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Abstract. A standard assumption in quantum chaology is the absence of
correlation between spectra pertaining to different symmetries. Doubts were
raised about this statement for several reasons, in particular because in
semiclassics the spectra of different symmetries are expressed in terms of the
same set of periodic orbits. We re-examine this question and notice the absence
of correlations in the universal regime. In the case of continuous symmetry, the
problem is reduced to parametric correlation, and we expect correlations to be
present up to a certain time which is essentially classical but larger than the
ballistic time.
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1. Introduction

The topic we are to consider is the cross-correlation between spectra of different symmetries
for the so-called quantum chaotic systems, i.e. quantum systems whose classical analogue is
chaotic. The instinctive reaction would be to say that states of different symmetries live in
different spaces, do not talk to each other and cannot conceivably display any correlation [1].
Doubts appear when one recalls that in the semiclassical approach the level correlations of
different symmetries can be expressed in terms of sums over the same set of periodic orbits, and
such ‘brotherhood in the parent orbits’ may introduce a correlation. Such ‘brotherhood in parent
classical trajectories’ is known to lead to interesting physical effects, e.g. phenomena such as
‘weak localization’ or ‘elastic enhancement’, in the transport through symmetric cavities [2];
it may thus be suspected to introduce cross-symmetry spectral correlations. In nuclear physics,
some evidence has been assembled that correlations in two-body random ensembles with finite
sets of states exist, which is not too surprising considering the small number of independent
two-body matrix elements [3], and certain nuclear scattering data support the existence of
correlations to some extent [4], but a study of correlations between spectra of opposite parity in
the limit of many particles revealed no correlations [5].

These findings make it all the more desirable to analyze the usual assumption of
independence in the semiclassical limit in some detail, as we shall do here. We obtain basically
a negative result in the case of both discrete and continuous symmetries, i.e. the absence of
correlations is confirmed in the universal regime.

These conclusions are to be taken with a grain of salt. Correlations may still exist in
certain pathological systems (mostly those with disconnected phase space, often due to unusual
behavior under time-reversal symmetry [6–8]. Our reasoning also does not apply to arithmetic
billiards which have chaotic dynamics, but an exponentially large number of geodesics with
identical actions [9]. Nevertheless, it has been shown, by explicit evaluation of the Selberg
trace sum formula for the correlation function, that eigenvalues for even and odd parity in the
modular domain on the surface with constant negative curvature are indeed uncorrelated [10].
More importantly, for continuous symmetries correlations may exist up to a certain time which
is essentially classical in nature, if the difference of quantum numbers characterizing the
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irreducible representations (IRs) is of the order of one as the quantum numbers themselves
get large. Note that this effect can be easily overlooked, as times are often given in terms of the
Heisenberg time, which, in the semiclassical limit, goes to infinity.

The paper is structured as follows. After laying foundations we discuss the discrete
symmetries in what we consider to be the simplest case. This is the reflection symmetry in
a two-dimensional system when we can pass to a half-space with the Dirichlet or Neumann
boundary conditions. We obtain the relevant results for these two particular cases using periodic
orbit expansions and find the expected absence of correlations. Starting with the diagonal
approximation, we later discuss the off-diagonal contributions and times beyond the Heisenberg
time. After that, we study general discrete symmetries. Trivial generalization of the described
technique is possible only for groups that induce a decomposition of space into fundamental
domains. This is not always true and we shall present the general argument using the symmetry
decomposition of periodic orbits, as proposed in [11].

In the next section, we pass to continuous symmetry and consider the effect of a change
in the index of IR as parametric correlation [12] within the symmetry-reduced Hilbert space.
Again, we predict the absence of correlations in the universal regime, i.e. on the scale of
the Heisenberg time; however, correlations on a classical, i.e. h̄-independent, time scale are
expected. Finally, we present some conclusions and an outlook about possible observations.

2. Definitions: the spectral cross-correlation function and the form factor

We start with some definitions that will be essential to the later arguments, and at the same time
we fix the notations we shall use.

Let ρ(1)(E)=
∑

k δ(E − E (1)
k ) and ρ(2)(E)=

∑
k δ(E − E (2)

k ) be two spectral densities
describing either two subspectra of different symmetries of the same Hamiltonian or the spectra
of two different Hamiltonians. We shall assume that both spectra are unfolded to the same
constant mean level density 1 (see e.g. [1]). The precise manner of the unfolding procedure is
a somewhat thorny issue and will be discussed later.

The two-level cross-correlation function is defined as

R(1,2)(E, ε)=
〈ρ(1)(E + ε1

2π )ρ
(2)(E − ε1

2π )〉

〈ρ(1)(E)〉〈ρ(2)(E)〉
− 1, (1)

where 〈· · ·〉 denotes averaging over an interval of E and smoothing over a window of the
dimensionless energy offset ε; since the spectra are unfolded we have 〈ρ(1)(E)〉 = 〈ρ(2)(E)〉 =
1−1.

It is often more convenient to work with the Fourier transform of R(1,2)(E, ε) with respect
to ε. The result is the cross form factor, which is a double sum,

K (1,2)(τ )=
∑
k,l

ei(E (1)k −E (2)l )τTH/h̄; (2)

the dimensionless τ = T/TH is time in units of the Heisenberg time TH = 2π h̄/1.
A semiclassical representation for the spectral correlator and the form factor follows from

the Gutzwiller expansion of the fluctuating part of the spectral density in terms of the classical
periodic orbits γ ,

ρosc(E)∼
∑
γ (1)

Aγ eiSγ /h̄−iµγ π/2. (3)

New Journal of Physics 13 (2011) 063027 (http://www.njp.org/)

http://www.njp.org/


4

Figure 1. The cardioid billiard. The fundamental domain is bordered by the
symmetry line (dashed) and the right (bold) half of the billiard wall.

Here Sγ , Aγ and µγ are the action, the stability coefficient and the Maslov index of the orbit
γ . Strictly speaking this expression should also include the periodic orbit repetitions; these,
however, become irrelevant in the semiclassical limit. Replacing, in (2), both spectral densities
by the respective expansions (3), we obtain

K (1,2)(τ )∼
1

δ

〈 ∑
THτ<Tγ1 , Tγ2<THτ+δ

Aγ1 Aγ2e
i(S(1)γ1 −S(2)γ2 )/h̄−i(µ(1)γ1 −µ

(2)
γ2 )π/2

〉
; (4)

the brackets 〈· · ·〉 denote averaging over E and smoothing over a small window of τ . The sum
is taken over periodic orbits γ1 of system 1 and γ2 of system 2. Their periods Tγ 1 and Tγ 2 must
lie in the interval [T , T + δ] whose width δ is small compared with T = τTH.

3. Discrete symmetry

To illustrate the central point of our argument we shall start with the simplest possible example
of a system with a single reflection symmetry.

3.1. A simple example: reflection symmetry

Consider the spectral correlation between the even and odd spectra in a chaotic system with two
degrees of freedom such as the cardioid billiard [13–15]; see figure 1. On the line of symmetry,
the even and odd wave functions either have zero normal derivative or themselves turn into zero.
The subspectra of definite parity can be found separately by solving the Schrödinger equation
in the desymmetrized billiard (the fundamental domain) obtained by cutting the billiard along
the symmetry line and dropping one of the halves. Imposing the Neumann (resp. Dirichlet)
boundary condition on the cut, we shall obtain the even (resp. odd) part of the spectrum.

The semiclassical level density consists of the smooth part (the Weyl term) and the
fluctuating part which is the Gutzwiller sum over periodic orbits of the desymmetrized billiard
with the mirror-reflecting wall at the symmetry line. The difference in the Weyl term between
the even and odd cases is responsible for the fact that the N th eigenvalue in the symmetric sector
E S

N is lower than the N th eigenvalue in the antisymmetric sector E A
N by an amount of the order

of
√

E
A,S

N ; see [16] and references therein. This issue has some consequences but can be taken

New Journal of Physics 13 (2011) 063027 (http://www.njp.org/)

http://www.njp.org/


5

care by an appropriate unfolding procedure. In the Gutzwiller sum, the even and odd cases differ
by the effective Maslov indices of the periodic orbits since each reflection in the Dirichlet and
Neumann boundary contributes π or zero, respectively, to the phase of the orbit contribution.

We shall denote by nγ the number of strikes of the periodic orbit γ of the desymmetrized
billiard against the line of symmetry. It is easy to see that orbits with even nγ correspond to the
periodic orbits of the full billiard with the same period; the latter are non-symmetric unless γ is
self-retracing. On the other hand, orbits with odd nγ are associated with symmetric orbits of the
full billiard whose period is doubled compared with γ .

We assume that the number of orbits γ with periods in a certain interval [T , T + δ] with T
large may not depend on parity of nγ , as well as on parity of the number of visits to any side
of the desymmetrized billiard. This assumption is physically plausible and must hold at least
for generic systems; we shall see that it guarantees the absence of spectral cross-correlation.
Note that we consider here cases in which all orbits unconnected by time reversal have different
actions. In non-generic cases, for which classical orbits have exactly degenerate actions due to
additional symmetries, we may find counterexamples: such anomalous behavior is found, for
example, in the so-called arithmetic billiards on the surface of constant negative curvature [17].

The semiclassical cross form factor now becomes a double sum over the same set of
periodic orbits of the desymmetrized system. In the following expression, summation over
γ1 and γ2 is connected with the Gutzwiller expansion of the even and odd spectral densities,
respectively,

Kgu (τ )∼
1

δ

〈 ∑
THτ<Tγ1 , Tγ2<THτ+δ

Aγ2 (−1)nγ2 ei(Sγ1−Sγ2)/h̄

〉
; (5)

the factor (−1)nγ 2 emerges because each visit to the symmetry line with the Dirichlet boundary
condition yields the Maslov phase π .

3.2. Diagonal approximation

Dropping, in (5), all summands with γ1 not coinciding with γ2 (up to time reversal since we
have time-reversal invariance), we come to the diagonal approximation

Kgu,diag (τ )∼
1

δ

〈 ∑
THτ<Tγ<THτ+δ

A2
γ (−1)nγ

〉
.

It differs from Berry’s diagonal approximation for the autocorrelation form factor [18] by the
presence of the sign factor (−1)γ leading to destructive interference among the contributions.
Assuming that for the long orbits with very large nγ the number of orbits with even and odd nγ
is the same and not correlated with the stability coefficients, we obtain Kgu,diag(τ )= 0.

A warning has to be made here. Our basic argument (even and odd spectral densities are
created by the same set of orbits which contribute with the same action but a different Maslov
index) implicitly assumes ergodicity of the classical motion and loses its validity if ergodicity is
violated. Consider, for example, a particle moving in a symmetric double-well potential in two
dimensions. For energies below the dividing barrier the classical motion is clearly non-ergodic
since the available phase space disconnects into two symmetric domains; even and odd levels in
the quantum problem are then almost degenerate, up to the tunnelling splitting. Consequently,
the cross g←→ u form factor will practically coincide with the autocorrelation form factor of
the spectrum in a single well.
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Another trivial issue should also be pointed out here: for very short times (ballistic times)
corresponding to the period of the shortest classical orbits, there are no more cancellations
between different orbits and correlations certainly arise.

3.3. Off-diagonal contributions

The off-diagonal contribution for the auto form factor differing from (5) by the absence of the
sign factor (−1)nγ is known to stem from pairs of the so-called orbit-partners. A partner γ ′

of an orbit γ is the orbit that practically coincides with γ everywhere but in the ‘encounters’,
i.e. a set of two or more orbits stretches almost parallel and abnormally close to each other.
The lengths of γ and γ ′ can be so close that their action difference can be comparable with
or smaller than h̄. Consequently, the corresponding contributions to the auto form factor will
avoid the destructive interference, which, in the case of randomly composed pairs, would lead
to annihilation of the contribution. The leading off-diagonal correction is due to the so-called
Sieber–Richter pairs [19]; higher order terms giving the auto form factor as a series in powers
of τ are calculated in [20]. Analytically continuing the result, one obtains the auto form factor
for times smaller than the Heisenberg time, i.e. for τ < 1; for larger times a different approach
is needed (see subsection 3.4).

Let us now address the cross form factor. Again, contributions of randomly composed pairs
are expected to average to zero. Limiting summation only to pairs of the orbit-partners, we may
reduce (5) to

Kgu (τ )∼

〈
1

δ

∑
τTH<T̄γ<τTH+δ

(−1)nγ A2
γ

∑
γ ′(γ )

e
i1S̄

γ γ ′

h̄

〉
.

The inner sum is taken over all partners γ ′ of the orbit γ including the diagonal ones. Since the
partner orbit coincides with the original orbit everywhere except the relatively short encounter
stretches, the Maslov indices of γ and γ ′, coincide, apart from the contribution of reflections
from the Dirichlet boundary. Again, we assume that there is no correlation between parity of
the number of strikes of the orbit γ against the cut and the value of the sum over partners of
γ multiplied by its stability factor. Hence the expected value of Kgu(τ ), with the off-diagonal
contributions taken into account, is zero, at least for τ < 1.

3.4. Times larger than the Heisenberg time

The fact that maxima (and, in the case of GSE, even singularities) of form factors can occur
at the Heisenberg time makes it necessary to investigate the long-time behavior in the discrete
symmetry case. Semiclassical investigation of spectral auto- and cross-correlation beyond the
Heisenberg time was started by Bogomolny and Keating [21]. Complete expansion of the auto-
correlation functions using the formalism of the four-determinant generating functions is given
in [22, 23]; the results of the latter can be generalized to cross-correlations.

The appropriate generating function of the two-point cross-correlation functions for the
spectra of Hamiltonians H (1) and H (2) is a ratio of four spectral determinants,

Z (12) (εA, εB, εC , εD)=

〈
det

(
E + εC1/2π − H (1)

)
det

(
E + εD1/2π − H (2)

)
det

(
E + εA1/2π − H (1)

)
det

(
E + εB1/2π − H (2)

)〉
E

, (6)
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where 〈· · ·〉E as usual indicates averaging over the center energy E and smoothing over small
windows of the energy offsets from E ; unlike the generating function in the problem of
autocorrelation it is not symmetric with respect to the exchange of εC and εD. Using the identity

∂ ln det (E − H)

∂E
= Tr (E − H)−1 (7)

and proportionality between Im Tr(E − H)−1 and the level density ρ(E), we obtain the
cross-correlation function as the second derivative,

R(12)(ε)= Re lim
η→+0

〈
Tr

(
E +

ε+1

2π
− H (1)

)−1

Tr

(
E −

ε+1

2π
− H (2)

)−1
〉

E

− 1

= 2Re lim
η→+0

∂2

∂εA∂εB
Z (12) (εA, εB, εC , εD)

∣∣∣∣
‖

, (8)

ε+
= ε + iη. (9)

Here η is a small positive number and the symbol ‘‖’ denotes the substitution of the arguments,

εA = ε
+, εB =−ε

+,

εC = ε, εD =−ε.

The semiclassical approximation for the generating function follows from that for the
spectral determinants. Using the so-called ‘Riemann–Siegel look-alike’ asymptotics of det(E −
H) introduced by Berry and Keating [24–26], one can show that the semiclassical estimate of
Z (12) consists of two terms. One of these substituted into (11) leads to a correlation function
whose Fourier transformation reproduces the form factor for small times. The second term in
Z (12) is responsible for the behavior of the form factor for times larger than TH. Each term
in the semiclassical generating function is obtained as an infinite product over the periodic
orbits, averaged over the central energy E . The leading order contribution is obtained by the
diagonal approximation, which, in the formalism of the generating functions, means that the
factors associated with different periodic orbits are assumed independent (with the obvious
exception of the mutually time-reversed orbits); consequently, averages of products over the
periodic orbits are replaced by the products of averages.

The diagonal approximation for the generating function describing the gu correlation is
deduced in the same way, step by step, as in the case of autocorrelation; for details, see [22, 23].
At a certain stage, one obtains

Z (gu)(εA, εB, εC , εD)= ZI + ZII,

ZI = ei/2(εA−εB−εC +εD)
∏
γ

exp gϑI,γ ,

ZII = ei/2(εA−εB−εD+εC )
∏
γ

exp gϑII,γ .

The factor g in the exponents is equal to 2 for systems with time reversal allowed (such as the
cardioid billiard) where it reflects the existence of pairs of mutually time-reversed orbits; in the
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absence of time reversal g = 1. The exponents are given by

ϑI,γ = |Fγ |
2(eiτγ εA − eiτγ εC )(e−iτγ εB − e−iτγ εD)(−1)nγ ,

ϑII,γ = − |Fγ |
2[eiτγ εA − (−1)nγ eiτγ εD ][e−iτγ εC − (−1)nγ e−iτγ εB ].

We denote here by τγ = Tγ /TH the period of a periodic orbit γ in terms of the Heisenberg time;
Fγ is its stability coefficient. As before, nγ is the number of visits of the orbit γ to the cut in
the desymmetrized billiard; if the factors (−1)nγ were dropped, we would return to the case of
autocorrelation.

What remains is to perform summation over the periodic orbits in the exponents of ZI, ZII.
Again, we assume absence of correlation between parity of nγ , on the one hand, and the orbit
period and the stability coefficient, on the other. Then the summands containing the factor
(−1)nγ disappear after summation over γ such that∑

γ

ϑI,γ → 0, (10)

∑
γ

ϑII,γ →−

∑
γ

|Fγ |
2[eiτγ (εA−εC ) + eiτγ (εD−εB)]; (11)

consequently the term ZI in the generating function is an irrelevant constant.
The sum in (11) can be evaluated using the sum rule of Hannay and Ozorio de Almeida [27]

for the stability coefficients Fγ ,∑
T<Tγ<T +1T

|Fγ |
2
=
1T

T
,

which gives ∑
γ

ϑII,γ ≈ −

∫
∞

τ0

dτ

τ
[eiτ(εA−εC ) + eiτ(εD−εB)]

≈ ln[(εA− εC)(εD − εB)] + 2 ln τ0 + 2γ − iπ,

with γ denoting the Euler constant. The lower integration limit is τ0 = T0/TH with T0 standing
for some minimal period above which periodic orbits behave approximately ergodically; in the
semiclassical limit τ0 tends to zero. The second term in the generating function is thus

ZII (εA, εB, εC , εD)∝ ei/2(εA−εB−εD+εC )[τ 2
0 (εA− εC)(εD − εB)]

g.

The respective two-point correlation function is zero in the presence of time reversal when
g = 2. Without time reversal (g = 1) the term ZII contributes like const τ 2

0 ei2ε to the cross-
correlation function or, equivalently, like a delta-peak to the time-dependent cross form factor
Kgu(τ ) at τ = 1, i.e. at the Heisenberg time. However, since the term is proportional to τ 2

0 , this
contribution vanishes in the semiclassical limit. Therefore, as could be expected, correlations
between the even and odd parts of the spectrum do not exist also for times larger than the
Heisenberg time.
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3.5. General discrete symmetries

In this section, we give a formal treatment of the problem in the presence of more complicated
discrete symmetry groups G. The level density ρ(E) falls into a sum of subdensities ρm(E)
connected with different IRs m of G. The semiclassical approximation for the fluctuating part
of ρm(E) is provided by the symmetry-adapted Gutzwiller trace formula [11]. In the following,
we shall follow the ideas expounded in [11], so that our treatment includes the case in which
the reduction of the configuration space M of the system to a fundamental domain M̄ , which
tesselates the full M when the symmetry operations are applied to it, is difficult or impossible.

Let us look at the cross form factor defined as in (2)

K (m1,m2)(τ )=
∑
k,l

ei(Ek,m1−El,m2)t/h̄; (12)

throughout this section the argument of the form factor τ = t/TH, i.e. time measured in units of
the Heisenberg time. What we want to show is that this quantity vanishes. At the abstract level
this can be rewritten as

K (m1,m2)(τ )=
[
Tr

(
Pm1e

−iHt/h̄ Pm1

)]?
·
[
Tr

(
Pm2e

−iHt/h̄ Pm2

)]
, (13)

where Pm is the projector of the Hilbert space on the IR m. It is given by the expression

Pm =
1

|G|

∑
g∈G

χm(g)g, (14)

where χm(g) is the character corresponding to the IR m and g denotes the group element, which
is assumed to act directly on the elements of the Hilbert space.

As is well known, traces can be estimated semiclassically as integrals over coherent states
|p, q〉. Assuming that the symmetry operations g have a well-defined semiclassical limit, we
know how they act on the phase space as well as on the Hilbert space and thus are able to define
such quantities as g(p, q). One therefore obtains

K (m1,m2)(τ )=
1

|G|2
∑

g,g′∈G

∫
dp1 dq1 dp2 dq2

(2π)2d
[χm1(g)〈p1, q1|e

−iHt/h̄
|g(p1, q1)〉]

∗

×χm2(g
′)〈p2, q2|e

−iHt/h̄
|g′(p2, q2)〉, (15)

where we have used the identity Tr(P AP)= Tr(AP), where P is an arbitrary projector. Since
the |p, q〉 are well localized in phase space, the kind of expressions occurring in (15) only differs
from zero when the phase space point (p, q) is (at least approximately) carried over to g(p, q)
in time t by the classical evolution. A rigorous proof of this reasoning exists so far for times
smaller than the Ehrenfest time; however, we shall assume its validity for all times comparable
with the Heisenberg times. This turns out to be equivalent to the usage of the Gutzwiller trace
formula in the form factor estimate, to which we may then apply the usual approximations. In
this section, for simplicity, we shall limit ourselves to the diagonal approximation and we refer
to the simple example given above for refinements.

To this end, let us start by looking at the quantity Tr(Pm1e
−iHt/h̄ Pm1). Let us define as a

generalized periodic orbit of period t any segment that connects a phase space point (p, q) with
one of its symmetric partners g(p, q) over time t . We call such orbits g-orbits, making explicit
reference to the corresponding group element. Let λ be a g-orbit. One then additionally defines
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gλ to be the minimal element of the symmetry group G such that gλ(p, q) lies on the orbit λ
going through (p, q) and such that no other element g′ of G has the property that g′(p, q) lies
on the orbit λ between (p, q) and gλ(p, q). Note that in general gλ 6= g. There is, however, as
shown in [11], always an integer n such that g = gn

λ .
Let (p, q) lie on a g-orbit λ. One then has

〈p, q| e−iHt/h̄
|g(p, q)〉 = Aλe

iSλ/h̄, (16)

where Aλ is related to the stability of the orbit in the usual way and the phase eiSλ/h̄ contains all
the information on the action of the g-orbit as well as its Maslov phases.

Integrating the lhs of (16) over p, q yields

Tr
(
Pm2e

−iHt/h̄ Pm2

)
=

1

|G|

∑
g∈G

t

(2π)d

∞∑
n=1

∑
λ

Aλe
iSλ/h̄χm2(g)δg,gn

λ
, (17)

where n is the number of iterations of the primitive element leading to g. The factor t arises
from the fact that an integration over the whole segment from (p, q) to g(p, q) is possible and
yields the same result as starting with (p, q). The sum still runs independently over the various
symmetric ‘copies’ of the g-orbit λ, in particular over its iterations, which lead eventually to a
bona fide periodic orbit. Neglecting repetitions, that is, n 6= 1, yields

Tr
(
Pm2e

−iHt/h̄ Pm2

)
=

t

(2π)d |G|

∑
λ

Aλe
iSλ/h̄χm2(gλ). (18)

Let us now multiply this with the complex conjugate of the corresponding expression for m1.
This gives

K (m1,m2)(τ )=
t2

(2π)2d |G|2
∑
λ,µ

AλA?µei(Sλ−Sµ)/h̄χ ?m1
(gµ)χm2(gλ). (19)

This formula generalizes (5) to arbitrary symmetries.
One now introduces the diagonal approximation, which involves keeping in this sum only

those terms that have a phase equal to one: that is, only to sum over those pairs of λ and µ
such that Sλ = Sµ. Since we consider the different iterations of a g orbit to be different and
since we have already discarded orbits that are non-primitive, and since, in the same vein, we
discard those orbits that have a non-trivial symmetry (that is, we assume that the only h ∈ G
such that h(p, q)= (p, q) is the identity), it is clear that the total number of such pairs is |G|2,
independent of λ and µ: there are |G| degenerate λ and the same number of degenerate µ. The
final result is hence

K (m1,m2)(τ )=
t2

(2π)2d

∑
λ

|Aλ|
2χ ?m1

(gλ) χm2 (gλ), (20)

where summation is carried out now over one representative g-orbit λ among the |G| degenerate
ones. In other terms, the sum corresponds to a desymmetrized problem. Keeping all g-orbits
would require a compensating factor of |G|−1 in front of the rhs of (20).

One now rewrites this as

K (m1,m2)(τ )=
t2

(2π)2d

∑
g

χ ?m1
(g)χm2(g)

∑
λ

|Aλ|
2δg,gλ (21)
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and we now make a final assumption altogether similar to those we have been making
throughout this paper: namely, we assume that sufficiently long g-orbits are equidistributed on
all elements of the group G; that is, an approximately equal number of large orbits corresponds
to every element g of the group G. While this is surely a reasonable assumption, it should be
pointed out that actually proving it seems altogether hopeless. To the best of our knowledge,
no results (apart from numerical work) are known concerning this issue. This leads us to state
that the sum over λ is in fact independent of g. This is, of course, sufficient to guarantee that
K (m1,m2)(τ )= 0 whenever m1 6= m2. To obtain the corrections due to encounters, we proceed
essentially as in the simple example treated above.

4. Continuous symmetry

In the presence of continuous symmetry, the problem has one or several integrals of motion due
to Noether’s theorem. We focus on one of them, which can be chosen as an action and whose
eigenvalues in the semiclassical limit are given by h̄m, where m is an integer. Our question is
whether correlation may exist between the energy spectra of two operators, Hm and Hm+1. Here
we denote by Hm the Hamiltonian H reduced to the appropriate symmetry subspace. In the
following, we limit ourselves to the case in which the dynamics of these Hamiltonians are all
overwhelmingly chaotic in the energy range of interest.

A simple example that we shall use to illustrate our argument is a system with axial
symmetry in a 3d space. Introducing cylindric coordinates, we can separate the angular part
of the eigenfunctions writing 9 = eimφψ(ρ, z) where ψ(ρ, z) is an eigenfunction of the
Hamiltonian Hm(ρ, z) in the subspace of states with the given z-component of the angular
momentum L z = h̄m. As stated above, we assume that the 2d classical motion described by
this Hamiltonian is chaotic. A moment’s reflection will show that this example contains all the
relevant features of the more general situation described at the beginning of this section.

In this case, the Hamiltonians Hm and Hm+1 correspond to the radial Hamiltonians with
magnetic quantum number m and m + 1, respectively. The magnetic quantum number enters
these Hamiltonians as a parameter, and the well-known theory of parametric correlations can
be applied. Special treatment is necessary when m = 0 or m ∼ 1. The difference between the
two Hamiltonians due to the centrifugal term W = L2

z/2Mρ2 (M is the mass of the particle) is
then of the formal order h̄2. However, the energy shifts associated with the change of m by 1
are of the order of h̄; this discrepancy is due to singularity of the centrifugal term at ρ = 0. The
appropriate Gutzwiller expansions in this case use the set of classical periodic orbits calculated
for L z = 0, i.e. m-independent. The m-dependence of the spectra is taken into account via an
appropriate phase added to the Maslov phase; the phase increment occurs each time the orbit
hits the axis ρ = 0; see the reviews [28, 29]. Since this additional phase is pseudo-random, the
cross-correlation functions between the spectra with different m ∼ 1 vanish due to the same
mechanism as that between the spectra of different parity in the discrete case.

Let us now turn to the case of |m| � 1; more precisely consider the semiclassical limit
h̄→ 0,m→∞ such that the angular momentum projection L z = h̄m remains constant. In this
case the centrifugal barrier W would not let the particle approach the z-axis; the singularity at
ρ = 0 will thus be deep in the classical shadow. The change in m by 1 brings about a change in
the Hamiltonian of the order of h̄, namely by 1Hm =1W = h̄∂W/∂L z. Before comparing the
eigenvalues at different m, one must subtract the overall drift of the spectrum upwards caused by
an increase in the centrifugal energy W . Note that this issue is similar to the one caused by the
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short periodic orbits in the discrete case: it arises from a difference in the one-particle densities
of the two systems and is an issue that can also be settled by means of an appropriate unfolding
procedure. This quantity can be evaluated semiclassically as the derivative of its average over
the energy shell,

〈W 〉 =

∫
d0δ (E − Hm)W∫

d0δ (E − Hm)
,

where d0 is the element of the phase space. Denoting by S0 a typical classical action within
the given (highly excited) energy range, we can introduce a dimensionless small parameter
ξ = h̄/S0 and write

Hm+1 = Hm + h̄

(
∂W

∂L z
−

〈
∂W

∂L z

〉)
≡ Hm + ξH ′,

(22)

H ′ = S0

(
∂W

∂L z
−

〈
∂W

∂L z

〉)
.

To appreciate the impact of the perturbation associated with Hm→ Hm+1, consider the
general problem of parametric correlation in the family of Hamiltonians Hξ = H0 + ξH ′, where
ξ is small and dimensionless; the Hamiltonians H0, H ′ are assumed to have finite classical
counterparts. Let us consider the cross form factor between the spectra of Hm and Hm+1 in the
semiclassical domain. We shall assume that ξ is so small that the periodic orbits of Hm, Hm+1

practically coincide; only their action difference has to be taken into account since it is referred
to as h̄.

The additional classical action due to the perturbation H ′ over a stretch of the orbit with
duration from t1 to t2 would be

1S ∼ ξ
∫ t2

t1

H ′ dt.

Now the well-established approach is to model the accumulation of 1S on a trajectory of a
chaotic system by a Gaussian stochastic process [30]; below, 〈〈. . .〉〉 denotes averaging over
such a process. This can be understood if we mentally divide the periodic orbit into pieces of
duration larger than the Lyapunov time TL = λ

−1, where λ is the Lyapunov constant; the action
differences accumulated at two such stretches would be uncorrelated. Let t = t2− t1� TL and
assume that there is no systematic action increment, 〈〈1S〉〉 = 0, which is guaranteed in our
case by subtraction of the average in definition (22) of the perturbation H ′. The averaged second
moment of 1S will grow proportional to t ,

〈〈1S2
〉〉 = aξ 2t,

where a is a purely classical, system-specific, parameter; its dimensionality is squared action
over time. Recalling that in a Gaussian process 〈〈exp(i8)〉〉 = exp(−〈〈82

〉〉/2), we obtain the
average of the exponential of the phase difference accumulated on a periodic orbit with the
period Tγ ,

〈〈ei/h̄1Sγ 〉〉 = e−a ξ2

2h̄2 Tγ .

Now let us use the semiclassical expression (4) for the cross-correlation form factor, which
we shall now denote by Kξ (τ ). Limiting ourselves to the diagonal approximation, we would
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obtain, for the time T = τTH,

Kξ,diag(τ )∼
1

δ

∑
T<Tγ<T +δ

A2
γ 〈〈e

i1Sξ /h̄〉〉 (23)

= e−a ξ2

2h̄2 T Kdiag(τ ). (24)

The quantity Kdiag(τ ) is the autocorrelation form factor in the diagonal approximation, i.e. 2τ
or τ depending on the presence or absence of the time reversal. The perturbation ξH ′ leads thus
to the decay of the form factor with the characteristic time Tdecay = 2h̄2/aξ 2.

Applying this result to the correlation between the spectra belonging to two neighboring
values of the quantum number m when ξ = h̄/S0, we obtain the decay time

Tdecay =
2S2

0

a
.

This time is classical, i.e. finite in the semiclassical limit; however, it could be much larger than
the ballistic time scale, i.e. the period of the shortest periodic orbits (time on which correlations
are expected anyway).

The corresponding dimensionless τdecay = Tdecay/TH turns into zero in the limit h̄→ 0. We
therefore find that the cross-correlation between spectra corresponding to different symmetries
vanishes in the universal regime. Considering that the periodic orbit expansions of the type
(4)—and above all the averaging procedure over large numbers of periodic orbits having nearly
the same action—are justified only for times exceeding the Ehrenfest time TE ∼ λ

−1 ln S0/h̄, the
vanishing of the cross-correlation only holds for times larger than TE. For times shorter than
TE, and hence in particular for times of the order of classical times, correlations are expected
to arise, based on the fact that both symmetry sectors have the same periodic orbits. Such
correlations will depend on the specific features of the periodic orbits and will thus be highly
system dependent. A possible connection with a recent discussion of the transition between
short-time effects and the universal regime [31] is left for future investigation.

5. Conclusions

In this paper, we have given a justification for the common assumption that spectra
corresponding to different IRs of a symmetry group of a given quantum chaotic problem are
independent in the semiclassical limit. More precisely we have shown in the semiclassical
limit that the two-point cross-correlation vanishes, a property also sometimes called weak
independence. For the specific case of a mirror symmetry, we showed that the cross-correlation
function is zero throughout the universal regime. The result is not limited to the diagonal
approximation and short times: the non-diagonal terms of the trace formula were also evaluated
and the semiclassical form of the spectral determinant was used to show that our result holds also
beyond the Heisenberg time. For arbitrary discrete symmetries, and for continuous symmetries,
we limited our argument to the diagonal approximation, but the arguments given for mirror
symmetries carry over.

A potentially interesting line for future work appears in continuous symmetries, where the
trace formulae reveal an unusual correlation on a classical time scale. The approximation used
is clearly not valid on this time scale, but the result might still be a hint that such correlations
exist and are different from the obvious ones resulting from short orbits.
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