We find that the energy stored in
each mode is approximately the same (see the discussion in section 4.2.5); thus the amplitude
of fluctuations for the wave vector k scales as 1/k2. Therefore, the fluctuation of spins is weak
at short wavelengths and short times and strong at long wavelengths and long times. In figure 2,
we illustrate such dynamics of spins due to the fluctuations of spin wave excitations. It leads
to the distributions presented in figures 3 and 4. Here, we have plotted the distribution function
of the squared transverse magnitude of spins (Ŝ⊥

l )
2 (figure 3) and the joint distribution function

(figure 4) with L = 200, Ks = 20 and various integration lengths l/ξs = 20, 30 and 40. Ks is
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Figure 2. Illustration of the dynamics of spins in the presence of spin wave
excitations. At short times (top), high momenta excitations contribute to
fluctuations of the spins, but their effect is weak. At long times (bottom), low
momenta excitations lead to strong fluctuations of the spins. Such fluctuations
with wavelengths larger than l rotate the regions of length l as a whole so that
they do not lead to decay of the magnitude of spin Ŝ⊥

l , but result in diffusion
of Ŝx

l .
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Figure 3. Time evolution of the distribution P⊥

l (α) of the squared transverse
magnitude of spins, (Ŝ⊥

l )
2, for the system size L/ξs = 200, the spin Luttinger

parameter Ks = 20 and various integration lengths l/ξs = 20, 30 and 40. Here ξs

is the spin healing length, and the x-axis is scaled such that the maximum value
of α is 1. Time is measured in units of ξs/cs, where cs is the spin sound wave
velocity. The evolution of the distribution crucially depends on the integration
length. The steady state of the distribution of the squared transverse magnitude
has a peak at a finite value for a short integration length l/ξs = 20, whereas the
peak is at 0 for a long integration length l/ξs = 40.
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Figure 4. Time evolution of the joint distribution function P x,y(α, β) for the
system size L/ξs = 200, the spin Luttinger parameter Ks = 20 and various
integration lengths l/ξs = 20 (left), 30 (middle) and 40 (right). Time is measured
in units of ξs/cs, where cs is the spin sound wave velocity. Here axes are scaled
such that the maximum values of α and β are 1. For for a short integration length
l/ξs = 20, the dynamics leads to a distribution with the ‘ring’-like structure,
showing that the magnitude of spins does not decay much (spin diffusion
regime). On the other hand, for longer integration lengths, the magnitude of
spins decays quickly and the distribution forms a ‘disc’-like structure (spin decay
regime).

the spin Luttinger parameter, which measures the strength of correlations in a 1D system (see
equation (8) below), and ξs is a spin healing length that gives a characteristic length scale in the
low-energy theory of spin physics.

The multi-mode nature of a 1D system, in which spin correlations at different length scales
are destroyed in a qualitatively different fashion during the dynamics, can be revealed most
clearly in the squared transverse magnitude of spins (Ŝ⊥

l )
2, plotted in figure 3. In the initial

state, all the spins are aligned in the x-direction, so the distribution of (Ŝ⊥

l )
2 is a delta function

peak at its maximum value, ∼(ρl)2, where ρ is the average density of spin up or spin down.
The evolution of spin waves leads to fluctuations of spins and thus to the decay of the integrated
magnitude of the transverse spin. How the spin waves affect the integrated magnitude of spins
strongly depends on the wavelength of the excitations. Spin excitations with momenta much
smaller than ∼2π/ l do not affect (Ŝ⊥

l )
2 since these spin waves rotate the spins within l as a

whole, while spin excitations with higher momenta lead to decay of the magnitude. This is
in stark contrast with the x component of the spin Ŝx

l , which receives contributions from spin
waves of all wavelengths.

As a result of different contributions of spin-wave excitations with different wavelengths
to the integrated spin magnitude, there are two distinct types of behavior of the distributions of
(Ŝ⊥

l )
2; one for short integration length l, which we call ‘spin diffusion regime’ and another for

long integration length l, which we call ‘spin decay regime’.
For short integration length l, the distribution function of (Ŝ⊥

l )
2 is always peaked near

its maximum value (ρl)2 during the dynamics because the strengths of fluctuations coming
from spin waves with high momenta are suppressed by 1/k2 (figure 3, l/ξs = 20). While the
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Split

hold for t

release

Interfere

Figure 5. The interference of two quasi-condensates that are created by splitting
a single quasi-condensate. After the splitting, the quasi-condensates are held for
time t and then the transverse confinement is released. The two condensates
interfere with each other after the release, and the position of constructive
interference is denoted by a solid line in the figure. This interference pattern
contains information about the local phase difference between the two quasi-
condensates at the time of release.

magnitude of spins does not decay in this regime, fluctuations still lead to a diffusion of Ŝx
l ,

thus, we call this regime the ‘spin diffusion regime’.
On the other hand, for long integration length, spin waves lead to fluctuations of the spins

within the integration region, and the spins are randomized after a long time. This randomization
of spins leads to the development of a Gaussian-like peak near (S⊥

l )
2
= 0 (figure 3, l/ξs = 40).

During the intermediate time, both peaks at 0 and the maximum value (ρl)2 are present, and one
can observe a double-peak structure. Because of the strong decaying behavior of the magnitude
of spin, we call this regime the ‘spin decay regime’.

More complete behavior of distribution functions can be captured by looking at the joint
distribution functions from which we can read off the distributions of both (Ŝ⊥

l )
2 and Ŝx

l ; see
figure 45. In the ‘spin diffusion regime’ with short l, the joint distributions form a ‘ring’ during
the time evolution, whereas in the ‘spin decay regime’ with long l, they form a ‘disc’-like
structure in the long-time limit. As we will see later, a dimensionless parameter given by
l0 ∼

π2 l
4Ksξs

determines whether the dynamics belongs to the ‘spin diffusion regime’ (l0 6 1) or
the ‘spin decay regime’ (l0 � 1).

We emphasize that in 3D, spin waves are dominated by the k = 0 mode and therefore there
is almost no decay in the magnitude of spins throughout the dynamics. Therefore, the existence
of two qualitatively different types of behavior of distribution functions of (Ŝ⊥

l )
2 unambiguously

distinguishes the dynamics in 1D and 3D.

2.2. Dynamics of the interference between split condensates

The dynamics of the Ramsey sequence considered above can be directly mapped to the
dynamics of the interference pattern of a split 1D quasi-condensate [57]. More specifically,
we consider the following sequence of operations (see figure 5). Firstly, we prepare a

5 We remark that in the previous report [52] the figure showing joint distributions contained a small error coming
from an error in their numerical evaluations. Figure 4 corrects the mistake. This does not change any of the
qualitative conclusions drawn in the previous work.
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one-component 1D quasi-condensate in equilibrium. At time t = 0, the quasi-condensate is
quickly split along the axial direction, and the resulting two quasi-condensates are completely
separated. The two quasi-condensates freely evolve for a hold time of t , and they are released
from transverse traps to observe the interference pattern between these two quasi-condensates.
Such dynamics of the interference patterns as a function of hold time t has been observed in the
experiment by Hofferberth et al [23], where the average of interference patterns is analyzed in
detail. Here we study the unique 1D dynamics by looking at the full distributions of interference
patterns (for an experimental study, see [24]).

The dynamics of a split condensate can be mapped to the dynamics of the Ramsey
interferometer studied in this paper. The splitting of a quasi-condensate corresponds to the
initial π/2 pulse in the Ramsey sequence. If we denote one of the quasi-condensates by
L for left and another by R for right, the L (R) condensate corresponds to the spin-up (spin-
down) component. Thus, the density difference between the two condensates corresponds to the
z component of the spin, namely Ŝz(r, t)= ψ

†
L(r, t)ψL(r, t)−ψ†

R(r, t)ψR(r, t), where ψ†
i (r, t)

is the creation operator of particles in the i = L, R (R) condensate. Moreover, the local phase
difference between the two condensates corresponds to the local spin direction in the x–y-plane.
To see this, we first note that ψ†

L(r, t)ψR(r, t) corresponds to the spin raising operator Ŝ+(r, t).
This operator is expressed in terms of the phase difference between the condensates φ̂s(r, t)
as Ŝ+(r, t)≡ ψ

†
L(r, t)ψR(r, t)∼ ρ eiφ̂s(r,t), where ρ is the average density of each condensate.

Thus, for example, x and y spin operators are given by Ŝx(r, t)≡ ρ cos(φ̂s(r, t)) and Ŝy(r, t)≡

ρ sin(φ̂s(r, t)). Immediately after the splitting, the phases of the two quasi-condensates at the
same coordinate along the axial direction are the same. Therefore, the splitting prepares spins
in the x-direction in the language of the Ramsey sequence and thus the splitting effectively
amounts to the π/2 pulse.

The interference of two quasi-condensates measures the local phase difference at time t . If
the phases of L and R condensates are the same, the interference pattern has a constructive peak
at the center of two condensates, which we call x = 0. Thus, a shift in the interference pattern
measures the local phase difference between the two condensates, which yields information
about Ŝx(r)= ρ cos(φ̂s(r)) as well as Ŝy(r)= ρ sin(φ̂s(r)). We note that the integrated
interference contrast that can be extracted from experiments is given by the expression Ĉ2

=

|ρ
∫

l eiφ̂s(r)|2 [26] and is related to the transverse magnitude of spins as (Ŝ⊥

l )
2
= |Ŝx

l + iŜy
l |

2
= Ĉ2.

All the results obtained for Ramsey dynamics are directly applicable to the dynamics
of interference patterns between split condensates. When the splitting process prepares two
condensates with an equal average number of particles, ‘spin’ and ‘charge’ degrees of freedom
decouple, see section 6 for details. In particular, depending on the integration length of the
interference patterns along the axial direction, there exist two regimes corresponding to ‘phase
diffusion regime’ and ‘contrast decay regime’, analogous to the ‘spin diffusion regime’ and
‘spin decay regime’ described in the previous section, respectively.

2.3. Prethermalization of 1D condensates

The equilibration and relaxation dynamics of generic many-body systems are fundamental
open problems. Among possible processes, it has been suggested that the time evolution of
some systems prepared in non-equilibrium states results in the attainment of quasi-steady states
within a much shorter time than equilibration time. This quasi-steady state is often not a true
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equilibrium state, but rather it is a dephased state, and true equilibration takes place at a much
longer time scale. Yet in some cases, the physical observables in the quasi-steady states take
a value corresponding to the one in thermal equilibrium at some effective temperature Teff,
displaying disguised ‘thermalized’ states. Such surprising non-equilibrium phenomena, called
prethermalization, have been predicted to occur in quantum as well as classical many-body
systems [58–60] and were observed in [24].

In particular, integrable 1D systems are known not to thermalize, and indeed, experiments
in [47] have observed an exceedingly long equilibration time. Yet even in this extreme case,
we suggest in this section that many-body 1D systems can reach disguised ‘thermalized’ states
through prethermalization phenomena within a short time.

The Ramsey dynamics and dynamics of interference patterns between split condensates
described in the previous sections are particular examples of dynamics in which slow
equilibration is expected because the system essentially consists of uncoupled harmonic
oscillators in the low-energy description (see section 4). In the following, we give a heuristic
argument that the distribution of the interference contrast amplitudes of the two non-equilibrium
quasi-condensates is given by that of two equilibrium quasi-condensates at some effective
temperature Teff. More details can be found in section 6.3.

A long time after the splitting, the position of the interference peak becomes completely
random, and yields no information. Therefore, we focus on the squared transverse magnitude of
the spin (Ŝ⊥

l )
2, or equivalently, the interference contrasts Ĉ2. In the following, we describe the

physics for the dynamics of split condensates, but the same argument can be applied to Ramsey
dynamics. The interference contrast of the split condensates after a long time is determined by
the ‘average’ phase fluctuations present in the system. In the dephased limit, such fluctuations
are determined by the total energy present in each mode labeled by momenta k. Now for
sufficiently fast splitting, the energy Esplit contained in each mode is independent of momenta
because the density difference of quasi-condensates along the axial direction is uncorrelated in
the initial state beyond the spin healing length ξs (see the discussion below equation (10)). On
the other hand, the interference contrast of thermal condensates at temperature T is determined
by the thermal phase fluctuations caused by excitations whose energy is distributed according
to equipartition theorem; each mode in the thermal condensates contains equal energy of kBT .
Thus, from this argument, we find that the interference contrast of split condensates after
a long time becomes indistinguishable from the one resulting from thermal condensates at
temperature kBTeff = Esplit. We will show in section 6.3 that in fact the full distribution function
of interference contrast becomes indistinguishable for these two states. In the case of splitting
2D condensates, equipartition of energy and the existence of ‘non-equilibrium temperature’
were pointed out in [60].

Here we propose the occurrence of such prethermalization within the Tomonaga–Luttinger
theory. We emphasize that within the Tomonaga–Luttinger theory of low-energy excitations,
different modes are decoupled and therefore no true thermalization can take place. In realistic
experimental situations, such integrability can be broken and relaxation and thermalization
processes are expected to occur after long time dynamics. The requirement to observe the
prethermalization phenomena predicted in this theory in experiments depends on the time
scale of other possible thermalization processes we did not consider in our model, such
as effective three-body collisions [61, 62], relaxation of high-energy quasi-particles [63],
or interactions among the collective modes through anharmonic terms we neglected in the
Tomonaga–Luttinger theory [64]. When all these processes occur at much slower time scales
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than the prethermalization time scale, which is roughly given by the integration length divided
by the spin sound velocity ∼l/cs for the decoupling case, the observation of prethermalization
should be possible. In 1D, the dynamics is strongly constrained due to the conservation of
energy and momentum, and therefore it is likely that the dynamics is dominated by the modes
described by the Tomonaga–Luttinger theory for a long time for quasi-condensates with low
initial temperatures.

Such prethermalizations are expected to occur even in higher-dimensional systems [19, 25,
60, 65]. We note that the conditions for the experimental observations of the phenomena might
be more stringent because true thermalization processes are expected to take place much more
quickly in 2D and 3D systems.

3. Two-component Bose mixtures in 1D: the Hamiltonian

In this paper, we study the dynamics of two-component Bose mixtures in 1D through the
Tomonaga–Luttinger formalism [41, 42]. As we have stated before, we assume the rotating
frame in which spin-up and spin-down particles have the same chemical potential in the absence
of interactions. The Hamiltonian of two-component Bose mixtures in 1D is given by

H=

∫ L/2

−L/2
dr

[∑
i

1

2mi
∇ψ

†
i (r)∇ψi(r) +

∑
i j

gi j ψ
†
i (r)ψ

†
j (r)ψ j(r)ψi(r)

 . (3)

Here ψi with i =↑, ↓ describe two atomic species with masses mi , and gi j are the interaction
strengths given by gi j = ν⊥ai j [66] where ν⊥ is the frequency of transverse confinement
potential and ai j are the scattering lengths between spins i and j . The system size is taken
to be L , and we take the periodic boundary condition throughout the paper. In addition, we use
the units in which h̄ = 1.

In the low-energy description, the Hamiltonians for weakly interacting bosons after the
initial π/2 rotation can be written in quadratic form, and are given by

H = H↑ + H↓ + Hint,

H↑ =

∫ L/2

−L/2
dr

[
ρ

2m↑

(∇φ̂↑(r))
2 + g↑↑(n̂↑(r))

2

]
,

(4)

H↓ =

∫ L/2

−L/2
dr

[
ρ

2m↓

(∇φ̂↓(r))
2 + g↓↓(n̂↓(r))

2

]
,

Hint = 2
∫ L/2

−L/2
dr(r)[g↑↓n̂↑n̂↓(r)+ gφ

↑↓
∇φ̂↑∇φ̂↓(r)],

where ρ is the average density of each species and n̂σ are variables representing the phase and
density fluctuations for the particle with spin σ . These variables obey a canonical commutation
relation [n̂σ (r), φ̂σ (r ′)] = −iδ(r − r ′). In the Hamiltonian above, we included the kinetic
interaction term gφ

↑↓
, which is zero for weakly interacting bosons, but allowed by inversion

symmetry and non-zero for generic Tomonaga–Luttinger Hamiltonians.
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We note that in the weakly interacting case, one can obtain the parameters of the
Hamiltonian in equation (4) such as gi j and mi through hydrodynamic linearization of the
microscopic Hamiltonian. In this case, we assume the small fluctuations of the densities n̂σ
and phases ∇φ̂σ and expand the Hamiltonian in equation (3) to the second order in these
variables through the expression ψ†

σ ∼
√
ρ + n̂σ eiφ̂σ , resulting in the form of the Hamiltonian in

equation (4). Due to these assumptions of small spatial variations of the phase, n̂σ and φ̂σ
represent the ‘coarse-grained’ variables where collective modes have linear dispersions. The
Hamiltonian of the Tomonaga–Luttinger theory in equation (4) can also describe the effective
low-energy physics of strongly interacting systems, but in this case there is no simple relation
between microscopic parameters and the parameters of the Hamiltonian in equation (4).

In order to describe the spin dynamics, we define spin and charge operators as the
difference and the sum of spin-up and -down operators, i.e. φ̂s = φ̂↑ − φ̂↓, φ̂c = φ̂↑ + φ̂↓, n̂s =
1
2(n̂↑ − n̂↓), n̂c =

1
2(n̂↑ + n̂↓). In this representation, the Hamiltonian in equation (4) becomes

H = Hs + Hc + Hmix,

Hs =

∫ L/2

−L/2
dr

[
ρ

2ms
(∇φ̂s(r))

2 + gs(n̂s(r))
2

]
, (5)

Hc =

∫ L/2

−L/2
dr

[
ρ

2mc
(∇φ̂c(r))

2 + gc(n̂c(r))
2

]
, (6)

Hmix = 2
∫ L/2

−L/2
dr [gmixn̂s(r)n̂c(r)+ gφmix∇φ̂s(r)∇φ̂c(r)], (7)

where interaction strengths are given by gc = g↑↑ + g↓↓ + 2g↑↓, gs = g↑↑ + g↓↓ − 2g↑↓, gmix =

g↑↑ − g↓↓, gφmix = ρ/(8m↑)− ρ/(8m↓). The masses are given by the relations ρ/(2mc)=

ρ/(8m↑)+ ρ/(8m↓)+ gφ
↑↓
/2 and ρ/(2ms)= ρ/(8m↑)+ ρ/(8m↓)− gφ

↑↓
/2.

The spin variables φ̂s and n̂s are ‘coarse-grained’ in the sense that they represent the
operators in the long wavelength beyond the spin healing length ξs. ξs is determined from
microscopic physics and gives the length below which the kinetic energy of spins wins over the
interaction energy, see equation (5) above. For weakly interacting bosons with m↑ = m↓ = m, it
is given by ξs = π/

√
mρgs. In the following, we assume that the number of particles within the

spin healing length is large, i.e. ξsρ � 1. This condition is always satisfied for weakly interacting
bosons.

In the next section, we consider the case gmix = 0 and gφmix = 0, in which spin and charge
degrees of freedom decouple. Then the dynamics of spins is completely described by the spin
Hamiltonian in equation (5). The general case where gmix 6= 0 and gφmix 6= 0 will be treated in
section 5.

4. Dynamics of full distribution functions for decoupled spin and charge degrees
of freedom

4.1. The Hamiltonian and the initial state

The experiment of Widera et al [22] used F = 1, m F = +1 and F = 2, m F = −1 states of 87Rb
for spin-up and spin-down particles, respectively. These hyperfine states have the scattering
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lengths aσσ ′ such that a↑↑ ≈ a↓↓. Consequently, the mixing Hamiltonian in equation (7)
approximately vanishes for weak interactions. Motivated by this experiment, here we consider
the decoupling of spin and charge degrees of freedom [52]. Spin dynamics in this case is
completely determined by the spin Hamiltonian

Hs =
cs

2

∫ [
Ks

π
(∇φ̂s(r))

2 +
π

Ks
n̂2

s (r)

]
dr, (8)

where Ks is the spin Luttinger parameter representing the strength of interactions, and cs is
the spin sound velocity. Ks and cs are directly related to the spin healing length ξs in the weak-
interaction limit, given by 2Ks = ρξs and cs =

π

2msξs
. Note that n̂s(r, t) is the local spin imbalance

n̂s = ψ†
α(

1
2σ

z
αβ)ψβ and φ̂s(r, t) is related to the direction of the transverse spin component

ρ eiφ̂s = ψ†
ασ

+
αβψβ . Here, ψ†

α is the creation operator of spin α =↑,↓. These variables n̂s and

φ̂s obey a canonical commutation relation [n̂s(r), φ̂s(r ′)] = −iδ(r − r ′).
Other spin variables can be similarly defined in terms of coarse-grained spin variables n̂s

and φ̂s. In the following, we consider the general transverse spins pointing in the direction
(x, y, z)= (cos θ, sin θ, 0) integrated over l given by

Ŝθl =

∫ l/2

−l/2
dr ψ†

α(r, t)

(
cos θ

σ x
αβ

2
+ sin θ

σ
y
αβ

2

)
ψβ(r, t)

=

∫ l/2

−l/2
dr
ρ

2
(ei(φ̂s(r)−θ) + e−i(φ̂s(r)−θ)), (9)

where σ a with a = x, y are Pauli matrices. Here, Ŝθl with θ = 0 corresponds to spin x operator
and θ = π/2 corresponds to spin y operator. In order to explore the 1D dynamics resulting from
the Hamiltonian in equation (8), we analytically compute the mth moment of the spin operator
Ŝθl , 〈(Ŝθl )

m
〉, after time t of the π/2 pulse of the Ramsey sequence. Then, the full distribution

functions of Ŝx
l and Ŝy

l , as well as the joint distribution of these, will be obtained from 〈(Ŝθl )
m
〉.

In order to study the dynamics of Ramsey interferometer in terms of low-energy variables
n̂s and φ̂s, we need to write down an appropriate state after the π/2 pulse in terms of n̂s and φ̂s.
If the pulse is sufficiently strong, each spin is independently rotated into the x-direction after the
π/2 pulse. Naively, this prepares the initial state in the eigenstate of Ŝx(r)= ρ cos φ̂s(r) with
eigenvalue φ̂s(r)= 0. However, due to the commutation relation between n̂s and φ̂s, such an
initial state has an infinite fluctuation in n̂s and therefore the state has infinite energy according
to equation (8). This unphysical consequence comes about because the low-energy theory in
equation (8) should not be applied to the physics of a short time scale given by 1/Ec, where Ec

is the high-energy cutoff of the Tomonaga–Luttinger theory. During this short time dynamics,
the initial state establishes the correlation at the length scale of spin healing length ξs. The state
after this short time dynamics can now be described in terms of the coarse-grained variables
n̂s(r) and φ̂s(r). The variables n̂s(r) and φ̂s(r) are defined on a length scale larger than the spin
healing length ξs. Since the z component of spins is still uncorrelated beyond ξs after the initial
short time dynamics, the appropriate initial condition of the state is written as

〈Sz(r)Sz(r ′)〉 = 〈n̂s(r)n̂s(r
′)〉 =

ρη

2
δ(r − r ′), (10)

where the delta function δ(r − r ′) should be understood as a smeared delta function over the
scale of ξs. Because the state after the short time dynamics is still close to the eigenstate
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of the Ŝx(r) operator, spins are equal superpositions of spin up and spin down. Then the
distribution of Ŝz

l =
∫ l

0 Ŝz(r) dr is determined through random picking of the values ±1/2

for 2ρl particles. Due to the central limit theorem, the distribution of Ŝz
l =

∫ l
0 Ŝz(r) dr is

Gaussian, i.e. 〈(Ŝz
l )

2n
〉 =

(2n)!
2nn! (ρlη/2)n. In particular, 〈(Ŝz

l )
2
〉 = ρlη/2, which determines the

magnitude of the fluctuation for Ŝz(r) in equation (10). In equation (10), we also introduced
the phenomenological parameter η, which accounts for the decrease and increase of fluctuations
coming from, for example, imperfections of the π/2 pulse. The ideal, fast application of a π/2
pulse corresponds to η = 1. In the experimental realization of [22], η was determined to be
between 0.8 and 1.3 through the fitting of the experiment with the Tomonaga–Luttinger theory
for the time evolution of the average x component of the spin, 〈Ŝx

l 〉. Through the engineering of
the initial state such as the application of a weak π/2 pulse, η can also be made intentionally
smaller than 1.

A convenient basis to describe the initial state of the dynamics above is the basis that
diagonalizes the spin Hamiltonian of equation (8). The phase and density of the spins φ̂s(r) and
n̂s(r) can be written in terms of the creation b†

s,k and annihilation bs,k operators of elementary
excitations for the spin Hamiltonian in equation (8) as

φ̂s(r) =
1

√
L

∑
k

φ̂s,k eikr
=

1
√

L

∑
k 6=0

−i
√

π

2|k|Ks
(b†

s,k − bs,−k)e
ikr + φ̂s,0

 ,
n̂s(r) =

1
√

L

∑
k

n̂s,k eikr
=

1
√

L

∑
k 6=0

√
|k|Ks

2π
(b†

s,k + bs,−k)e
ikr + n̂s,0

 ,
Hs =

∑
k 6=0

cs|k|b†
s,kbs,k +

πcs

2Ks
n̂2

s,0, (11)

where we have defined φ̂s,k and n̂s,k as the Fourier transforms of operators φ̂s(r) and n̂s(r).
Note that b†

s,k creates a collective mode with momentum k and follows a canonical commutation
relation [bs,k, b†

s,k] = 1. Note that the k = 0 mode has no kinetic energy, and it naturally has a
different evolution than k 6= 0 modes.

The Gaussian state determined by equation (10) takes the form of a squeezed state of
operators bs,k , and it is given by

|ψ0〉 =
1

N
exp

∑
k 6=0

Wkb†
s,kb†

s,−k

|0〉|ψs,k=0〉,

〈ns,0|ψs,k=0〉 = exp

(
−

1

2ρη
n2

s,0

)
,

(12)

where 2Wk =
1−αk
1+αk

and αk =
|k|Ks

πρη
. Here the state |ns,0〉 is the normalized eigenstate of the

operator n̂s,0 with eigenvalue ns,0. The summation of k in the exponent has an ultraviolet
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cutoff around kc = 2π/ξs. N is the overall normalization of the state. It is easy to check that
〈ψ0|n̂s,k n̂s,k′|ψ0〉 =

ρη

2 δk,−k′ , which corresponds to equation (10).

4.2. Moments and full distribution functions of spins

After the free evolution of the initial state |ψ0〉 for time t , the state becomes |ψ(t)〉 = e−iH st |ψ0〉.
We characterize the state at time t by the mth moments of spin operators, 〈(Ŝθl )

m
〉. As we will

see below, the full distribution function can be constructed from the expression of 〈(Ŝθl )
m
〉 [18].

We consider the evaluation of moments 〈(Ŝθl )
m
〉 at time t , |ψ(t)〉. Each momentum k

component of the initial state |ψ0〉 independently evolves in time. Since the k = 0 mode has
a distinct evolution from other k 6= 0 modes, we separately consider k = 0 and k 6= 0 modes.

4.2.1. The k = 0 mode. The Hamiltonian of the k = 0 mode is given by Hs,k=0 =
πcs
2Ks

n̂2
s,0 in

equation (11). Therefore, in the basis of ns,0, the k = 0 part of the state |ψ(t)〉 is given by

〈ns,0|e
−iHs,k=0t

|ψk=0〉 =
1

Nk=0
exp

{(
−

1

(2ρη)
− i
πcst

2Ks

)
n2

s,0

}
, (13)

where Nk=0 is the normalization of the state. The initial Gaussian state of n̂s,0 stays Gaussian
at all times, and any analytic operator of φs,0 and ns,0 can be exactly evaluated through Wick’s
theorem. For example, the k = 0 part contributes to the decay of the average of the x component
of spin 〈Ŝx

l 〉k=0 = lρRe(〈eiφs,0/
√

L
〉) as

〈Ŝx
l 〉k=0 = lρ e−

1
2L 〈φ2

s,0〉t ,

〈φ2
s,0〉t =

1

2ρη
+

(
csπ t

Ks

)2
ηρ

2
.

(14)

This diffusion of the spin from the k = 0 contribution is generally present in any dimensional
systems and is not particular to one dimension. The physical origin of this diffusion is the
interaction dependent on the total spin, Ŝ2

z . The eigenstate of Ŝx with eigenvalue ρl is the
superposition of different eigenstates of Ŝz with eigenvalues mz, and they accumulate different
phases e−itmz

2
in time. This leads to decay of 〈Ŝx〉. In the thermodynamic limit L → ∞, the

uncertainty of Ŝz becomes diminishingly small, and therefore, the decay of 〈Ŝx〉 coming from
k = 0 goes to zero. More interesting physics peculiar to 1D systems comes from k 6= 0 modes.
In the case of 3D systems, macroscopic occupancy of a single-particle state is absent in 1D, so
k 6= 0 momentum excitations have a much more significant effect in 1D dynamics.

4.2.2. k 6= 0 contribution. The exact evaluation of spin moments 〈(Ŝθl )
m
〉 for k 6= 0 is possible

through the following trick. Consider the annihilation operator γs,k(t) for the state |ψ(t)〉 such
that γs,k(t)|ψ(t)〉 = 0. If we write the operators φ̂s(r) in terms of γs,k(t) and γ †

s,k(t), then the

k 6= 0 part of the mth moment schematically takes the form 〈(Ŝθl )
m
〉 ∼ 〈exp(i

∑
k 6=0 Cs,kγs,k +

C∗

s,kγ
†
s,k)〉 (here and in the following, we drop the time dependence of γs,k(t) from the

notation). Using the property eγ s,k |ψ(t)〉 = (1 + γs,k + . . .)|ψ(t)〉 = |ψ(t)〉 and the identity
eA+B

= eA eB e−
1
2 [A,B] where [A, B] is a c-number, we can evaluate the mth moments as

〈(Sθl )
m
〉 ∼ 〈eiC∗

s,kγ
†
s,k e−

1
2

∑
k 6=0 |Cs,k |

2
eiCs,kγs,k 〉 = exp(− 1

2

∑
k 6=0 |Cs,k|

2).
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It is straightforward to check that γs,k operator is given by a linear combination of bs,k and
b†

s,−k as follows:

(
γ

†
s,−k(t)

γs,k(t)

)
=


e−ics|k|t√

1 − 4|Wk|
2

−2Wkeics|k|t√
1 − 4|Wk|

2

−2Wke−ics|k|t√
1 − 4|Wk|

2

eics|k|t√
1 − 4|Wk|

2


(

b†
s,−k

bs,k

)
. (15)

γs,k and γ †
s,k obey a canonical commutation relation [γs,k, γ

†
s,k] = 1. In terms of these γs,k , the

expression of φ̂s,k(t) becomes

1
√

L
φ̂s,k = Cs,kγ

†
s,k + C∗

s,kγs,−k,

Cs,k = −i
√

π

2|k|KsL

eics|k|t
− 2Wk e−ics|k|t√
1 − 4|Wk|

2
.

(16)

Cs,k(t) measures the fluctuation, or variance, of phase in the kth mode at time t , given by
〈|φ̂s,k(t)|2〉 = 〈φ̂s,k(t)φ̂s,−k(t)〉. Indeed, since γs,k is the annihilation operator of our state at time
t , we immediately conclude that 〈|φ̂s,k(t)|2〉/L = |Cs,k(t)|2.

Using the technique described above, the mth moment of Ŝθl becomes (we include both
k = 0 and k 6= 0 contributions in the expression below)

〈ψ(t)|

(∫ l/2

−l/2
Sθ(r)dr

)m

|ψ(t)〉 =

〈
m∏
i

(∫ l/2

−l/2

ρ

2
dri

∑
si =±1

eisi (φ̂s(ri )−θ)

)〉

=

∑
{si =±1}

m∏
i=1

∫ l/2

−l/2

ρ dri

2
〈e(i(s1φ̂s(r1)+···+sm φ̂s(rm))〉e−i(

∑
i si)θ

=

∑
{si =±1}

m∏
i=1

∫ l/2

−l/2

ρ dri

2
exp

(
−

1

2

∑
k

ξ
{si ,ri }

s,k (ξ
{si ,ri }

s,k )∗

)
e−i(

∑
i si)θ , (17)

where ξ {si ,ri }

s,k =

√
〈|φ̂s,k(t)|2〉

L (s1 eikr1 + · · · + sm eikrm ). si takes either the value 1 or −1, and
∑

{si }

sums over all possible sets of values. Note that L is the total system size and l the integration
range.

4.2.3. Full distribution functions. The calculation of the full distribution functions from
moments in equation (17) is studied by the techniques introduced in [18] through mapping
to the statistics of random surfaces. In this subsection, we provide details of the calculation.

Equation (17) is simplified if the integrations for each ri can be independently carried
out. This is not possible in equation (17) because eikr i and eikr j for i 6= j are coupled in
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|ξ
{si ,r i }

s,k |
2
= (Re ξ {si ,r i }

s,k )2 + (Im ξ
{si ,r i }

s,k )2. To disentangle this, we introduce the Hubbard–

Stratonovich transformation, e−
x2
2 =

1
√

2π

∫
∞

−∞
e−

λ2
2 eixλ, for example,

e−
1
2 (Re(ξ

{si ,xi }
s,k ))2

=

∫
∞

−∞

dλ1sk
√

2π
e−λ2

1sk/2 eiλ1skRe(ξ
{si ,xi }
s,k ).

We apply a similar transformation for Imξs,k . This removes the cross term between eikr i

and eikr j for i 6= j and allows us to independently integrate over ri ’s. Associated with each
transformation, we introduce auxiliary variables λ1sk for Re(ξs,k) and λ2sk for Im(ξs,k). Then, the
mth moment becomes

〈ψ(t)|

(∫ l/2

−l/2
Sθ(r)dr

)m

|ψ(t)〉 =

∑
{si }

∏
k

∫
∞

−∞

e−(λ2
1sk+λ2

2sk)/2
dλ1sk
√

2π

dλ2sk
√

2π

×

[
m∏

i=1

∫ l/2

−l/2

ρ dri

2
exp

(
isi

∑
k

{
λ1skRe(ξ ri

s,k)+ λ2skIm(ξ ri
s,k)− θ

})]
,

where we introduced ξ {ri }

s,k =

√
〈|φ̂s,k(t)|2〉

L eikri . Summation over {si = ±1} can now be carried out.
Furthermore, we introduce new variables λrsk and λθsk , and replace λ1sk and λ2sk through the

relations λrsk =

√
λ2

1sk + λ2
2sk and cos(λθsk)= λ2sk/

√
λ2

1sk + λ2
2sk . These operations result in the

simplified expression

〈ψ(t)|

(∫ l/2

−l/2
Sθ(r)dr

)m

|ψ(t)〉 =

∏
k,a=r,θ

1

2π

∫
dλask

×λrsk e−
λ2

rsk
2

(
ρ

∫ l/2

−l/2
dr cos

[
χ(r, {λ jsk})− θ

])m

, (18)

where

χ(r, {λ jsk})=

∑
k

√√√√〈
|φ̂s,k|

2
〉

L
λrsk sin(kr + λθsk), (19)

〈|φ̂s,k|
2
〉 =

π

2|k|Ks

sin2(cs|k|t)+α2
k cos2(cs|k|t)

αk
, (k 6= 0),

〈
φ2

s,0

〉
t

=
1

2ρη
+

(
csπ t

Ks

)2
ηρ

2
, (k = 0), (20)

with αk =
|k|Ks

πρη
. The integration over λrsk and λθsk in equation (18) extends from 0 to ∞ and

from −π to π , respectively.
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Comparing the expression in equation (18) and the implicit definition of a distribution
function in equation (2), it is easy to identify the distribution function as

Pθ
l (α)=

∏
k

∫ π

−π

dλθsk

2π

∫
∞

0
λrsk e−λ2

rsk/2 dλrskδ

(
α− ρ

∫ l/2

−l/2
dr cos

[
χ(r, {λ jsk})− θ

])
. (21)

This function can be numerically evaluated through the Monte Carlo method with weight
λrsk e−λ2

rsk/2 for λrsk and equal unity weight for λθsk .
While we have assumed that the chemical potentials of spin-up and spin-down atoms are

the same in the absence of interactions by going to the rotating frame, it is easy to obtain the
expression for distribution functions in the laboratory frame. The energy difference E between
spin-up and spin-down atoms results in the rotation of the spin in the x–y-plane at a constant
angular velocity E . Therefore, the distribution in the laboratory frame is obtained by replacing
θ → θ + Et in equation (21).

In this section, we have focused on the distribution function of spins in the x–y-plane, but
it is also possible to obtain the distribution function of the z component of the spin, and we
present the result in appendix (A.2).

4.2.4. Joint distribution function. From the expression for the spin operators in equation (9),
we observe that the spin operators for the x and y directions commute in the low-energy
description. This is because spin operators in the Tomonaga–Luttinger theory are coarse-
grained over ∼ρξs particles, and since for weak interactions ρξs � 1, the uncertainty of
measurements coming from non-commutativity of Ŝx

l and Ŝy
l becomes suppressed. The

possibility of simultaneous measurements of spin x and y operators implies the existence
of joint distribution functions P x,y

l (α, β), where P x,y
l (α, β) dα dβ is the probability that the

simultaneous measurements of Ŝx
l and Sy

l give values between α and α + dα and β and β + dβ,
respectively. Here we provide the expression for P x,y

l (α, β) and prove that this is indeed the
unique solution.

The joint distribution function P x,y
l (α, β) is given by the following expression,

P x,y
l (α, β)=

∏
k

∫ π

−π

dλθsk

2π

∫
∞

0
λrsk e−λ2

rsk/2 dλrskδ

(
α + iβ − ρ

∫ l/2

−l/2
dr eiχ(r,{λ jsk})

)
, (22)

where the expression for χ(r, {λ jsk}) is given in equation (19). To prove it, we first show that
equation (22) reproduces the distribution function Pθ

l (α) in equation (21) for all θ . Then, we
show that a function with this property is unique, and therefore the expression in equation (21)
is necessarily the joint distribution function.

Given a joint distribution function P x,y
l (α, β), we can determine the distribution function

Pθ
l (γ ) of a spin pointing in the direction (cos θ, sin θ, 0). Consider the spin ES in the x–y-plane

with ES = (α, β, 0) whose probability distribution is given by P x,y
l (α, β). The projection of the

spin ES onto the axis pointing in the direction (cos θ, sin θ, 0) is given by |S|cos(φ− θ), where
|S| =

√
α2 +β2 is the magnitude of spin and φ is the angle Arg(α + iβ). After a simple algebra,

we find that |S|cos(φ− θ)= α cos θ +βsin θ . Then, given a spin ES = (α, β, 0), if one measures
the spin along the direction (cos θ, sin θ, 0), the measurement result gives γ if and only if
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γ = α cos θ +β sin θ . From this consideration, the probability distribution that the measurement
along the direction (cos θ, sin θ, 0) gives the value γ is given by

Pθ
l (γ )=

∫
dα dβP x,y

l (α, β)δ(γ −α cos θ −β sin θ). (23)

Now, if we plug the expression of equation (22) into equation (23), we see that Pθ
l (γ ) agrees

with equation (21) for all θ .
Now we prove the uniqueness of a function with the above property, i.e. a function

that reproduces equation (21) through the relation (23). Suppose one has another distribution
P̃ x,y

l (α, β) that satisfies equation (23) for all θ . We define Q(α, β)= P x,y
l (α, β)− P̃ x,y

l (α, β).
Our goal is to show that Q(α, β) must be equal to zero. By definition, we have the equality

0 =

∫
dα dβQ(α, β)δ(γ −α cos θ −β sin θ), (24)

for all θ and γ . If we take the Fourier transform of both sides of equation (24) in terms of γ , we
obtain

0 =

∫
dγ
∫

dα dβQ(α, β)δ(γ −α cos θ −β sin θ)eiwγ
=

∫
dEαQ(Eα)ei Ew·Eα.

In the last line, we defined Ew = w(cos θ, sin θ) and Eα = (α, β). Note that this equation holds for
any Ew. Then this last expression is just like (2D) Fourier transform of Q. By taking the inverse
Fourier transform of the last expression in terms of Ew, we find

0 =

∫
∞

−∞

d Ew

∫
dEαQ(Eα)ei Ew·(Eα− Eα′)Q( Eα′),

thereby proving the uniqueness of the joint distribution P x,y
l (α, β).

From the joint distribution function in equation (22), one can also obtain other distributions,
such as the distribution P⊥

l (γ ) of the square of the transverse spin magnitude, (S⊥

l (t))
2, which

is given by

P⊥

l (γ )=

∫
∞

−∞

dα dβP x,y
l (α, β)δ

(
γ −α2

−β2
)

=

∏
k

∫ π

−π

dλθsk

2π

∫
∞

0
λrsk e−λ2

rsk/2 dλrskδ

(
γ −

∣∣∣∣ρ ∫ l/2

−l/2
dreiχ(r,{λ jsk})

∣∣∣∣2
)
. (25)

4.2.5. Interpretation of the distribution dynamics. The form of the distribution function in
equation (22) encapsulates the interpretation in terms of dynamics originating from spin waves
explained in section 2. Here eiχ(r,{t jsk}) represents the spin direction at the coordinate r , where the
x–y-plane of the spin component is taken to be a complex plane. Then equation (22) suggests
that for a given instance of the set {λ jsk}, (Sx

l + iSy
l ) is simply the sum of the local spin directions

eiχ(r,{λ jsk}) over the integration length l. The local spin direction at position r is determined by
the phase χ(r, {t jsk}), which receives contributions from each spin wave of momentum k with

strength Ak(t)= λrsk

√
〈|φ̂s,k(t)|2〉. Spin waves with momenta k rotate the spins as sin (kr + λθsk)
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Initial state

Figure 6. The illustration of the dynamics for each harmonic oscillator
mode, described by the Hamiltonian equation (8). The initial state contains
a large fluctuation of density difference n̂s,k given by 〈n̂s,k n̂s,−k〉 = ηρ/2 (see
equation (10)), and its conjugate variable, the phase difference φ̂s,k , has a small
fluctuation. In the subsequent dynamics, such a squeezed state evolves and
energy oscillates between the fluctuations of the density difference and phase
difference.

(see the expression of χ(r, {λ jsk}) in equation (19)). The rotation strength Ak(t)∝ λrsk has the
distribution λrsk e−λ2

rsk/2, which represents the quantum fluctuation of the spins. On the other
hand, λθsk is distributed uniformly between −π and π .

The dynamics of phase fluctuations 〈|φ̂s,k(t)|2〉 can, in fact, be easily understood by
considering the Hamiltonian given by equation (8) as a harmonic oscillator for each k (figure 6).
We first note that the initial state has a large fluctuation of density n̂s,k because the initial π/2
pulse prepares the state in the (almost) eigenstate of Sx

= ρ cos(φ̂s,k) with a small fluctuation
of φ̂s,k , the conjugate variable of n̂s,k . The fluctuation of n̂s,k is given by 〈n̂s,k n̂s,−k〉 = ηρ/2
(see equation (10)). Because of this large fluctuation in the density, almost all the energy of
the initial state is stored in the interaction term |ns,k|

2 in equation (8). Therefore, the total
energy of each harmonic oscillator can be estimated as πcsρη

4Ks
. During the dynamics dictated

by the harmonic oscillator Hamiltonian, this energy oscillates between the density fluctuations
and phase fluctuations in a sinusoidal fashion, see figure 6. In the dephased limit of the
dynamics, approximately equal energy of the system is distributed to the phase and density
fluctuations, and from the conservation of energy, we conclude that the characteristic magnitude
of phase fluctuation is given by 〈|φs,k(t)|2〉 ∼

π2ρη

4 K 2
s k2 . Such 1/k2 dependence of 〈|φ̂s,k(t)|2〉 agrees

with the more rigorous result in equation (20). Therefore the spin fluctuations dominantly
come from spin waves with long wavelengths, as we have stated in section 2. Moreover, the
weak dependence of spin dynamics on high momenta contributions justifies the use of the
Tomonaga–Luttinger theory for describing the dynamics. We will more carefully analyze the
dependence of distributions on the high momentum cutoff in section 4.4.

From the simple argument above, it is also clear that the spin fluctuations coming from
spin waves with momenta k have the time scales associated with the harmonic oscillators

New Journal of Physics 13 (2011) 073018 (http://www.njp.org/)

http://www.njp.org/


22

−1

0

1
time =0 time =7 time =14

−1 0 1
−1

0

1
time =21

−1 0 1

time =28

−1 0 1

time =35

0

1

0

1

−1

time =0 time =7 time =14

−1 0 1
−1

time =21

−1 0 1

time =28

−1 0 1

time =35
−1

0

1
time =0 time =7 time =14

−1 0 1
−1

0

1
time =21

−1 0 1

time =28

−1 0 1

time =35

Figure 7. The dynamics of the joint distributions for L/ξs = 200, ξs = 40 and
various spin Luttinger parameters Ks = 30, 25 and 20. Here axes are scaled such
that the maximum values of α and β are 1. A smaller value of Ks enhances the
spin fluctuations, leading to stronger diffusion and decay. Time is measured in
units of ξs/cs.

given by 1
|k|cs

. Again, this rough argument agrees with the more rigorous result presented in
equation (20). Therefore, the fast dynamics is dominated by spin waves with high momenta,
and slow dynamics is dominated by low momenta. These considerations lead to the illustrative
picture of figure 2. Furthermore, this implies that the dynamics of the magnitude of spin (Ŝ⊥

l )
2

reaches a steady state around the time l
4cs

since spin waves with wavelength longer than l do not
affect the magnitude. This should be contrasted with the evolution of the x component of spin,
which, in principle, keeps evolving until the time scale of ∼

L
4cs

(see figure 4).
The strength of interactions and correlations is associated with the Luttinger parameter, Ks.

Ks influences the spin fluctuations 〈|φs,k(t)|2〉 at all wavelengths, and 〈|φs,k(t)|2〉 depends on Ks

as 1/K 2
s for a fixed density. As was expected, in the limit of the weak interaction corresponding

to large Ks, the amplitude of spin fluctuation decreases. In figure 7, we have plotted the time
evolution of the joint distributions for L/ξs = 200, l/ξs = 40 and Ks = 20, 25 and 30. For larger
Ks, we see that the spin fluctuations get suppressed quickly.

4.3. Dynamics of the expectation value of the magnitude of spin 〈(Ŝ⊥

l (t))
2
〉

In order to illustrate the dynamics of the Ramsey sequence further, it is helpful to study the
dynamics of the expectation value of the squared transverse magnitude, given by 〈(Ŝ⊥

l (t))
2
〉.

In figure 8, we plot the evolution of
√

〈(Ŝ⊥

l (t))
2〉 with Ks = 20, L/ξs = 200 and l/ξs = 20,

30 and 40 . We also plotted 〈Ŝx
l (t)〉 along with

√
〈(Ŝ⊥

l (t))
2〉 with the same parameters. It is easy

to verify that 〈Sx
l (t)〉 is independent of integration length l [67]. As we have discussed in the

previous section,
√

〈(Ŝ⊥

l (t))
2〉 reaches steady states at the time scale of l

4cs
with finite values,

while 〈Ŝx
l (t)〉 keeps decaying for a much longer time.

It is interesting to ask if the long time limit of
√

〈(Ŝ⊥

l (t))
2〉 for sufficiently large integration

length l attains the value that corresponds to the one expected from the randomization of spin
patches of size ξs. At low energies, spins within the length ∼ξs are aligned in the same direction,
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Figure 8. The dynamics of the average value of the magnitude of spins,√
〈(Ŝ⊥

l (t))
2〉, and the average of the x component of spins 〈Ŝx

l (t)〉. Here the
y-axis is scaled such that the initial values take the maximum value of 1. Here
we took L/ξs = 200, Ks = 20 and the integration lengths l/ξs = 20, 30, 40. The
magnitude of spins decays only due to the spin waves with wavelengths shorter
than the integration length l, and the decay of the magnitude stops around the
time scale of ∼

l
4cs

. On the other hand, all spin waves contribute to the evolution
of the x component of magnetization, which keeps decaying [67].

but spin waves can randomize the direction of the spin for each of l/ξs patches. Since the
magnitude of spin within ξs is ξsρ, if the patches are completely randomized, the result of the

random walk predicts that
√

〈(Ŝ⊥

l )
2〉 ∼ (ξsρ)

2(l/ξs). We will see below that, due to the properties

of correlations in 1D, the integrated magnitude of spin
√

〈(Ŝ⊥

l )
2〉 never attains this form, albeit a

similar expression is obtained (see equation (26)). Moreover, we identify the integration length
l̃ that separates the ‘spin diffusion regime’ and the ‘spin decay regime’ by finding the decaying

length scale for
√

〈(Ŝ⊥

l )
2〉.

The results for the long time limit of 〈(Ŝ⊥

l (t))
2
〉 can be analytically computed. Following

similar steps leading to equation (17), we find that

〈(Ŝ⊥

l (t))
2
〉 =

〈∣∣∣∣∫ drρ eiφ(s,r)

∣∣∣∣2
〉

=

2∏
i=1

∫ l/2

−l/2
ρ dri exp

−
1

2

∑
k 6=0

ξ
{ri }

s,k (ξ
{,ri }

s,k )
∗

.
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Here ξ {r i }

s,k = |Cs,k|(eikr1 − eikr2). We introduce dimensionless variables r ′

i = ri/ l, k ′
= kl and the

integration over k in the exponent can be carried out as

∫
dk ′

L

2πl
ξ

{r ′

i }

s,k′

(
ξ

{,r ′

i }

s,k′

)∗

=
2

π

∫ k′
c

k′

min

dk ′

(
1

ρηl
cos2(|k|cst)+

π 2ρηl

k ′2K 2
s

sin2(|k|cst)

)
sin2

(
r ′

1 − r ′

2

2
|k ′

|

)

≈
k ′

c

2ρπlη
+
πηρl

2Ks
|r ′

1 − r ′

2|

∫
∞

0
dy

sin2(y)

y2
.

In the second line, we approximated cos2(|k|cst)≈ sin2(|k|cst)≈ 1/2, which is appropriate for
a long time. In the last line, we extended the upper limit of the integration for the second term
to ∞ and the lower limit to 0. The former is justified because we know that the high momentum
contribution is suppressed by 1/k2, and the latter is justified because we also know that low
momenta excitations with wavelengths larger than l do not affect Ŝ⊥

l . Since
∫

∞

0 dy sin2(y)
y2 = π/2,

we find that, in the long time limit,

〈(Ŝ⊥

l (t = ∞))2〉/〈(Ŝ⊥

l (t ≈ 0))2〉 = 2

{
1

l0
−

(
1

l0

)2

(1 − exp(−l0))

}
, (26)

where we have expressed the result as a ratio of the asymptotic value to the value at the shortest
time scale of the theory given by t ∼ 1/µ. Note that l0 =

π2ηρl
8K 2

s
is the dimensionless integration

length that controls the value of 〈(Ŝ⊥

l )
2
〉 in the long time limit. As soon as l0 becomes larger than

1, the long time value of 〈(Ŝ⊥

l )
2
〉 quickly approaches the long integration limit, ∝ 2{

1
l0

− ( 1
l0
)2}.

Therefore, l0 ≈ 1 separates the ‘spin diffusion regime’ and the ‘spin decay regime’.
The intuition behind the expression for l0 can be explained through the following heuristic

argument. The system enters the spin decay regime when the spins within the integration length
l rotate by 2π across l. The difference in angle between the spins at r = 0 and r = l in the

long time limit is roughly given by 1χ =
1

√
L

∑
k λrsk

√
〈|φ̂s,k|

2〉mean sin(kl), where 〈|φ̂s,k|
2
〉mean

is the characteristic magnitude of 〈|φ̂s,k(t)|2〉 in equation (20), which is given by half of
the maximum magnitude of 〈|φ̂s,k(t)|2〉. Now the expectation of magnitude 〈(1χ)2〉 over the
quantum fluctuations represented by λrsk can be computed, and it yields 〈(1χ)2〉 ≈

π2ηρl
4K 2

s
. When√

〈(1χ)2〉 becomes of the order of 1, the system enters the spin decay regime. This estimate
gives the boundary between the two regimes l0 =

π2ηρl
8K 2

s
≈ 1 apart from an unimportant numerical

factor.
It is notable that equation (26) approaches the random walk behavior ∝ (ξsρ)

2(l/ξs) very
slowly, i.e. in an algebraic fashion. Therefore, even in the steady state, the system retains a
strong correlation among spins. Moreover, equation (26) in the limit of l0 → ∞ is not just the
random walk value, but is proportional to Ks, which measures the strength of fluctuations.

The calculation above shows that the spin diffusion regime and the spin decay regime
are separated at the integration length scale of l̃ ≈

8K 2
s

π2ηρ
. This length scale is nothing but the

correlation length of spins in the long time limit. Calculation of the spin correlation length, for
example, between Sx(r) and Ŝx(r ′), can be performed similarly to the calculation of 〈(Ŝ⊥

l )
2
〉.
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The result in the long time limit is

〈Ŝx(r)Ŝx(r ′)〉 ≈ C
ρ2

2
e−|r−r ′

|/l̃, (27)

where C = e−kc/(4πρη) is a small reduction of the spins due to the contributions from the high-
energy sector. Thus, one expects qualitatively different behavior of distribution functions for
integration lengths l < l̃ and l > l̃.

4.4. Momentum cutoff dependence

The description of dynamics presented above uses the low-energy effective theory. In order
to confirm the self-consistency of our approach, we check that the distributions of spins are
not strongly affected by high-energy physics, i.e. they weakly depend on the high momentum
cutoff. We have seen an indication that this is indeed the case through the weak fluctuations of
phases for large k, 〈|φ̂s,k|〉 ∝ 1/k2, in section 4.2.5.

First of all, we analyze the high momentum cutoff kc ∼ 2π/ξs dependence of the average
value of Ŝx

l . From the discussion in section 4.2, it is straightforward to obtain that (here we
ignore the k = 0 contribution)

〈Ŝx
l 〉 =

∫ l/2

−l/2

ρ

2
dx
〈
eiφ(x) + e−iφ(x)

〉
= ρl exp

−
1

2

∑
k 6=0

|Cs,k|
2

 ,
∑
k 6=0

|Cs,k|
2

=

∫ kc

−kc

dk

(
cos2(|k|cst)

4πρη
+
πρη

4k2K 2
s

sin2(|k|cst)

)
(28)

≈
kc

2πρη
+

ρcstη

(2Ks/π)2
,

where in the last line, we took the long time limit t � ξs/cs [67]. In this limit, only the first term
in equation (28) depends on the cutoff kc, and moreover, the cutoff dependence is independent of
time. The effect is to reduce the value of 〈Ŝx

l 〉 through the multiplication of a number close to one
in the weakly interacting limit. For example, if we take kc = 2π/ξc, then the cutoff-dependent
term reduces the value by multiplying exp(− kc

4πρη )≈ e−1/(4Ks) ≈ 1.
In a similar fashion, higher moments of spin operators can be shown to have a weak

dependence on the cutoff momentum kc, as long as the integration length is much larger than
the healing length, l/ξs � 1. In this limit, m moments of, for example, Ŝx

l are reduced by
exp(−m kc

4πρη ). Therefore, the full distribution function is simply reduced by the multiplication

of a number close to one, exp(− kc
4πρη )≈ e−1/(4Ks) ≈ 1, in the weakly interacting regime. This

gives the self-consistency check of our results in section 4.2.

5. Dynamics of full distribution functions in the presence of mixing between spin and
charge degrees of freedom

In this section, we extend the analysis in section 4 to a more general case in which spin and
charge degrees of freedom mix. We will see that the distribution functions even for this more
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general case have essentially the same structure as in equation (21), and are described by spin
waves with fluctuations whose amplitude is determined by the fluctuations of phase 〈|φ̂s,k|

2
〉.

One important difference from the decoupling case is the dependence of spin distributions on
the initial temperature of the system. The thermal excitations are present in the charge degrees of
freedom in the initial state, and such thermal fluctuations increase the value of 〈|φ̂s,k|

2
〉 through

the coupling between spin and charge during the evolution.

5.1. The Hamiltonian and the initial state

In a generic system of two-component bosons in 1D, spin and charge degrees of freedom couple
through the mixing Hamiltonian in equation (7). Yet, the Hamiltonian in equation (4) is still
quadratic and it can be diagonalized. We define new operators φ̂1, φ̂2, n̂1, n̂2 by(

φ̂1

φ̂2

)
=

(
cos κ sin κ

− sin κ cos κ

)(√
scφ̂c

φ̂s

)
, (29)

(
n̂1

n̂2

)
=

(
cos κ sin κ

− sin κ cos κ

) 1
√

sc
n̂c

n̂s

 . (30)

The mixing angle κ and the scaling parameter sc are chosen so that the Hamiltonian is written
in the following diagonal form:

H = H1 + H2,

H1 =

∫ L/2

−L/2
dr

ρ

2m1
(∇φ̂1(r))

2 + g1(n̂1)
2, (31)

H2 =

∫ L/2

−L/2
dr

ρ

2m2
(∇φ̂2)

2 + g2(n̂2)
2.

Explicitly, κ and sc are given by

sc =

gmixρ

2mc
+ gsg

φ

mix

gcgφmix + gmixρ

2ms

, tan κ =

−κ0 ±

√
κ2

0 + 4

2
,

κ0 =
scgc − gs
√

scgmix
=

ρ

2mc
− sc

ρ

2ms

gφmix
√

sc

,

where ± in the expression of tan κ is + when κ0 > 0 and − when κ0 < 0. We defined κ

such that κ = 0 corresponds to decoupling of charge and spin, i.e. to gmix = 0 and gφmix = 0 in
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equation (7). The parameters g1, g2, ρ

2m1
and ρ

2m2
are given by

g1 = scgc +
√

sc tan κgmix,

g2 = gs −
√

sc tan κgmix,

ρ

2m1
=

ρ

2mcsc
+ tan κ

gφmix
√

sc
,

ρ

2m2
=

ρ

2ms
− tan κ

gφmix
√

sc
.

In the weakly interacting systems that we study in this paper, the Luttinger parameters Ki and
sound velocities ci are determined for each Hamiltonian Hi , i =↑, ↓, c, s, 1, 2, through

Ki = π

√
ρ

2mi gi
, ci =

√
ρgi

mi
. (32)

At finite temperature, the state before the first π/2 pulse contains excitations, and these
excitations are carried over to the charge degrees of freedom after the pulse. The pulse only
acts on the spin degrees of freedom, and the local sum density of spin up and down is left
untouched as long as the pulse is applied in a short time compared to the inverse of typical
excitation energies, β = 1/(kBT ). In other words, the local density fluctuation of spin up, n̂↑(r),
before the π/2 pulse is converted to the sum of the local density fluctuation of spin up and spin
down, n̂↑(r)+ n̂↓(r) after the π/2 pulse. In this strong pulse limit, then, the distribution of n̂↑(r)
before the π/2 pulse is the same as the distribution of n̂↑(r)+ n̂↓(r) after the π/2 pulse.

The distribution of the local density for spin-up atoms before the π/2 pulse is determined
by the density matrix for spin up given by e−βH ′

↑ , where in the weak interaction regime we have
(see equation (4))

H ′

↑
=

∫ L/2

−L/2
dr

[
2ρ

2m↑

(∇φ̂↑(r))
2 + g↑↑(n̂↑(r))

2

]
.

Then, the density matrix that produces the distribution of n̂↑(r)+ n̂↓(r) required above is given
by e−βH c↑ where

H↑c =

∫ L/2

−L/2
dr

[
2ρ

2m↑

{(∇φ̂↑(r)+ ∇φ̂↓(r))/2}
2 + g↑↑(n̂↑(r)+ n̂↓(r))

2

]
=

cc↑

2

∫ L/2

−L/2
dr

[
Kc↑

π
(∇φ̂c)

2 +
π

Kc↑
n̂2

c

]
, (33)

where Kc↑ =
π

4

√
ρ

m↑g↑↑

and cc↑ =

√
2ρg↑↑

m↑

.

The initial state for spins is determined by the π/2 pulse, and we obtained the state in
equation (12). Then, the complete initial density matrix after the first π/2 pulse is given by

ρ̂0 = |ψ0〉 〈ψ0| ⊗ e−βHc↑/Tr
(
e−βHc↑

)
. (34)

This density matrix evolves in time as ρ̂(t)= e−it H ρ̂0 eit H . Since we assume that the preparation
of the initial state is done through a strong, short pulse, the spin and charge degrees of freedom
are not entangled in the initial state.
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5.2. Time evolutions of operators

In order to calculate the distribution function of Ŝθl , we again start from the calculation of the
mth moments, Tr(ρ̂(t)(Ŝθl )

m). Evaluation of moments can be done through a similar technique
to that used in section 4.2.

In the following, we describe convenient, time-dependent operators γs,k(t) and γc,k(t) used
to evaluate spin operators such as eiφ̂s,k . The first operator resides in the spin sector and it is
again the annihilation operator of the initial spin state such that Tr γs,k(0)ρ̂0 = 0. This operator
is given in equation (15), which is

γs,k(t)= e−it Hγs,k(0)e
it H ,

(
γ

†
s,−k(0)

γs,k(0)

)
=


1√

1 − 4|Wk|
2

−2Wk√
1 − 4|Wk|

2

−2Wk√
1 − 4|Wk|

2

1√
1 − 4|Wk|

2


(

b†
s,−k

bs,k

)
,

with 2Wk =
1−αk
1+αk

and αk =
|k|Ks

πρη
as before. The second operator is the operator of charge degrees

of freedom, and it is given by

γc,k(t) = e−it Hγc,k(0)e
it H ,

γc,k(0)= bc↑,k,

where bc↑,k is an annihilation operator for the elementary excitations in Hc↑. Since γs,k(t) and
γc,k(t) commute at t = 0, they commute at any time t . We will drop the time dependence of
γa,k(t) in the notation from now on.

From the expression of the initial density matrix ρ̂0 in equation (34), it is easy to check that
the density matrix at time t given by ρ̂(t)= e−it H ρ̂0 eit H can be written as the tensor product
of the density matrix of operators γs,k(t) and that of γc,k(t). This is because ρ̂0 is a tensor
product of the density matrices of γs,k(t = 0) and that of γc,k(t = 0). This structure of the density
matrices at time t allows the independent evaluation of γs,k(t) and γc,k(t) operators, and it is
advantageous to express spin operators in terms of these operators.

As we show in appendix B, we can write φ̂s,k in terms of γc,k(t) and γs,k(t) as follows:
1

√
L
φ̂s,k = C∗

s,kγ
†
s,−k + Cs,kγs,k + C∗

c,kγ
†
c,−k + Cc,kγc,k, (35)

where explicit expressions of Cs,k and Cc,k are given by

Cs,k = i

√
1

2Lρη

(
{cos2 θ cos(c2|k|t)+ sin2 θ cos(c1|k|t)}

−i
Ks

αk

{
cos2 θ sin(c2|k|t)

K2
+

sin2 θ sin(c1|k|t)

K1

})
,

Cc,k = cos θ sin θ

√
π

2L|k|sc K̃c↑

×

(
i {cos(c1|k|t)− cos(c2|k|t)} − K̃c↑

{
sin(c2|k|t)

K2
−

sin(c1|k|t)

K1

})
,

(36)

where K̃c↑ = Kc↑/
√

sc.
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Using equation (35), we find an expression for (Ŝθl )
m in terms of γa,k with a = s, c as

follows:

(Ŝθl )
m

=

m∏
i=1

∫ l/2

−l/2
dri
ρ

2

∑
{si }

ei
∑

k 6=0(ξ
∗

s,kγ
†
s,k+ξs,kγs,k)ei

∑
k 6=0(ξ

∗

c,kγ
†
c,k+ξc,kγc,k) ei(

∑
i si )φs,0/

√
L e−i(

∑
i si )θ ,

where ξa,k = (
∑m

i si eiri k)Ca,k . In the following, we separately evaluate three contributions:
the k = 0 component given by ei(

∑
i si )φs,0/

√
L ; the charge component of k 6= 0 given by

ei
∑

k 6=0(ξ
∗

c,kγ
†
c,k+ξc,kγc,k); and the spin component of k 6= 0 given by ei

∑
k 6=0(ξ

∗

s,kγ
†
s,k+ξs,kγs,k).

5.2.1. The k = 0 contribution. The initial state of the k = 0 spin sector in equation (12) as well
as that of the charge sector in equation (33) have a Gaussian form so that calculation of the trace
Tr{ei(

∑
i si )φs,0/

√
L ρ̂(t)} is straightforward. We leave the details to appendix C, and the result is

〈ei(
∑

i si )φs,0/

√
L

〉 = exp

−

(∑
i

si

)2
〈φ2

s,0〉t

2L

 ,
〈φ2

s,0〉t =
1

2ρη
+

(
sin2 θ

πc1

K1
+ cos2 θ

πc2

K2

)2
ρη

2
t2 + sin2 θ cos2 θ

(
πc1

K1
−
πc2

K2

)2 K̃ c↑

πcc↑β
t2.

(37)

5.2.2. The k 6= 0 spin sector. This calculation is analogous to equation (17), and the result can
be directly read off from equation (17) and it is

〈ei
∑

k 6=0(ξ
∗

s,kγ
†
s,k+ξs,kγs,k)〉 = exp

−
1

2

∑
k 6=0

ξ ∗

s,kξs,k

 . (38)

5.2.3. The k 6= 0 charge sector. We first rewrite the density matrix at time t as

ρ̂c,k 6=0(t)= e−it H e−βcc↑
∑

k 6=0 |k|b†
c↑,kbc↑,k eit H/N

= e−βcc↑
∑

k 6=0 |k|γ
†
c,k(t)γc,k(t)/N ,

where Nc is normalization given by Nc = Tr e−βcc↑
∑

k 6=0 |k|γ
†
c,k(t)γc,k(t) =

∏
k 6=0 −1/λk with

λk = e−βcc↑|k|
− 1.

Then the trace of (Ŝθl )
m for the k 6= 0 spin sector is

〈ei
∑

k 6=0(ξ
∗

c,kγ
†
c,k+ξc,kγc,k)〉 =

∏
k 6=0

Tr(ei(ξ∗

c,kγ
†
c,k+ξc,kγc,k) e−β|k|cc↑γ

†
c,kγc,k )

/
N . (39)

We can evaluate this by taking the trace in the basis of normalized coherent states |αk〉 such
that γc,k|αk〉 = αk|αk〉. The use of the identity 1 =

1
π

∫
d2αk|αk〉〈αk| as well as of an important
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equality eva†a
= :e(e

v
−1)a†a: [18], where :O: is a normal ordering of O, leads to

〈ei
∑

k 6=0(ξ
∗

c,kγ
†
c,k+ξc,kγc,k)〉 =

1

N

∏
k 6=0

1

π

∫
d2αk 〈αk| ei(ξ∗

c,kγ
†
c,k+ξc,kγc,k) e−β|k|cc↑γ

†
c,kγc,k |αk〉

=
1

N

∏
k 6=0

1

π

∫
d2αk e−1/2ξ∗

c,kξc,k 〈αk| eiξ∗

c,kα
∗

k eiξc,kγc,k : eλkγ
†
c,kγc,k : |αk〉

=

∏
k 6=0

e
−

1
2

1+e
−β|k|cc↑

1−e
−β|k|cc↑

ξ∗

c,kξc,k
.

5.2.4. Full distribution function. We can summarize the results above as follows:

〈
(Ŝθl )

n
〉
=

∑
{si }

m∏
i=1

∫
dri
ρ

2
exp

−
1

2

∑
k 6=0

ξ ∗

s,kξs,k

 exp

−
1

2

∑
k 6=0

Mc,kξ
∗

c,kξc,k


× exp

−
1

2

(∑
i

si

)2 〈
φ2

s,0

〉
t

L

 e−i(
∑

i si )θ (40)

Here, Mc,k =
1+e−β|k|cc↑

1−e−β|k|cc↑ . As before, we introduce the auxiliary variables to separate spatial
integrations over ri . We can combine ξ ∗

s,kξs,k and Mc,kξ
∗

c,kξc,k so that we only need to introduce
three sets of variables, λ1,s,k, λ2,s,k, λ0, for the Hubbard–Stratonovich transformation. Summing
over {si} simplifies the result, leading to the following expression for the full distribution
function:

Pθ
l (α)=

∏
k

∫ π

−π

dλθsk

2π

∫
∞

0
λrsk e−λ2

rsk/2 dλrsk, δ

(
α− ρ

∫ l/2

−l/2
dr cos[χ(r, {λ jsk})− θ ]

)
,

χ(r, {λ jsk})=

∑
k

√
〈|φ̂s,k|2〉

L
λrsk sin(kr + λθsk), (41)

〈|φ̂s,k|
2
〉/L = |Cs,k|

2 +
1 + e−β|k|cc↑

1 − e−β|k|cc↑
|Cc,k|

2, k 6= 0.

The last line can be confirmed by directly computing 〈|φ̂s,k|
2
〉 using the expression in

equation (35). The expression for 〈|φs,0|
2
〉 is given by equation (37). As before, the joint

distributions as well as the distributions of squared transverse magnitude can be obtained
through the same procedure as that in section 4.2.4.

The spin distribution in the presence of mixing between spin and charge degrees of freedom
resembles that in the absence of such mixing, and the only change is the additional contributions
to phase fluctuations coming from the thermal excitations, represented by 1+e−β|k|cc↑

1−e−β|k|cc↑ |Cc,k|
2 in

equation (41). |Cc,k| is proportional to sin2 κ as one can see from equation (36). Thus, for weak
coupling of κ ∼ 0, the contribution is diminished by a factor of κ2.
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Figure 9. Time evolution of the joint distribution function P x,y(α, β) for the
system size L/ξs = 400, the spin Luttinger parameter Ks = 20 and the integration
length l/ξs = 20 in the presence of mixing between the spin and charge modes.
For (a), the interaction strength ratio is taken to be gc : gs : gmix = 1 : 1 : 0.1, and
for (b), gc : gs : gmix = 1 : 1 : 0.3. Time is measured in units of ξs/cs, where cs is
the spin sound wave velocity. Here, the axes are scaled such that the maximum
values of α and β are 1. With increasing strength of mixing, the large initial
temperature affects the spin dynamics at earlier time more strongly.

In the experiment by Widera et al, they used Rb87 in the presence of Feshbach resonance.
They employed the theory which assumes the absence of mixing between spin and charge
degrees of freedom to analyze the decay of the Ramsey fringes. The ratio of interaction strengths
in their experiment can be roughly estimated as gc : gs : gmix ≈ 3.66 : 0.34 : 0.06, which leads
to the value of κ ≈ 2 × 10−2. Therefore, the thermal contributions are diminished by about
four orders of magnitude and thus their assumption of decoupling between spin and charge
is justified.

In figure 9, we have plotted the evolution of the joint distribution functions for different
strengths of the coupling gmix at a relatively large initial temperature kBT = 0.4 × 2πcc↑/ξs,
where 2πcc↑/ξs is approximately the high-energy cutoff of the Tomonaga–Luttinger theory.
Here we took the system size L/ξs = 400, the Luttinger parameter Ks = 20 and the integration
length l = 20ξs. For figure 9(a), the ratio of interaction is taken to be gc : gs : gmix = 1 : 1 : 0.1,
and for figure 9(b), gc : gs : gmix = 1 : 1 : 0.3. One can see that with increasing strength of
mixing, the large initial temperature affects the spin dynamics at earlier time more strongly.
For comparison, also see figure 4.
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6. Interference of two 1D condensates

6.1. Dynamics of interference patterns

As we have described in section 2.2, the full distribution of interference patterns can be studied
in exactly the same way as we have studied the full distribution of spins in previous sections. In
the following, we more formally describe the dynamics of split condensates.

The low-energy effective Hamiltonian of two quasi-condensates after splitting is given by

H = HL + HR,

HL =

∫ L/2

−L/2
dr
[ ρL

2m
(∇φ̂L(r))

2 +
g

2
(n̂L(r))

2
]
, (42)

HR =

∫ L/2

−L/2
dr
[ ρR

2m
(∇φ̂R(r))

2 +
g

2
(n̂R(r))

2
]
,

where we have assumed weakly interacting bosons with a possible density difference
ρR − ρL 6= 0 between the two condensates. Here and in the following, we consider the rotating
frame and ignore the chemical potential difference g/2(ρ2

R − ρ2
L) between the left and right

condensates arising from interactions.
The interference pattern measures the phase difference φ̂L − φ̂R. We describe the system

in terms of the ‘spin’ variables that are the difference of left and right condensates and
‘charge’ variables that are the sum of the two. Using the variables φ̂s = φ̂R − φ̂L, φ̂c = φ̂R + φ̂L,
n̂s = (n̂R − n̂L)/2 and n̂c = (n̂R + n̂L)/2, we find the Hamiltonian of the system to be

H = Hs + Hc + Hint, (43)

Hs =

∫
dx
[ρR + ρL

8m
(∂x φ̂s)

2 + gn̂2
s

]
, (44)

Hc =

∫
dx
[ρR + ρL

8m
(∂x φ̂c)

2 + gn̂2
c

]
, (45)

Hint =

∫
dx

[
ρR − ρL

4m
∂x φ̂c∂x φ̂s

]
. (46)

Therefore, when the splitting makes two identical quasi-condensates with equal density, ‘spin’
and ‘charge’ degrees of freedom decouple and we can use a simpler theory derived in
section 4.2. On the other hand, when the splitting makes two condensates with unequal densities,
the more general theory of section 5 needs to be employed. In any case, the full time evolution
of the distributions of interference patterns can be obtained, which in principle can be compared
with experiments.

It is notable that the mixing of the ‘spin’ and ‘charge’ degrees of freedom for a small density
difference ρR − ρL is not ‘small’, in the sense that the mixing angle κ defined in section 5 takes
the maximum value π/4. The spin decoupling in the limit of ρR − ρL → 0 is recovered not by
taking κ → 0, but rather, by taking the time at which the effect of the coupling takes place
to infinity. This is most explicitly shown in equation (36) where the charge contributions of
fluctuations go to zero as c1 → c2, which is attained in the limit ρR − ρL = 0.
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6.2. Interference patterns in equilibrium

The techniques for calculating the full distribution functions presented in previous sections are
directly applicable also to obtaining a simple form of the full distribution functions of the
interference patterns between two independent, thermal quasi-condensates. This problem has
been previously analyzed in theory [68, 69] as well as in experiments [14, 21].

We consider the preparation of two independent 1D quasi-condensates. If they are prepared
by cooling two independent quasi-condensates, the temperature of the left quasi-condensate
TL and that of the right quasi-condensate TR are generically different. The density matrix of
the initial state is described by ρ̂0 = e−(βL HL+βR HR), where βa = 1/(kBTa) with a = L , R. It is
important to note that the constant shift of phase φa → φa + θac does not change the energy
of the system, so that for the average over thermal ensemble one has to integrate over θac.
Physically, this simply means that the phases of independent condensates are random. Then the
only interesting distribution here is the distribution of the interference contrast [14, 18, 26, 68]
given by

Ĉ2
=

∣∣∣∣∫ l/2

−l/2
e−iφ̂s(r)

∣∣∣∣2 dr, (47)

which corresponds to, in spin language, the squared transverse magnitude of the spin (Ŝ⊥

l )
2. The

analysis of the evaluation of distributions in the density matrix of the thermal equilibrium state
in section 5 can be directly extended to this case, and we obtain the distribution

P⊥

l (γ )=

∏
k

∫ π

−π

dλθsk

2π

∫
∞

0
λrsk e−λ2

rsk/2 dλrskδ

(
γ −

∣∣∣∣ρ ∫ l/2

−l/2
dr eiχ(r,{λ jsk})

∣∣∣∣2
)
, (48)

χ(r, {λ jsk}) =

∑
k

√
〈|φ̂s,k|

2〉

L
λrsk sin(kr + λθsk),

(49)

〈|φ̂s,k|
2
〉 =

1 + e−βL|k|cL

1 − e−βL|k|cL

π

2|k|KL
+

1 + e−βR|k|cR

1 − e−βR|k|cR

π

2|k|KR
,

where ca and Ka, a = L , R, are the sound velocity and Luttinger parameters of the left and right
quasi-condensates.

6.3. Prethermalization of interference patterns

In section 2.3, we gave a heuristic argument for prethermalization phenomena, where
the distributions of the interference contrast amplitudes of the two non-equilibrium quasi-
condensates are given by that of two equilibrium quasi-condensates at some effective
temperature Teff. We identified the effective temperature to be the energy stored in each
momentum mode. In section 4.2.5, we found this energy to be πcsρη

4Ks
; thus we conclude that

kBTeff =
πcsρη

4Ks
.

In the following, we formally derive the result above, using the expressions for
full distributions of interference patterns. The distribution of the interference contrast is
determined by 〈|φ̂s,k|

2
〉 given in equation (20). In the long time limit, we can take

sin2(cs|k|t)∼ cos2(cs|k|t)∼ 1/2. Moreover, since the interference contrast is most affected
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Figure 10. The distributions of interference contrast for steady states of split
quasi-condensates and two thermal quasi-condensates. Here the x-axis is scaled
such that the maximum value of interference contrast is 1. For the split
condensates, we plot the distribution at time t = 60ξs/cs for the Luttinger
parameter Ks = 20, system size L = 400ξs and two different integration lengths
l/ξs = 30 and 40. The thermal quasi-condensates are for temperature πcs

2ξs
for the

same integration length corresponding to the effective temperature obtained in
equation (52).

by the excitations with small wave vectors k with αk =
|k|Ks

πρη
< 1, we can approximate the

expression as

〈|φ̂s,k|
2
〉 ≈

π

2|k|Ks

πρη

2|k|Ks
. (50)

On the other hand, for two quasi-condensates in thermal equilibrium, the position of the
interference peaks is again random. The interference contrast is determined by 〈|φ̂s,k|

2
〉 given

in equation (49). Since the main contribution to the fluctuation comes from low momenta,
we approximate e−β|k|c

≈ 1 −β|k|c. It is easy to check that the sound velocity and Luttinger
parameters for each condensate are related to those of the difference mode (see equations
(44)–(46)) as cL = cR = cs and KL = K R = 2Ks. Thus, we obtain

〈|φ̂s,k|
2
〉 ≈

2

β|k|cs

π

2|k|Ks
. (51)

Now the crucial observation is that our closed form expressions for distributions of interference
contrasts of both split quasi-condensates and thermal quasi-condensates are determined solely
by 〈|φ̂s,k|

2
〉, and they take precisely the same form in terms of 〈|φ̂s,k|

2
〉. Moreover, the

expressions given by equations (50) and (51) have the same dependence on wave vectors
|k|. Therefore, the full distribution of interference contrast of split condensates becomes
indistinguishable from that of thermal condensates with temperature

kBTeff ≈
πcsρη

4Ks
=
µη

2
, (52)

where the second equality holds for weakly interacting bosons and the chemical potential of
one quasi-condesate is given by µ= gρ. Thus, split 1D quasi-condensates indeed display the
prethermalization phenomenon.

In figure 10, we plot the interference contrast P⊥

l (γ ) (see equation (25)) of split
condensates in a steady state at time t = 60ξs/cs for the Luttinger parameter Ks = 20, the
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Figure 11. The evolution of the interference contrast Ĉ2 for the system size
L = 500ξs, the integration length l = 40ξs and the effective spin Luttinger
parameter Ks = 20 with initial temperature corresponding to the chemical
potential µ. Time is measured in units of ξs/cs. Here we took the density ρR =

1.2ρ and ρL = 0.8ρ. The magnitude of Ĉ2 for two thermal quasi-condensates at
temperature kBT = µ is plotted as a red dotted line for comparison.

system size L = 400ξs and two different integration lengths l/ξs = 30 and 40. Also we plot
the interference contrast of the thermal quasi-condensates (see equation (48)) at temperature
πcs
2ξs

for the same integration length. This temperature corresponds to the effective temperature
obtained in equation (52). Indeed we see only a small difference between the distributions of
steady states and thermal states for both integration lengths. The small difference comes from
the approximations made in obtaining the expressions given by equations (50) and (51).

In previous paragraphs, we assumed that the splitting prepares quasi-condensates with
identical average densities. Here, we briefly consider the case in which the splitting process
prepares two quasi-condensates with slightly different densities. In this case, the temperature
of the initial quasi-condensates affects the interference contrast around the time scale of

ξs

(cL−cR)π
≈

h̄
µ(

√
ρL−

√
ρR)

, whereas the prethermalized, long-time transient state is reached around
h̄
µ

l
ξs

, where l is the integration length.
These analytic arguments can be confirmed through numerical simulations. In figure 11,

we have plotted the evolution of the interference contrast Ĉ2 for the system size L = 500ξs,
the integration length l = 40ξs and the Luttinger parameter Ks = 20 with initial temperature
corresponding to the chemical potential µ. Here we consider a situation where the density of
the left quasi-condensate is different from that of the right quasi-condensate by 20% such that
ρR = 1.2ρ and ρL = 0.8ρ, where ρR(L) is the average density of the right (left) condensate and
2ρ is the average density of the initial condensate before splitting. Also for comparison we
have plotted the magnitude of interference contrast of two quasi-condensates in thermal states
at a temperature given by µ. From the plot, one can observe the existence of quasi-steady state
plateau after a short time. Note that the magnitude of Ĉ2 in the steady state is larger than the
value expected from thermalized states at the initial temperature. The subsequent slow decrease
of the interference contrast is due to the effect of temperature on the initial state coming from the
small difference of the two quasi-condensates. Such a development of the plateaus at a larger
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value of the interference contrast than that for the equilibrium state of the initial temperature
indicates the phenomenon of prethermalization.

7. Conclusion

In this work, we have shown how the noise captured by full distribution functions can be used
to study the dynamics of a many-body system in 1D. The analytical results for joint distribution
functions obtained in section 4.2 allow not only the simple understanding of distribution
functions from the spin-wave picture, but also an intuitive visualization of the correlation in
a 1D system. Using this picture, we have also shown that the phenomenon of prethermalization
occurs in 1D dynamics. The thermal-like behavior of the prethermalized state is revealed by
using the full distribution functions that contain information about the correlation functions of
arbitrary order. For an experimental demonstration of such prethermalizations, see [24].

The approach developed in this paper can be extended to other types of dynamics. While
we focused on the Ramsey-type dynamics or dynamics of interference patterns for a split quasi-
condensate, we can also change different physical parameters to induce the dynamics. For
example, it is straightforward to apply our study to the sudden change (quench) of interaction
strength [40, 70].

In this paper, we focused on distribution functions obtained from the Tomonaga–Luttinger
Hamiltonian (4). It is of interest to extend our analysis to higher spins [71], and analyze them,
for example, in the presence of a magnetic field [72]. Since there are more degrees of freedom
in these systems, distributions might capture the tendency towards various phases such as
ferromagnetic ordering. These questions will be analyzed in future work.
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Appendix A. Distribution function of the z component of spin

In this appendix, we calculate the distribution function of Ŝz
l in the absence of coupling between

charge and spin. Extension to the case in which the charge and spin degrees of freedom mix is
straightforward.

It is convenient to evaluate the generating function 〈eλŜz
l 〉, instead of distribution function

P z
l (α). They are related by

〈eλŜz
l 〉 =

∫
∞

−∞

eλαP z
l (α) dα. (A.1)

This equality can be checked by differentiating both sides by λ and evaluating them at λ= 0.
This reproduces the implicit definition of P z

l in equation (2).
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Analogous to the calculation of the mth moment of Ŝθl , we first express Ŝz
l in terms of γs,k

operators defined in equation (15)

Ŝz
l (r)=

∫ l/2

−l/2
dr

∑
k 6=0

(ds,kγ
†
s,k + d∗

s,kγs,−k)e
ikr +

ns,0
√

L

,
ds,k =

√
|k|Ks

2πL

eics|k|t + 2Wke−ics|k|t√
1 − 4|Wk|

2
.

Then, we can apply the trick introduced in section 4.2 to obtain

〈eλŜz
l 〉 = eλ

2
∫ l/2
−l/2 dr1dr2(

∑
k 6=0 |ds,k |

2 eik(r1−r2)+
〈n2

s,0〉
√

L
)
.

= exp

λ2

ρηl2

4L
+
∑
k 6=0

4|ds,k|
2

k2
sin2(lk/2)

 .
Then the following expression gives the distribution of Ŝz

l :

P z
l (α)=

1

2
√
π〈(Ŝz

l )
2〉

exp

(
−

α2

4〈(Ŝz
l )

2〉

)
, (A.2)

where

〈(Ŝz
l )

2
〉 =

ρηl2

4L
+
∑
k 6=0

4|ds,k|
2

k2
sin2(lk/2).

Appendix B. Expression for Ca,k in the presence of mixing between charge and spin

In this section, we derive the expression for Ca,k , a = s, c in equation (36). We first find
the transformation from bs,k ,bc↑,k to b1,k, b2,k . Then we relate b1,k, b2,k and γs,k(t), γc,k(t).
Combining these two transformations, we obtain bs,k in terms of γs,k(t), γc,k(t), leading to the
expression for φ̂s,k in terms of γs,k(t), γc,k(t).

From the relations

φi,k = − i
√

π

2|k|Ki
(b†

i,k − bi,−k),

ni,k =

√
|k|Ki

2π
(b†

i,k + bi,−k),

b†
i,k = iφi,k

√
|k|Ki

2π
+ ni,k

√
π

2|k|Ki
,
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along with equation (29), it is straightforward to obtain
b†

c↑,−k

bc↑,k

b†
s,−k

bs,k

= D


b†

1,−k

b1,k

b†
2,−k

b2,k

 ,
where

D =
1

2

cos κ

(√
K̃ c↑

K1
+
√

K1

K̃ c↑

)
cos κ

(
−

√
K̃ c↑

K1
+
√

K1

K̃ c↑

)
−sin κ

(√
K̃ c↑

K2
+
√

K2

K̃ c↑

)
−sin κ

(
−

√
K̃ c↑

K2
+
√

K2

K̃ c↑

)
cos κ

(
−

√
K̃ c↑

K1
+
√

K1

K̃ c↑

)
cos κ

(√
K̃ c↑

K1
+
√

K1

K̃ c↑

)
−sin κ

(
−

√
K̃ c↑

K2
+
√

K2

K̃ c↑

)
−sin κ

(√
K̃ c↑

K2
+
√

K2

K̃ c↑

)
sin κ

(√
Ks
K1

+
√

K1
Ks

)
sin κ

(
−

√
Ks
K1

+
√

K1
Ks

)
cos κ

(√
Ks
K2

+
√

K2
Ks

)
cos κ

(
−

√
Ks
K2

+
√

K2
Ks

)
sin κ

(
−

√
Ks
K1

+
√

K1
Ks

)
sin κ

(√
Ks
K1

+
√

K1
Ks

)
cos κ

(
−

√
Ks
K2

+
√

K2
Ks

)
cos κ

(√
Ks
K2

+
√

K2
Ks

)


,

(B.1)

where K̃ c↑ = Kc↑/
√

sc.
Next, we relate γa,k(t), a = c, s operators to b1, b2. At t = 0, we have the relation between

γa,k(0), a = c, s and bc↑,k and bs,k as described in section 5. Since operators bc↑,k and bs,k are
related to b1,k and b2,k through the matrix D in equation (B.1), we can express γa,k(0) as a
linear combination of b1,k and b2,k . The time evolution of γa,k(0) is quite simple now, because
Hamiltonians are diagonal in the bases b1,k and b2,k . These considerations lead to the relations


γ

†
c,−k(t)

γc,k(t)

γ
†
s,−k(t)

γs,k(t)

= Ek


e−ic1|k|tb†

1,−k

eic1|k|tb1,k

e−ic2|k|tb†
2,−k

eic2|k|tb2,k

,

Ek = Fk D,

Fk =



1 0 0 0

0 1 0 0

0 0
1√

1 − 4|Wk|
2

−2Wk√
1 − 4|Wk|

2

0 0
−2Wk√

1 − 4|Wk|
2

1√
1 − 4|Wk|

2


.
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Now define a matrix G(k)= DE−1
k so that


b†

c,−k

bc,k

b†
s,−k

bs,k

= G(k)


γ

†
c,−k

γc,k

γ
†
s,−k

γs,k

 .

Then, finally, Ci,k are given by

Cs,k = −i
√

π

2L|k|Ks
(G34(k)− G44(k)),

Cc,k = −i
√

π

2L|k|Ks
(G32(k)− G42(k)),

(B.2)

where G i j(k) are the matrix elements of G(k).

Appendix C. The k = 0 contribution in the presence of mixing between charge and spin

In this appendix, we evaluate Tr{ei(
∑

i si )φs,0/
√

Lρ(t)}.
We first obtain the operator ei(

∑
i si )φs,0 after time evolution as

eiHtei(
∑

i si)φs,0 e−iHt
= exp

(
i

∑
i si

√
L
(Aφs,0 + A′ns,0 +

B
√

sc
φc,0 +

B ′

√
sc

nc,0)

)
. (C.1)

The coefficients A, A′, B and B ′ can be found as follows. The k = 0 part of the Hamiltonian
is given by H0 =

πc1
2K1

n2
1,0 + πc2

2K2
n2

2,0 (see equation (11)). Using the commutation relation
[ni,0, φi,0] = −i, we have eiHtφi,0 e−iHt

= φi,0 + πci
Ki

ni,0t . With the relation φs,0 = sin κφ1,0 +
cos κφ2,0, we obtain

eiHt e(
∑

i si)φs,0 e−iHt
= ei

∑
i si√
L

{
sin κ(φ1,0+ πc1

K1
n1,0t)+cos κ(φ2,0+ πc2

K2
n2,0t)

}
.

Now by transforming back to c, s bases through equation (29), we find

A = 1,

A′
= sin2 κ

πc1

K1
t + cos2 κ

πc2

K2
t,

B = 0,

B ′
= sin κ cos κ

(
πc1

K1
−
πc2

K2

)
t.

Now that we know the operator after time evolution equation (C.1), we evaluate it in the initial
state.
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The initial state of the spin sector is |ψs,k=0〉 in equation (12). Since this state is Gaussian,
we have the simple result given below:

〈
ψs,k=0| exp

((∑
i

si

)
(Aφs,0 + A′ns,0)/

√
L

)
|ψs,k=0

〉
,

= exp

−

(∑
i

si

)2 (
1

4ρηL
+ (A′)2

ρη

4L

) .
For the charge sector, the k = 0 part of the initial density matrix is 1

Nc0
exp(−β πcc↑

2Kc↑
n2

c,0), where

Nc0 is the normalization Nc0 = Tr(exp(−β πcc↑

2Kc↑
n2

c,0)). The evaluation of the charge sector yields

1

Nc0
Tr

{
exp

(
i

(∑
i

si

)
B ′

nc,0
√

scL

)
exp

(
−β

πcc↑

2Kc↑
n2

c,0

)}
= exp

−

(∑
i

si

)2

(B ′)2
K̃c↑

2πcc↑βL

 .
Collecting the results above, we conclude that

〈ei(
∑

i si )φs,0/
√

L
〉 = exp

(
−

(∑
i si

)2

4L

{
1

ρη
+ ρη(A′)2 + (B ′)2

2K̃c↑

πcc↑β

})
.
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