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Abstract. It was recently shown that, for solving NP-complete problems,
adiabatic paths always exist without finite-order perturbative crossings between
local and global minima, which could lead to anticrossings with exponentially
small energy gaps if present. However, it was not shown whether such a path
could be found easily. Here, we give a simple construction that deterministically
eliminates all such anticrossings in polynomial time, space and energy, for any
Ising models with polynomial final gap. Thus, in order for adiabatic quantum
optimization to require exponential time to solve any NP-complete problem,
some quality other than this type of anticrossing must be unavoidable and
necessitate exponentially long runtimes.
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1. Introduction

The usefulness of adiabatic quantum optimization (AQO) for solving NP-complete problems,
as originally proposed in [1], has been the subject of much debate in recent years. In AQO, the
Hamiltonian of the quantum system begins as Hg, whose ground (eigen)state is easy to prepare
as the initial state of the system, and is evolved to a final Hamiltonian Hp, whose ground state
is the optimal solution to an optimization problem. The running time, 7, required to obtain a
large amplitude of the ground state at the end of the evolution is proportional to gr;izn, where
gmin 1S the minimum energy gap between the ground and first excited states, excluding excited
states simply heading toward final degeneracy with the ground state, during the evolution. The
complexity of AQO is therefore determined by the scaling of g, with the problem size.

An example of an NP-hard! optimization problem well suited to being represented by Hp
is that of finding the ground state of an Ising model with arbitrary couplings, J;;, and arbitrary
local fields, A;:

ijs

Zh a(’)+ZJ 0(’)0(” (D

i<j

where i and j are qubit indices, and 6" and /) are the corresponding Pauli matrices that assign
energy values to the computation (Z) ba51s states It is easily seen that this Hp is identical to the
classical Ising model Hamiltonian, so its ground state is naturally identical to the ground state
being sought (referred to here as the ‘global minimum’ to avoid confusion where applicable). Of
course, determining such a ground state is not to be confused with bringing an actual classical
Ising system, such as a bulk solid state system, to its ground state, which is not discussed here.
Hjp is often chosen to be of the form

ZA o™ A >0, 2)

whose ground state is the uniform superposition (i.e. equal amplitudes in phase and magnitude)
of all Z-basis states. If representations of Hp and Hp can be found for a problem such that
gmin decreases only polynomially with the number of qubits, n, that problem can be solved
in polynomial time using AQO. This, of course, assumes that the quantum system used to
implement AQO is sufficiently isolated from a thermal environment, but effects of such an
environment are not examined here.

The complexity of AQO for solving NP-complete problems is a contentious issue, and
has recently sparked intense debate. It was originally conjectured that the gap size may scale
polynomially with problem size [1], but counterexamples were found [2, 3], which were
subsequently defeated by modifying the Hamiltonian [4, 5]. Using perturbation expansion,
Amin and Choi [6] showed that an eigenstate corresponding with a local minimum of Hp
(anti)crossing with that of the global minimum near the end of the evolution, sometimes called
a first-order quantum phase transition, can result in an exponentially small gy;,. In particular,
when a local minimum has more low-energy states, possibly degenerate with it, in its vicinity
than the global minimum, the eigenstate corresponding to the local minimum may cross that
of the global minimum. Using the same perturbation argument, Altshuler ez al [7] showed that
for one representation of random exact cover instances, the probability of having problematic

' A problem is NP-hard if solving it in polynomial time allows all NP-complete problems to be solved in
polynomial time.
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Figure 1. (a) The two lowest energy eigenstates in an AQO spectrum, which to
low-order perturbation appear to cross, but actually anticross, causing a small
gmin, and (b) three lowest eigenstates after changing the final ground state to
be twofold degenerate. If the final ground state is degenerate, the corresponding
eigenstates (solid and dotted blue) will repel each other away from the end. If this
degeneracy can be introduced without significantly affecting the excited state, the
ground state energy (solid blue) will consequently be pushed away from that of
the excited state (solid red).

crossings increases with the system size, and claimed that these crossings are unavoidable.
Others made similar observations using different techniques [8, 9].

Others argued that the analysis in [7] had not rigorously proven that the crossings are
unavoidable, since problem structure that can impact the presence of such crossings was
neglected [10-13]. Dickson and Amin [13] showed that there is always some selection of Hp
and Hp that guarantees no crossings of local and global minima, but it was left open whether or
not an efficient method of selecting the Hamiltonian exists.

For ease of description below, an eigenstate is referred to as degenerate when there exist
other eigenstates of the same energy, i.e. when there exists a degenerate manifold including that
state. The degeneracy of an eigenstate refers to the total number of eigenstates at that energy.
Only degeneracy in Hp is discussed here.

Here, we present the first general method for eliminating perturbative crossings, based on
the effects of degeneracy of the eigenstates of Hp, illustrated in figure 1.

2. The concept

The main concept of the construction we present here is to force the ground state to diverge from
all other states away from the end of the evolution by strategically introducing degeneracy, as
depicted in figures 1 and 2, eliminating any crossings that may have existed before applying
the construction. This can be done by adding extra qubits in such a way that the ground
state becomes the most degenerate, the first excited state less degenerate, continuing this up
to the highest excited state, which will be the least degenerate (possibly nondegenerate). This
degeneracy makes the eigenstates corresponding with the global minimum repel each other from
the end more than all other eigenstates, so the ground state diverges from all other eigenstates
as desired. This must be done without any knowledge of the global minimum, apart from that it
is the lowest energy state of Hp.

New Journal of Physics 13 (2011) 073011 (http://www.njp.org/)
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Visualization Hp and its cost function Energy Spectrum (b = 2)
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Figure 2. Adding extra qubits in such a way that the ground state becomes
degenerate, but the excited state remains nondegenerate, causes the final ground
states to repel each other. The ground state energy (solid blue) then diverges from
the excited state energy (solid red). Here, this is depicted for one original qubit
(blue), and (a) zero, (b) one and (c) two extra qubits (green). A is the perturbation
parameter used in the analysis below. For brevity, [1) ® (|1) +[{))/ /2 is written
as |[1¢), and similar for |[1$¢). Note that the same method can be applied to
a term +0.” instead of —o”’ simply by substituting one for the other in Hp.
Likewise, the same method can be applied to a pair of original qubits coupled
with a J term —o PV or + o6V, again by substituting over —o .

For simplicity, we will begin with the case of minimizing arbitrarily-connected Ising
models where all i, J € {—1, 0, +1}, which is still NP-hard. This can be easily generalized
to arbitrary A& or J values (of polynomial precision) without resorting to expensive reduction
mappings onto {—1, 0, +1}, as described later. Even though the only structure in a general,
dense Ising model is that at most 2 spins participate in each term of its Hamiltonian, this small
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amount of structure is enough to perform the required transformation. This does not apply to
random energy models, studied in [14, 15], since they have no applicable structure.

The construction introduces extra qubits for each nonzero 4 or J term of Hp such that when
the 4 or J term is satisfied (i.e. at its negative value), the extra qubits corresponding to that term
are at degeneracy (i.e. flipping them does not change the energy of the system), and when the
term is unsatisfied, the extra qubits are not at degeneracy. This is shown for an 4 term in figure 2,
and can be applied equivalently to a J term. Naturally, states with more terms satisfied will then
be more degenerate than states with fewer terms satisfied, since states with more satisfied terms
have more qubits at degeneracy. In the case where i, J € {—1, 0, +1}, the global minimum has
the most terms satisfied, and will thus have the most qubits at degeneracy. As we will see, the
slope (first-order perturbation energy correction) of a state will be proportional to the number
of qubits at degeneracy in that state, and so the ground state will have the largest negative slope,
diverging from all other states.

To find the ground state of an Ising model, M, given h and J as input, construct Hp as
described in the following section, using n qubits that directly correspond with the spins of M
and a polynomial number of extra qubits. Initialize the system in the ground state of the initial
Hamiltonian, Hp, evolve the Hamiltonian into Hp, then measure (in the Z basis) the state of the
n qubits corresponding with M. If the evolution was adiabatic, the measured state will be the
ground state of M, because by design, those qubits represent the ground state of M in all ground
states of Hp.

3. The construction

As mentioned above, we will begin by examining the case of Ising models with A, J €
{—1, 0, +1}. The Hamiltonian of the original Ising model, M, is given as

Hy = Zhiaz(i) + Z J,‘jO’Z(i)O'Z(j). (3)
ieM {i,jleM
To introduce and amplify degeneracy of the ground state as desired, for each of the m nonzero
terms in M, we need to be able to add an extra qubit such that when the term is satisfied, the
energy is unchanged regardless of whether the extra qubit is —1 or +1. However, when the term
is unsatisfied, the energy must be unchanged when the extra qubit is —1, but higher by energy
2b > 0 when the extra qubit is +1. This can be summarized as

Added energy cost
Term extra—=—1 extra=+1
Satisfied 0 0
Unsatisfied 0 2b

Note that if the energy didn’t remain unchanged for some value of the extra qubit for both
the satisfied and unsatisfied case, we would effectively be changing the energy of the original
states, which is not what we intend, so all three zeros are important. The added cost 2b serves
only to break the degeneracy when the corresponding term is unsatisfied.

To construct the new terms to appear in Hp, one may first observe that the above table
is simply a multiple of the truth table for a Boolean AND operator, which is equivalent to
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binary variable multiplication, so we need only to convert our two conditions (‘unsatisfied’ and
‘extra = +17) to binary variables and multiply by 2b. Since nonzero & and J are limited to +£1,
this gives us (term + 1)/2 and (extra+ 1) /2, so the term added to the Hamiltonian for the extra
qubit should be

b(term+ 1)(extra+1)/2. @
This is illustrated in figure 2. Now that we have a mechanism for adding these extra qubits,
for each h; #0, add a > 1 extra qubits {iy,...,i,} € M, with the following terms to the
Hamiltonian. These are in exactly the same form as (4)

> blhio + 1) (0 +1)/2. (5)

k=1
Similarly, for each J;; # 0, add a extra qubits {ij,,...,ij,} € M; with the following terms to
the Hamiltonian

Y b(Jo e +1) (0 0+1) /2, (6)

k=1

It is important to note that while this introduces 3-local (ZZZ) terms, equivalent, albeit much
less intuitive, 2-local terms with the same property can be introduced by adding another extra
qubit for each term. This is described in the appendix below.

Since there are m nonzero terms in the original Ising model, M, we have added a total of
am extra qubits, each with an associated term coupling it to M. This gives us

Hp=Y" (hl-az(i) +Y b(hio + 1) (e +1) /2)

ieM k=1

+ Y <Jijaz(i)az(j)+Zb(Jion(i)aZ(j)+l)(az(ij")+1)/2> : (7)

{i.jleM k=1

Special consideration must be made when M may already have single bit flip degeneracies. The
above construction still works for sufficiently (polynomially) large a and b, but the analysis is
made more complicated, so for simplicity of analysis in these cases, all qubits that may have a
1 bit flip degeneracy can be replaced by a strongly ferromagnetically coupled pair of qubits.
Since the pair is strongly coupled to align with each other, they will act logically as the original
single qubit, replacing any 1 bit flip degeneracy with a 2 bit flip degeneracy (i.e. both qubits in
the pair must flip to remain at the same energy). We are currently limiting the focus to J values
of £1, but this strong ferromagnetism can be expressed with multiple (identical) J = —1 terms
between the two qubits in the pair. Thus, the analysis below safely assumes that there are no 1
bit flip degeneracies in the original Ising model.

Unfortunately, performing a full numerical simulation of this construction for relevant
cases is infeasible, primarily due to the large number of added qubits necessary to apply
it to Ising models sufficiently complex to have perturbative crossings. Thus, it is examined
only analytically below. However, it is numerically feasible to demonstrate that changing the
degeneracy, by adding extra qubits in a similar manner, can be used to create and then eliminate
these crossings. An example is illustrated in figure 3.
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Figure 3. (a) Starting from a simple 3-qubit Ising model without a perturbative
(anti)crossing, (b) the known local minimum, ||||), can be made more
degenerate (8-fold in this case) until a harsh crossing is created between the
eigenstates corresponding with it and the global minimum, |111). (c) Now that
there is a crossing, it can be eliminated again by increasing the degeneracy of the
known global minimum to match or preferably exceed that of the local minimum.
Although this does not apply the full construction (exact diagonalization is
infeasible for the 42 qubits needed to eliminate the crossing), which does not
require knowledge of the local or global minima, this example demonstrates the
principle upon which the construction is based. (Note: For easier viewing, biases
that exactly cancel are not depicted in the visualization.)

4. Analysis

We will be performing a perturbation analysis on the above construction by expressing the
time-dependent Hamiltonian, H, as

H=Hp+ ) Hjp,
; )
HB = — Z AiO'x(l),
ieMUMUM

New Journal of Physics 13 (2011) 073011 (http://www.njp.org/)
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where A is initially oo (though proportional to abm suffices), and is monotonically decreased
toward zero over time. For now, we select all A; = 1.

This analysis focuses on the end of the evolution, where A is small enough that the
perturbation expansion, in A, of the energy of an eigenstate of H holds. At infinite-order
perturbation, the true radius of convergence for any eigenstate falls at the anticrossing it
encounters having the smallest A. However, up to orders of perturbation less than the number
of bit flips (Hamming distance) between two anticrossing eigenstates, the associated asymptotic
expansion may have a larger radius of convergence. Anticrossings within this radius are referred
to here as perturbative crossings, since the perturbed states cross in energy near where the exact
eigenstates anticross [6]. This type of crossing guarantees a g.,;, that is exponentially small in
the Hamming distance of the crossing states [6], which for many cases is naturally ®(n) [7],
hence the focus on this case.

It must be emphasized that this analysis does not apply to nonperturbative anticrossings,
occurring at or beyond the radius of convergence, such as those examined in [9]. These may
remain after elimination of perturbative crossings, and it is unclear how the construction
presented here affects them. As explained in [7], extending the radius of convergence by simple
means only shifts the locations of anticrossings, not eliminating them or significantly changing
their properties. Having a radius of convergence diverge with n may in effect hide relevant
anticrossings from the analysis, so below, we ensure that this does not occur.

As mentioned above, the energies of the original states of M (with the additional qubits
in their —1 states) are unchanged by the addition of the new qubits, and all added states with
higher energy are 1 bit flip away from states with lower energy, and thus are not local minima.

Supposing first that M has a nondegenerate state o, after applying the construction, o
is now degenerate (unless of course all terms were unsatisfied, which means that « is the
highest energy state). In particular, upon introducing small A > 0, the lowest eigenstate of
the degeneracy, |«), is always a uniform superposition of «, since this uniquely minimizes
(a|Hp|a), the coefficient of the first-order term below. We wish to examine the perturbation
expansion of this eigenstate |«),

Eo() =Eg+EQA+EGN +- - )
Because nonzero £, J are limited to &1, we have that
E‘(S; = — (# of terms satisfied in «) + (# unsat. in «)
= — 2(# of terms satisfied in «) +m. (10)

Then, because |«) is a uniform superposition over the states corresponding with «, the first-order
perturbative energy correction of |«) is

E\,) = (o| Hg |o)

:_ZA"

i degen. ino

= —a(# of terms satisfied in «)

a
=S (Ejg —m)

4 -0
= EE“") — constant. (11)
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This means that a final state « of lower energy than a final state 8, will have a lowest eigenstate
|a) with larger negative slope than |8). Thus, first-order perturbation predicts that |«) and |8)
will diverge and not cross.

In the case where o is degenerate in the original Ising model (but with no 1 bit flip
degeneracy), it can be seen that |«) is a combination of uniform superpositions over each
state’s new degeneracy. For example, if « originally contained states k and /, |o) contains some
combination of a uniform superposition over the states corresponding with k£ and a uniform
superposition over the states corresponding with /. Since there are assumed to be no first-order
degeneracies in the original «, this means that £ f;; is the same as in the nondegenerate case.

However, in order to prove that this can eliminate perturbative crossings, one must examine
the impact of this construction on higher orders of perturbation. Consider a single state o, in
the eigenstate |«). If a, 1s a local minimum (a state with which a crossing could occur with the
global minimum), all states 1 bit flip from o, have higher energy, and therefore have at least
one h or J unsatisfied that is satisfied in «,. As described above, for any 4 or J satisfied in «,,
each of the corresponding a added qubits contributes half of the states in the new superposition
|a,.). This means that flipping any 1 bit, 7, from «,, which had incurred energy cost B,, ;, now
incurs at least cost (1+2kb)B,, ; for the portion of |«,) that has k added qubits in their +1
states. Since the choice of «, was arbitrary, this applies to all of |«). For simplicity of analysis,
we choose a = b = n* — oo, though this is extremely excessive in practice. We then find that
the second-order energy correction is bounded by

<‘E(2) ( ! Xa:(a>(1+2kb)“+ 3 A
= aorig. 2(1 —~ k 2b

added i
nondegen. in «

‘ E®

lor)

1 a
— ‘E ézlri — + —(# of terms unsatisfied in «)
lab 2b
1 1
2 (0)
= ‘Ea orig. ﬁ + Z (Elol) +m>

1
=0+ (Elﬂ‘j§ +m)

o)
—>ZE + constant. (12)

Jer)

One may wonder why a = b was chosen instead of b > a, since the latter would make the
second-order term approach zero, instead of favouring higher-energy final states as it currently
does. That, however, could also make higher-order terms approach zero in a similar manner,
dramatically increasing the radius of convergence of the series. By setting a = b and expanding
a component of the perturbation, one finds that for g > 2, the gth-order term will have a
component of magnitude (£ fg; /4)7~! (of alternating sign) and no components proportional to a.

For example, it is easily checked that the third-order term is dominated by (1/16)(E fg; )2. This

means that the radius of convergence scales proportional to 1/ El(‘g; , getting smaller as the

problem size increases. Since the magnitude of the first-order term is proportional to a, and
the value of a was chosen to be ©(n?), within the radius of convergence, first-order should
dominate Q (n’E fg;) orders of perturbation.

Choosing such a large a also guarantees elimination of crossings if M had first-order
degeneracy of its local minima, since for any M with at least one nonzero term, E ;lgrig. > —n.

New Journal of Physics 13 (2011) 073011 (http://www.njp.org/)
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After adding the extra qubits, the difference between the first-order terms will still be Q (n?),
in favour of the global minimum. As n increases, global minima will become an increasing
portion of the states within energy » of the minimum. Thus, for sufficiently large a and b, the
actual sizes of the degenerate manifolds do not need to be known.

One may argue that adding qubits with such a large factor b could simply add a new
crossing at a point where A ~ b and the original diagonal part of the Hamiltonian can be
neglected, effectively giving a diagonal part of just

a a
D> bhicP + D@ +1)/2+ Y D b(Jo o+ (0P +1) /2. (13)
ieM k=1 li,j}eM k=1
However, the ground state of this Hamiltonian is exponentially degenerate and one of these
states is always trivially found. This is because there are no local minima: any nonzero term can
be made zero by flipping the corresponding added qubit (i; or ij,) from +1 to —1. Nonetheless,
the effect of the exponentially many excited states of this Hamiltonian on nonperturbative
anticrossings is unclear, as the states play a significant role only at or beyond the radius of
convergence.

It is important to emphasize that all of the energy scales introduced are polynomial in n,
and the number of added qubits is also polynomial in n, since without these constraints, gm,
could be trivially made constant.

Given such a dramatic change in degeneracy, it is clear that the construction presented
here would also have some type of effect on a classical annealing system. For example, global
minima can be made to have an arbitrarily high total probability in the Boltzmann distribution.
However, it is not clear whether this is associated with finding these global minima faster, since
it is associated with, once a global minimum has been reached, being effectively trapped in the
global minima for an exponentially long time. This is because at all but one of the exponentially
many global minima, a polynomially high barrier in energy must be surpassed to escape. The
same is true of low local minima, meaning that if such a construction were to have any benefit
classically, it would have to direct the system away from low local minima. For AQO, the
construction does exactly that, causing the ground state, within the radius of convergence, to
avoid local minima of Hp.

5. Extending to arbitrary coefficients

The above construction for Ising model terms with coefficients in {—1, 0, +1} is most easily
extended to integer coefficients. For a term with integer coefficient +k, simply rewrite it as k
identical terms with coefficient +1 and apply the construction as before on all k terms. The
same splitting works with coefficients of —k becoming k terms with coefficient —1.

To extend this beyond integers to polynomial precision real numbers, one could simply
rescale M to be polynomially approximated by integers, but a more reasonable construction is
available from that

EV=— Y A (14)
i degen. in o

One can simply round a coefficient down to the nearest integer below, apply the construction as
before, then add a extra qubits as above whose A; values are selected to be the remainder that
was rounded off, instead of 1. This has negligible impact on higher order terms in that the radius
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of convergence is still proportional to 1/E ﬁ?; (unless the coefficients were chosen to be scaled

such that the bulk of weight lies in the rounded off components, which is easily fixed by scaling
up the coefficients into a more reasonable range).

6. Conclusion

Above, we have presented a simple method of posing the NP-hard problem of finding the ground
state of an arbitrarily-connected Ising model with local fields as an AQO with no perturbative
crossings between local and global minima. Thus, all NP-complete problems can be solved
using AQO without encountering these crossings.

It is critical to note that this does not prove that AQO can solve NP-complete problems
in polynomial time. However, it does mean that proving otherwise requires identifying some
effect other than perturbative crossings that unavoidably results in exponentially long adiabatic
runtimes.
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Appendix. Reduction to 2-local

As mentioned above, the prescription above introduces a 3-local term when adding an extra
qubit corresponding with a J term in the original Ising model. However, a 2-local function with
the necessary properties can be constructed by adding another extra qubit. The properties to
maintain are:

1. All values of the function are > 0.

2. All configurations of qubits i and j that satisfy the associated J;; # 0 term must have 2
configurations of the additional qubits, 1 bit flip apart, where the function is 0.

3. All configurations of qubits i and j that do not satisfy the associated J;; # 0 term must
have 1 configuration of the additional qubits where the function is 0.

4. All other configurations must give values > 2b.

The following 4-qubit, 2-local function satisfies these properties for a positive J. (az<i) +1)/21s
abbreviated as x;, etc

Do i g b
fin(0, 0, o0, o) = 5(4 (iox + 3, + xi,x;)
+6 (x;+.2;+.213) (1 = 243500) + 8531, — 14070 40 4 1), (A1)

The terms inside the outer parentheses up to and including the —1 encode a +0 Vo /)0 ¥ term.
Note that alternate encodings of this 3-local term where exactly 2 of x;, x;, and x;;, are flipped
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(e.g. replaced with 1 — x;, etc) do not maintain the needed properties of the overall function.
The cost table of f,) is as follows:

J/2b
Uz(i) Gz(j) O_Z(ijk) CTz(ijwk) -1 U;ijk*) S
—1 —1 —1 0 2
—1 -1 +1 2 1
—1 +1 —1 1 0
—1 +1 +1 4 0
+1 -1 -1 1 0
+1 —1 +1 4 0
+1 +1 -1 4 0
+1 +1 +1 8 1

It’s clearly visible that for some value of new qubit ij,*, qubit ij, is at degeneracy when
the original J term is satisfied, but when the J term is unsatisfied, neither qubit is at degeneracy.
The following 4-qubit, 2-local function satisfies these properties for a negative J:

f(_)(UZ(l), Uz(j), U(l]k), O'Z(Uk*)) = 5(4 ((1 —)C,').Xj + XX, +xij1<(1 —X,'))

Z
+6 (1 —x;) +x;+x;5) (1 = 2x;5.) +8x;5 — 1 —0 VoV + /W + 1). (A.2)

The terms inside the outer parentheses up to and including the —1 encode a —o Vo /)0 /¥ term.
Instead of flipping x; (i.e. replacing with 1 — x;), it also works to instead flip either x; or x;;,, so
long as it is only 1 of the 3. Note that an alternate encoding of this 3-local term where all 3 are
flipped does not maintain the needed properties of the overall function. The cost table of f_) as
defined above is as follows:

fi-)/2b
Gz,(i) Uz(j) O,z(ijk) O_Z(ijk*) 1 O_Z(ijk*) —+1
—1 —1 —1 1 0
—1 —1 +1 4 0
—1 +1 -1 4 0
-1 +1 +1 8 1
+1 —1 —1 0 2
+1 -1 +1 2 1
+1 +1 —1 1 0
+1 +1 +1 4 0

It’s again visible that qubit ij, is at degeneracy when and only when the original J term is
satisfied.
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