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Abstract. We study the measurement of the positions of atoms as a means
of estimating the relative phase between two Bose–Einstein condensates. We
consider N bosonic atoms released from a double-well trap, which form an
interference pattern; we show that the measurement of the position of N atoms
has a sensitivity that saturates the bound set by the quantum Fisher information,
and allows for estimation at the Heisenberg limit of precision. Phase estimation
through the measurement of the center of mass of the interference pattern
can also provide sub-shot-noise sensitivity. Finally, we study the effect of an
overlap of the two clouds on the estimation precision when Mach–Zehnder
interferometry is performed in a double well. We find that a nonzero overlap
of the clouds strongly reduces the phase sensitivity.
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1. Introduction

Interferometry aims to estimate the relative phase between two wave packets. In the standard
optical interferometer, such as the well-known Mach–Zehnder setup [1], the two wave packets
correspond to the light traveling inside the two arms of the device, and the relative phase
θ is acquired, for instance, as a result of different optical path lengths. After the phase is
accumulated, the two wave packets are recombined through a beam splitter, and the signal at
the two output ports depends on θ . The phase can be estimated by measuring the difference
in intensity between these ports. Apart from photons, atoms can also be employed for
interferometric purposes [2]. Atoms have some interesting advantages over light, especially due
to the nonzero mass. In particular, the creation of atomic Bose–Einstein condensates (BECs)
opened a new chapter in the field of interferometry. The BEC, which behaves like a macroscopic
matter-wave, constitutes a coherent and controllable source of particles. This makes the BEC a
promising system to measure electromagnetic [3–5] or gravitational [6–8] forces. Moreover, the
inter-atomic interactions in the BEC are a source of nonlinearity, which can be used to create
nonclassical states [9–12] that are useful in overcoming the limit imposed by classical physics
on measurement precision [13, 14].

A BEC interferometer can be implemented using a double-well trap [15–24], where the
two wave packets are localized about the two minima of the external potential. In such a
configuration, a relative phase θ can be accumulated by letting the system evolve in time in
the presence of an energy difference between the two potential minima, and in the absence of
coupling between the two wells. After this stage, one can, for example, recombine the wave
packets by implementing a beam splitter (thereby realizing a Mach–Zehnder interferometer
(MZI)). This will imply a further dynamical evolution during which atoms oscillate between
the wells for a time that must be precisely under control, and over which interactions are
negligible.
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In this paper, we study the sensitivity and double-well implementation of a new
interferometer, simpler than the Mach–Zehnder, which consists of just a phase shifter performed
in-trap, followed by a free expansion of the atomic cloud. By releasing the atoms from the
double-well trap, the wave packets expand and overlap, thereby forming an interference pattern,
as shown in figure 1. We discuss how the information about the phase can be extracted from this
pattern and derive the sensitivity for different estimation strategies. Apart from the technological
relevance deriving from a simpler implementation, the interferometer studied here is also
conceptually interesting, since the interference pattern contains a great deal of fundamental
information about the nature of the quantum many-body state and has been widely studied
since the realization of atomic BECs.

The paper is organized as follows. In section 2, we formulate the problem and introduce the
formalism. In section 3, we show that when estimation is performed using the positions of all of
the atoms in the cloud, the sensitivity saturates the bound set by the quantum Fisher information
(QFI) [25] and can reach the Heisenberg limit. Then, in section 4, we analyze an estimation
scheme based on the detection of the position of the center of mass of the interference pattern,
which can still yield sub-shot-noise sensitivity. Finally, in section 5, we study the sensitivity of
the MZI, and we note that a nonzero overlap between the wave packets significantly reduces
the sensitivity. Details of the calculations are presented in the appendix. The present paper is an
extension of our previous work [26].

2. The model

In the following discussion of different estimation methods based on the measurement of the
positions of the atoms, we will employ the two-mode approximation for a bosonic gas in a
double-well potential, corresponding to the field operator

9̂(x, t)= ψa(x, t)â +ψb(x, t)b̂,

where â†/b̂† creates an atom in the left/right well.
In the interferometric sequence that we want to study, the first stage consists of a phase

shifter, taking place with the atoms still trapped in the double well, by which a relative phase θ
is imprinted between the modes. If the time scale is such that both the hopping between the wells
and the atom–atom interactions are negligible, this stage is simply represented by the unitary
evolution

Û (θ)= e−iθ Ĵ z (1)

of the initial state |ψin〉 of the double-well system. The three operators

Ĵ x ≡ (â†b̂ + b̂†â )/2, Ĵ y ≡ (â†b̂ − b̂†â )/2i and Ĵ z ≡ (â†â − b̂†b̂ )/2

form a closed algebra of angular momentum. In the next, and final, interferometric stage, the
double-well trap is switched off, and the two clouds described by the mode functions ψa/b(x, t)
freely expand.

The most general quantity, containing statistical information about the positions of the
particles forming the interference pattern [27–29], is the conditional probability of finding
N particles at positions ExN = (x1 · · · xN ). This can be expressed in terms of the N th-order
correlation function pN (ExN |θ)=

1
N ! G N (ExN , θ), where

G N (ExN , θ)= 〈ψout|9̂
†(x1, t) · · · 9̂†(xN , t)9̂(xN , t) · · · 9̂(x1, t)|ψout〉.

Here, |ψout〉 denotes the state after the phase shift transformation, |ψout〉 = e−iθ Ĵ z |ψin〉.
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Figure 1. Schematic representation of the interferometric procedure. First, a
relative phase θ is imprinted between the wells. Then, the BECs are released
from the trap and form an interference pattern. The detectors (symbolically
represented as open squares) measure the positions of atoms and these data are a
starting point for the phase estimation.

In the remainder of this section, we will derive a compact and useful expression
for pN (ExN |θ). Firstly, we decompose the initial state in the well-population basis, |ψin〉 =∑N

n=0 Cn|n, N − n〉, and suppose that the expansion coefficients are real and possess the
symmetry Cn = CN−n. As we will argue later, such a choice of Cns is natural in the context
of this work. We switch from the Schrödinger to the Heisenberg representation, where the field
operator evolves according to

9̂θ(x, t)≡ Û †(θ)9̂(x, t)Û (θ)= ψa(x, t)eiθ/2â +ψb(x, t)e−iθ/2b̂.

The next step is to introduce the basis of the coherent phase states [29] defined as

|ϕ, N 〉 =
1

√
2N N !

(
â† + eiϕ b̂†

)N
|0〉

(where |0〉 is the state with zero particles). The action of the field operator on these states can
be written in a simple form,

9̂θ(x, t)|ϕ, N 〉 =

√
N

2
uθ(x, ϕ; t)|ϕ, N − 1〉,

where uθ(x, ϕ; t)= ψa(x, t)e(i/2)(θ+ϕ) +ψb(x, t)e−(i/2)(θ+ϕ). Next, we expand the Fock states in
the basis of the coherent states,

|n, N − n〉 =

√

2N
1√(N

n

) ∫ 2π

0

dϕ

2π
e−iϕ(N−n)

|ϕ, N 〉.
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Thus, we can easily write the result of the action of the field operator on the input state,

9̂θ(x, t)|ψin〉 =

√
2N N

2

N∑
n=0

Cn√(N
n

) ∫ 2π

0

dϕ

2π
e−iϕ(N−n)uθ(x, ϕ; t)|ϕ, N − 1〉. (2)

Now the calculation of G N (ExN , θ), and in turn of pN (ExN , θ), is straightforward and gives

pN (ExN |θ)=

∫ 2π

0

∫ 2π

0

dϕ

2π

dϕ′

2π

N∏
i=1

u∗

θ(xi , ϕ; t)uθ(xi , ϕ
′
; t)

×

N∑
n,r=0

CnCr cos [ϕ ((N/2)− n)] cos
[
ϕ′ ((N/2)− r)

]√(N
n

)(N
r

) . (3)

In the following, we will consider an expansion time t large enough so that the interference
pattern is well formed. In this regime, which is typically reached in experiments, the physical
properties of the system change only by scaling ∼

√
t of the characteristic dimensions of the

cloud. The probability (3) is the starting point for the following discussion of various phase
estimation strategies.

3. Estimation via the position of all N atoms

The first estimation protocol that we consider is based on the measurement of the position of all
N atoms, described by the probability (3). This means that, in each realization of the experiment,
the vector of positions ExN = (x1 · · · xN ) is obtained. According to the Cramér–Rao theorem
[30, 31], the lower bound for the error on the phase inferred using ExN = (x1 · · · xN ) is given by

12θ =
1

F
, (4)

where F is the Fisher information (FI),

F = m
∫

dExN
1

pN (ExN |θ)

(
∂pN (ExN |θ)

∂θ

)2

. (5)

Here, m is the number of independent measurements used to infer the value of the phase θ . Any
estimator θest(ExN ), depending on pN (ExN |θ) only, will have an error equal to or larger than (4).

Among those estimators, the maximum-likelihood estimator (MLE) is an optimal choice,
since, according to Fisher’s theorem [30, 31], it saturates the Cramér–Rao lower bound
(CRLB) (4). The MLE consists in inferring the value of the phase by maximizing, given the
measurement outcomes ExN , the probability pN (ExN |θ). More precisely, if m independent sets of
measurements Ex (i)N , i = 1, . . . ,m are used to infer a single value of the phase, the MLE is given
by θMLE(Ex

(1)
N , . . . , Ex

(m)
N ) such that

∂

∂θ

m∏
i=1

pN (Ex
(i)
N |θ)

∣∣∣∣∣
θ=θMLE

= 0. (6)

For a number of measurements m much larger than one, the phase estimation error, set by the
variance of the θMLE, will be given by (4).

Now, in order to evaluate the phase estimation error, we need to calculate the FI (5). This
can be done analytically, with the realistic assumption, discussed above, that the interference
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pattern is formed after a sufficiently long expansion time, such that the wave-packet function
can be explicitly written as

ψa/b(x, t)' ei x2

2σ̃2 ∓i x ·x0
σ̃2 · ψ̃

( x

σ̃ 2

)
, (7)

where σ̃ =

√
h̄t
M , ψ̃ is a Fourier transform of the initial wave packets, common to ψa and ψb, the

separation of the wells is 2x0, and the particle mass is M . Moreover, we make a further realistic
assumption that the initial separation of the wells of the trapping potential is much larger than
the width of the mode functions.

We insert expression (7) into equation (3) and note that the N -body probability can be
written as

pN (ExN |θ)= [ f (ExN |θ)]2, (8)

where f is real and reads

f (ExN |θ)= 2N

∫ 2π

0

dϕ

2π

N∑
n=0

Cn cos [ϕ ((N/2)− n)]√(N
n

) N∏
i=1

ψ̃
( xi

σ̃ 2

)
cos

(
x0xi

σ̃ 2
+
θ

2
+
ϕ

2

)
. (9)

This probability is put into the definition of the FI (5) to obtain

F = m · 4
∫

dExN [ f (ExN |θ)]2.

Now the order of integration can be reversed and the space integrals performed first. Since the
mode-functions are normalized, the result is

F = m N2N
N∑

n=0

C2
n(N

n

) ∫ 2π

0

dϕ

2π
cos [ϕ(N − 2n)] [N (cos(ϕ))N

− (N − 1) (cos(ϕ))N−2].

The phase integral can now be easily evaluated, giving

F = m · 4
N∑

n=0

C2
n

(
n −

N

2

)2

= m · 412 Ĵ z = FQ. (10)

Here, FQ denotes the QFI, which is the maximal value of the FI with respect to all possible
measurements [25], and depends therefore only on the interferometric transformation (in our
case the phase shift) and the input state. For pure input states, the value of QFI is given by 4m
times the variance of the phase-shift generator, and reads FQ = m · 412 Ĵ z. Therefore, equation
(10) contains a very remarkable result: the measurement of the position of all N atoms in the
cloud is optimal, i.e. the best possible choice of the estimation strategy.

At this point, it is important to know whether the above optimal measurement can also reach
sub-shot-noise sensitivities and for which input states this does happen. In order to investigate
the possible values of the FI (10), we introduce a family of input states A, defined using the
two-mode Hamiltonian

Ĥ = −E J Ĵ x +
EC

N
Ĵ 2

z . (11)

We construct A by finding ground states of the above Hamiltonian for various values of
the ratio γ =

EC
N E J

. And so, for γ > 0, the elements of A are number-squeezed states and
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Figure 2. The sensitivity
√

m1θ calculated with equation (10) (black solid
line) for N = 100 atoms as a function of |ψin〉 ∈A with γ < 0. The two limits,
√

m1θSN and
√

m1θHL, are denoted by the upper and lower dashed blue lines,
respectively. The sub-shot-noise sensitivity is obtained for all of the phase-
squeezed states, |ψin〉 ∈A with γ < 0. The vertical red dotted line denotes the
position of the coherent state.

tend to the twin-Fock state |ψin〉 = |
N
2 ,

N
2 〉 with γ → ∞. For γ < 0, the elements of A are

phase-squeezed states [23]. With γ → −∞, the ground state of (11) tends to the NOON state

|ψin〉 =
1

√
2
(|N0〉 + |0N 〉). With γ = 0, we have a coherent state, |ψin〉 =

1
√

N !

(
â†+b̂†
√

2

)N
|0〉. Note

that for all |ψin〉 ∈A, the coefficients Cn, which were introduced in the previous section, are real
and symmetric. The choice of the ensemble A provides the different kinds of entangled states
that are generally relevant for sub-shot-noise interferometry. The study of realistic protocols
for the preparation of such states and the dynamical implementation of the phase shifter is
beyond the scope of this work [23]. Our approximation, by which the phase shift transformation
(1) acts simply on the ground state, would be realistic only when, after the ground state is
prepared, the two clouds are split over a time scale much faster than the hopping rate set by E J ,
but not fast enough to excite other modes. We also assume, as stated above, that the atom–atom
interactions are negligible over the phase shift time scale. To this end, one can employ Feschbach
resonances in order to tune the value of the scattering length very close to zero. The impact of
residual interactions on the sensitivity of a double-well interferometer is beyond the scope of this
work. For instance, in an MZI, it has been shown [24] that the residual inter-atomic interactions
do not sensibly spoil the sensitivity.

It is straightforward to demonstrate that the value of FI in equation (10) gives the shot
noise (SN) scaling, 1θ =1θSN =

1
√

m N
for the coherent state (γ = 0), and overcomes this

bound for all |ψin〉 ∈A with γ < 0, i.e. for the phase-squeezed states. The NOON state gives
the Heisenberg limit, 1θ =1θHL =

1
√

m
1
N . In figure 2, we plot the sensitivity calculated with

equation (10) as a function of |ψin〉 ∈A for N = 100 atoms.
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We have thus shown that the measurement of the position of all of the atoms in the cloud is
not only optimal but also reaches sub-shot-noise sensitivities for the phase-squeezed input state
and saturates even the Heisenberg limit for the NOON state. The experimental feasibility of such
a phase estimation strategy deserves some discussion. In the context of BEC, the typical number
of atoms in the condensate implies that the above correlation function involves a very large
configurational space of ExN , which would be very hard to probe experimentally. Indeed, before
the phase estimation can be performed, the probability pN (ExN |θ) (to be maximized according
to MLE) must be experimentally reconstructed for different, and known, values of θ . The latter
calibration stage would therefore involve a very large number of iterations.

This problem can be avoided in the context of optics, where entangled states of only a
few photons have already been created experimentally [32–35]. The implementations with a
very few particles, even though of small technological relevance (the quantitative difference
between the shot-noise limit and the Heisenberg limit is small), would be important proof-of-
principle experiments. Another necessary experimental tool is single-particle detection, which is
of sufficiently high efficiency. In the context of BEC, very relevant experimental developments
in this direction have been demonstrated in [36].

In the following section, we present a phase estimation scheme based on the measurement
of the center of mass of the interference pattern. Although the probability of measuring the
center of mass at position x is a function of just a one-dimensional (1D) variable, contrary to
the N -dimensional vector ExN , it can still provide the sub-shot-noise sensitivity. Nevertheless,
we will demonstrate that sub-shot-noise interferometry with this estimation protocol is still
challenging in the context of BEC.

4. Estimation via the center-of-mass measurement

4.1. Measurement of all N atoms

In the phase estimation protocol based on the position of the center of mass, the variable
involved is the average 1

N

∑N
i=1 xi , resulting from the measurement of ExN . The probability

pcm(x |θ) describing this measurement is thus a function of a 1D variable, which implies a much
less demanding calibration stage with respect to pN (ExN |θ).

The expression for this function can be extracted from the full N -body probability (3) by

pcm(x |θ)=

∫
dExN δ

(
x −

1

N

N∑
i=1

xi

)
pN (ExN |θ),

where ‘δ’ is the Dirac delta. In order to provide an analytical expression, we model this time the
mode-functions by Gaussians

ψ̃
( x

σ̃ 2

)
=

(
2σ 2

0

πσ̃ 4

)(1/4)
e−x2σ 2

0 /σ̃
4

(12)

with the initial width σ0 = 0.1 and half of the well separation x0 = 1. Using again the assumption
that the initial separation of the wave packets is much larger than their width, i.e. e−x0

2/σ 0
2
� 1,

we obtain

pcm(x |θ)=

√
2σ 2

0 N

πσ̃ 4
e−2x2σ 2

0 /σ̃
4 N

[
1 +

1

2
(C0 + CN )

2 cos

(
Nθ +

2N x0

σ̃ 2
x

)]
. (13)
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Figure 3. The sensitivity
√

m1θ (black solid line) for N = 100 atoms calculated
with equation (14) as a function of |ψin〉 ∈A with γ < 0. The values of

√
m1θSN

and
√

m1θHL are denoted by the upper and lower dashed blue lines, respectively.
The optimal sensitivity, given by the inverse of the QFI, is drawn with the red
open circles.

Details of this derivation are presented in appendix A. It is important to note that pcm(x |θ)

depends on θ only for states with nonnegligible NOON components C0 and CN , as already
noted in [37].

Once pcm(x |θ) is known, the phase can be estimated using the MLE, as described in the
previous section. In this case, once again, the sensitivity is given by the inverse of the CRLB
(4), where this time the FI is given by

Fcm = m
∫

∞

−∞

dx

pcm(x |θ)

(
∂

∂θ
pcm(x |θ)

)2

= m N 2

[
1 −

√
1 −

1

2
(C0 + CN )2

]
, (14)

where m is the number of independent experiments used to infer the value of θ . In figure 3, we
plot the sensitivity calculated by the inverse of the FI (14) as a function of |ψin〉 ∈A with γ 6 0.
Although the estimation through the center of mass is not optimal (1θ > 1√

FQ
), the sensitivity

can be better than the shot noise, with 1θ →1θHL for |ψin〉 → NOON.
As discussed above, an advantage of the center-of-mass estimation protocol is that the

calibration stage is not as difficult as in the case of the N th-order correlation function. However,
in order to reach a sub-shot-noise phase sensitivity, it is necessary to detect all N atoms [38–41],
as we show below.
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4.2. Measurement of k < N atoms

If the measurement of the center of mass is based on the detection of k < N atoms, the
probability (13) becomes

p(k)cm (x |θ)=

∫
dExk δ

(
x −

1

k

k∑
i=1

xi

)
pk(Exk|θ), (15)

where pk(Exk|θ)=
∫

dExN−k pN (ExN |θ). The probability (15) can be calculated in a manner similar
to that presented in appendix A. The result is

p(k)cm (x |θ)=

√
2σ 2

0 k

πσ̃ 4
e−(2x2σ 2

0 /σ̃
4)k

[
1 + a cos

(
kθ +

2kx0

σ̃ 2
x

)]
, (16)

where

a = 2
N−k∑
i=0

(
(N − k)

i

)
CiCi+k√( N

i+k

)(N
i

) . (17)

Note that for k = N , we recover the result from the previous section a = 2C0CN =
1
2(C0 + CN )

2

(we are using the symmetric states, C0 = CN ). The FI for the probability (16) can be calculated
analytically,

F = mk2(1 −

√
1 − a2). (18)

Let us now evaluate a and thus F for various k ' N . For k = N and the NOON state in input,
we have C0 = CN =

1
√

2
, giving a = 1 and F = m N 2. From equation (17), we note that, for any

k, a is the sum of N − k terms, each depending on the coefficients Ci and Ci+k . And so, for
k = N − 1, a will be maximal for a NOON-like state with C0 = CN−1 =

1
2 and C1 = CN =

1
2 .

For this state, we obtain a =
1

√
N

, and for large N , the value of the FI is F = m N .
Therefore, phase estimation using the center of mass of N − 1 particles gives a sensitivity

bounded by the shot noise. Each loss of an atom decreases the FI roughly by a factor of N ,
drastically deteriorating the sensitivity. In figure 4, we plot the sensitivity

√
m1θ calculated

with the FI from equation (18) for various k ' N . To calculate a, we choose a subset of |ψin〉 ∈A
that is in the vicinity of the NOON state. The figure shows a dramatic loss of sensitivity as soon
as k 6= N .

5. Estimation via the position measurement with the Mach–Zehnder interferometer (MZI)

5.1. Formulation

So far, we have focused on the position measurement of atoms released from a double-well
trap, and studied the phase estimation sensitivity. We have seen that both the measurement of
the position of all of the atoms in the cloud and the measurement of their center of mass allow
for sub-shot-noise phase estimation. We have also seen that it would be challenging to beat the
shot-noise limit using the above estimation strategies, at least when a large number of particles
are involved.

In the above scenario, the sub-shot-noise sensitivity, which relies on nonclassical particle
correlations, is reached by directly measuring spatial correlations between the atoms forming

New Journal of Physics 13 (2011) 065023 (http://www.njp.org/)

http://www.njp.org/


11

-10-8-6-4

0.01

0.1

1

m ∆θ

k=100

k=99

k=98

NOONCoherent

γ

Figure 4. The sensitivity
√

m1θ (black solid line) for N = 100 calculated with
equation (18) as a function of |ψin〉 ∈A with γ < 0. The values of

√
m1θSN and

√
m1θHL are denoted by, respectively, the upper and lower dashed blue lines.

The three solid lines correspond to the phase sensitivity for the estimation of the
center of mass with different numbers of particles. For k = 100, the sensitivity
is below the shot noise and tends to

√
m1θHL for |ψin〉 → NOON. As soon as

k 6= N , the sub-shot-noise sensitivity is lost and the value of
√

m1θ increases
dramatically.

the interference pattern, and subsequently using the latter as estimators for the phase shift. On
the other hand, it is well known that the MZI can easily provide sub-shot-noise sensitivity just by
a simple measurement of the population imbalance between the two arms and a proper choice
of the input state |ψin〉 [42]. The high sensitivity achievable with this interferometer has also
been demonstrated in a realistic implementation with a BEC inside a double well [24]. This is
because, in the MZI, the correlations between the two modes carry the part of the information
contained in the particle correlations that is useful for phase estimation. When the clouds are
released from the trap and the two modes start to overlap, the correlations between the two
modes are lost, since an atom detected in the overlap region cannot be said to have come from
either of the two initially separated clouds. This is the reason why it is necessary then to use
directly high-order spatial correlations in order to reach sub-shot-noise sensitivity.

It would thus be interesting to quantify the effect of the overlap of the wave packets on the
sensitivity of the MZI. This analysis is also of practical interest since, in the implementation of
the atomic MZI, the precision of the population imbalance measurement can be improved by
opening the trap and letting the clouds expand for a while. In this way, the density of the clouds
drops, facilitating the measurement of the number of particles. However, during the expansion,
the clouds inevitably start to overlap, leading to loss of information about the origin of the
particles, as noted above. In this section, we show how the increasing overlap deteriorates the
sensitivity of the MZI in two different estimation scenarios.

The MZI consists of three stages: two beam splitters represented by unitary evolution
operators e∓i(π/2) Ĵ x separated by the phase shifter e−iθ Ĵ z . The atomic MZI can be realized as
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follows. Consider a two-mode system governed by the Hamiltonian (11) with EC = 0. The first
beam splitter is implemented by letting the atoms tunnel between the two wells for t =

π

2
h̄

E J
,

so the unitary evolution operator reads Û1 = e−i(π/2) Ĵ x . Then, the inter-well barrier is raised in
order to suppress the hopping (E J = 0), thereby implementing the phase shift transformation
Û2 = e−iθ Ĵ z . The interferometric sequence is closed by another beam splitter, Û3 = ei(π/2) Ĵ x . The
full evolution operator reads

Û (θ)= Û3Û2Û1 = ei(π/2) Ĵ x e−iθ Ĵ z e−i(π/2) Ĵ x = e−iθ Ĵ y ,

where we used the commutation relations of the angular momentum operators.
In order to analyze the sensitivity of the MZI, we need to calculate the conditional

probability pN (ExN |θ) of detecting N atoms at positions ExN = x1 · · · xN , as done in section 2
for the other interferometer discussed above. To evaluate this probability for any initial state of
the double-well system |ψin〉, we take the same steps as those taken to obtain equation (3). In
the Heisenberg representation, the field operator evolves, under the MZI transformation, as

9̂θ(x, t)≡ Û †(θ)9̂(x, t)Û (θ)=

[
ψa(x, t) cos

(
θ

2

)
+ψb(x, t) sin

(
θ

2

)]
â

+

[
ψb(x, t) cos

(
θ

2

)
−ψa(x, t) sin

(
θ

2

)]
b̂. (19)

Again, we express the action of the field operator on |ψin〉 using the basis of the coherent phase
states and obtain equation (2) with

uθ(x, ϕ; t)=

[
ψa(x, t) cos

(
θ

2

)
+ψb(x, t) sin

(
θ

2

)]
ei(ϕ/2)

+

[
ψb(x, t) cos

(
θ

2

)
−ψa(x, t) sin

(
θ

2

)]
e−i(ϕ/2).

Therefore, the probability pN (ExN |θ) for the MZI is given by equation (3) with the uθ(x, ϕ; t)
function defined above.

5.2. Measurement of the population imbalance

The most common phase-estimation protocol discussed in the context of the MZI is the
measurement of the population imbalance between the two arms of the interferometer. In order
to assess how the sensitivity of this protocol is influenced by the expansion of the wave packets,
we introduce the probability of measuring nL atoms in the left sub-space as follows,

pimb(nL|θ)=

(
N

nL

)∫ 0

−∞

dExnL

∫
∞

0
dExN−nL pN (ExN |θ). (20)

This probability depends on the expansion time via ψa,b(x, t), which enter the definition of
pN (ExN |θ). Note that the population imbalance probability can be written as

pimb(nL|θ)=

∫ 2π

0

∫ 2π

0

dϕ

2π

dϕ′

2π

(
N

nL

)
anL
θ bN−nL

θ

N∑
n,r=0

CnCr cos[ϕ ((N/2)− n)] cos
[
ϕ′ ((N/2)− r)

]√(N
n

)(N
r

) ,
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where

aθ =

∫ 0

−∞

dx u∗

θ(x, ϕ; t)uθ(x, ϕ
′
; t) and bθ =

∫
∞

0
dx u∗

θ(x, ϕ; t)uθ(x, ϕ
′
; t).

Since the distribution of nL inside the phase integrals is binomial, the moments can be easily
calculated.

In this case, we cannot analytically calculate the FI, and therefore we turn to a simpler
way of estimating the bound for the sensitivity. Namely, for various expansion times, if m � 1
measurements are carried out, the sensitivity can be calculated using the error propagation
formula,

12θ =
1

m

12n∣∣∣∂〈n〉/∂θ

∣∣∣2 , (21)

where

〈n〉 =

N∑
nL=0

pimb(nL|θ)

(
nL −

N

2

)
is the average value of the population imbalance and

12n =

N∑
nL=0

pimb(nL|θ)

(
nL −

N

2

)2

− 〈n〉
2

are the associated fluctuations. The two lowest moments of the probability (20) read

〈n〉 =

∫
∞

0
dx G1(x |θ)−

N

2
and 12n =

N 2

4
−

∫
∞

0

∫ 0

−∞

dEx2 G2(Ex2|θ)− 〈n〉
2.

The correlation functions for the MZI read G1(x |θ)= 〈9̂
†
θ (x, t)9̂θ(x, t)〉 and G2(Ex2|θ)=

〈9̂
†
θ (x1, t)9†

θ (x2, t)9̂θ(x2, t)9̂θ(x1, t)〉, with the field operator from equation (19), and the
averages calculated with the input state. When the two wave packets do not overlap, i.e.
ψa(x, t)ψ∗

b (x, t)' 0 for all x ∈ R, equation (21) simplifies to

12θ =
1

m

12 Ĵ x sin2 θ + 〈 Ĵ 2
z〉 cos2 θ

〈 Ĵ x〉
2 cos2 θ

. (22)

This is the well-known expression for the sensitivity of the population imbalance between
separated arms. It gives 1θ 61θSN for all |ψin〉 ∈A with γ > 0.

We investigate the impact of the overlap on the sensitivity (21) by modeling the free
expansion of the wave packets ψa/b(x, τ ) by Gaussians,

ψa/b(x, τ )=
1

(2πσ 2
0 (1 + iτ))1/4

e−(x±x0)
2/4σ 2(1+iτ),

and take, as done in section 4, x0 = 1 and the initial width σ0 = 0.1. In figure 5, we plot the
sensitivity

√
m1θ taking θ = 0 and N = 100 for three different expansion times τ . The initial

sensitivity deteriorates as soon as the wave packets start to overlap, and the sub-shot-noise
sensitivity is lost for long expansion times. As discussed above, we attribute this decline to
the loss of information about the correlations between the modes. Therefore, special attention
has to be paid to avoid the overlap when letting the two trapped condensates spread. Although
we expect that the expansion facilitates the atom number measurement, the conclusion of this
section is that any overlap of the spatial modes has a strong negative impact on the sensitivity
of the MZI.
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Figure 5. (a) The sensitivity
√

m1θ calculated with equation (21) for three
different expansion times τ as a function of |ψin〉 ∈A with γ > 0. The solid
black line corresponds to the situation shown in (b), where τ = 0 and the wave
packets do not overlap. The dashed red line corresponds to (c), where τ = 3 and
the wave packets start to overlap. The dot dashed green line corresponds to (d),
where τ = 10 and the wave packets strongly overlap. Clearly, the sensitivity is
influenced by any nonvanishing overlap. The values of

√
m1θSN and

√
m1θHL

are denoted by, respectively, the upper and lower dashed blue lines. Here,
N = 100 and θ = 0.

5.3. Estimation via the center-of-mass measurement for the MZI

In section 4.1, we demonstrated that when the two wave packets overlap and form an
interference pattern, the phase estimation based on the center-of-mass measurement can give
sub-shot-noise sensitivity. Here we study the same estimation strategy applied in the MZI case.
Again, we start with the probability pcm(x |θ) of measuring the center of mass at position x ,

pcm(x |θ)=

∫
dExN δ

(
x −

1

N

N∑
i=1

xi

)
pN (ExN |θ).

Using pN (ExN |θ) for the MZI, one can analytically calculate the center-of-mass probability only
in the limit of small θ ,

pcm(x |θ)=
N

2πσ 2

[
N∑

l=0

C2
l fl(x)+ θ

N∑
l=0

ClCl+1

√
(l + 1)(N − l) ( fl+2(x)− fl(x))

]
, (23)

where

fl(x)= exp

[
−
(x − x0 ((2l/N )− 1))2

2σ 2
0

]
.
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With this probability, we can again calculate the sensitivity using the error propagation
formula [30, 31],

12θ =
1

m

12x∣∣∣∂〈x〉/∂θ

∣∣∣2 ,
where

〈x〉 =

∫
∞

−∞

dx pcm(x |θ)x and 12x =

∫
∞

−∞

dx pcm(x |θ)x2
− 〈x〉

2.

These two moments can be easily calculated with equation (23), giving, in the limit θ → 0,

12θ

∣∣∣
θ→0

=
1

m

[
〈 Ĵ 2

z〉

〈 Ĵ x〉
2

+

(
σ

x0

)2 N

4〈 Ĵ x〉
2

]
. (24)

Note that when the initial size of the Gaussians tends to zero, we recover the sensitivity from
equation (22) (in the limit of θ → 0). This is not surprising, because when the mode-functions
are point-like, the measurement of the center of mass and the measurement of the population
imbalance are equivalent, and related by xcm = 2x0

n
N . Therefore, for small σ , the measurement

of the center of mass yields sub-shot-noise sensitivity for all |ψin〉 ∈A with γ > 0. However,
for nonzero σ , the second term in equation (24) spoils the sensitivity. This is because N

4〈 Ĵ x 〉
2 >

1
N

is always satisfied. Even though the first term scales better than at the shot-noise limit, the other
one does not, and will dominate for large N .

From what we presented in this section, we conclude that both the population imbalance
and the center-of-mass measurements can give sub-shot-noise sensitivity for the MZI, but both
are very sensitive to the growing size of the wave packets.

6. Conclusions

In this paper, we have discussed in detail how the measurement of the positions of atoms
forming an interference pattern can be useful in the context of atom interferometry. We showed
that phase estimation based on the measurement of the position of all the atoms in the cloud
is an optimal detection strategy, saturating the QFI, and even reaching a Heisenberg-limited
sensitivity when NOON states are used. We also showed that the measurement of the position
of the center of mass of the interference pattern gives sub-shot-noise sensitivity for all states
with a nonnegligible NOON component. The measurement of the positions of all atoms, and
in turn of their center of mass, is difficult to carry out. The former requires the construction
of a function of a highly dimensional configuration space, and both require the detection of all
N atoms forming the interference pattern. We attribute the difficulty of obtaining the sub-shot-
noise sensitivity to the fact that, after the formation of the interference pattern, the modes cannot
be distinguished, and information useful for interferometry is only contained in the correlations
between the particles. The implementation of any estimation strategy would also require an
analysis of the impact of experimental noise on sensitivity, which is not included in this work.
In the final part of this work, we turned our attention to the MZI, which is known to provide
sub-shot-noise sensitivity for the simpler measurement of the population imbalance between the
two clouds. We have shown that the sensitivity of the MZI is strongly influenced by a nonzero
overlap between the two wave packets, in the case of both the population imbalance and the
center-of-mass measurement.
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Appendix A. Evaluation of the center-of-mass probability

In this appendix, we derive the expression for the probability of detecting the center of mass at
position x , as in equation (13). The definition of pcm(x |θ) relates it to the full N -body probability
by

pcm(x |θ)=

∫
dExN δ

(
x −

1

N

N∑
i=1

xi

)
pN (ExN |θ).

To calculate this probability, we assume a long expansion time and use equations (8) and (9).
Then, we note that the Dirac delta can be represented as the Fourier transform

pcm(x |θ)=
1

2π

∫
∞

−∞

dk
∫

dExN e−ik(x−(1/N ))
∑N

i=1 xi ) pN (ExN |θ).

This equation can be rewritten as

pcm(x |θ)=
1

2π

∫
∞

−∞

dk e−ikx p̃cm(k|θ), (A.1)

where

p̃cm(k|θ)=

∫
ei k

N

∑N
i=1 xi pN (ExN |θ) dExN

is the Fourier transform of the probability p̃cm(x |θ). To provide an analytical expression for this
probability, we assume that the initial wave packets are Gaussian as in equation (12). Integration
over space is performed, giving

p̃cm(k|θ)=

∫ 2π

0

dϕ

2π

∫ 2π

0

dϕ′

2π

[
I (k, ϕ, ϕ′)

]N

×

N∑
n,m=0

CnCm√(N
n

)(N
m

) cos

[
ϕ

(
N

2
− n

)]
cos

[
ϕ′

(
N

2
− m

)]
, (A.2)

where

I (k, ϕ, ϕ′)= ei
(
ϕ+ϕ′

2 +θ
)
e−

(k+k0)
2

2w2 + e−i
(
ϕ+ϕ′

2 +θ
)
e−

(k−k0)
2

2w2 + 2 cos

(
ϕ +ϕ′

2

)
e−

k2

2w2 ,

with k0 =
2N x0
σ̃ 2 and w =

2Nσ0
σ̃ 2 . The function I (k, ϕ, ϕ′) consists of three peaks, located at

k = ±k0 and k = 0. When the well separation 2x0 is large compared to the initial width of
the trapped wave packets σ , these three peaks are separated and do not overlap. Therefore,
[I (k, ϕ, ϕ′)]N can be approximated by the sum of the N th powers of its three components,[
I (k, ϕ, ϕ′)

]N
' eiN

(
ϕ+ϕ′

2 +θ
)
e−

N (k+k0)
2

2w2 + e−iN
(
ϕ+ϕ′

2 +θ
)
e−

N (k−k0)
2

2w2 + 2N cosN

(
ϕ +ϕ′

2

)
e−

Nk2

2w2 .
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This result is put into equation (A.2), the phase integrals are evaluated and the result is

p̃cm(k|θ)= e−N k2

2w2 +

[
eiNθ−N

(k+k0)
2

2w2 + e−iNθ−N
(k−k0)

2

2w2

]
(C0 + CN )

2

4
.

Then, using equation (A.1), we obtain

pcm(x |θ)=
w e−(w2x2/2N )

√
2πN

[
1 +

(C0 + CN )
2

2
cos(Nθ + k0x)

]
,

which, with the help of the definitions of w and k0, gives equation(13).
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