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Abstract. Quantum theory (QT) is usually formulated in terms of abstract
mathematical postulates involving Hilbert spaces, state vectors and unitary
operators. In this paper, we show that the full formalism of QT can instead
be derived from five simple physical requirements, based on elementary
assumptions regarding preparations, transformations and measurements. This
is very similar to the usual formulation of special relativity, where two simple
physical requirements—the principles of relativity and light speed invariance—
are used to derive the mathematical structure of Minkowski space–time. Our
derivation provides insights into the physical origin of the structure of quantum
state spaces (including a group-theoretic explanation of the Bloch ball and
its three dimensionality) and suggests several natural possibilities to construct
consistent modifications of QT.
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1. Introduction

Quantum theory (QT) is usually formulated by postulating the mathematical structure and
representation of states, transformations and measurements. The general physical consequences
that follow (such as the violation of Bell-type inequalities [1], the possibility of performing state
tomography with local measurements or the factorization of integers in polynomial time [2])
come as theorems that use the postulates as premises. In this work, this procedure is reversed:
we impose five simple physical requirements, and this suffices to single out QT and derive
its mathematical formalism uniquely. This is very similar to the usual formulation of special
relativity, where two simple physical requirements—the principles of relativity and light speed
invariance—are used to derive the mathematical structure of Minkowski space–time and its
transformations.

The requirements can be schematically stated thus:

1. In systems that carry one bit of information, each state is characterized by a finite set of
outcome probabilities.

2. The state of a composite system is characterized by the statistics of measurements on the
individual components.
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3. All systems that effectively carry the same amount of information have equivalent state
spaces.

4. Any pure state of a system can be reversibly transformed into any other.

5. In systems that carry one bit of information, all mathematically well-defined measurements
are allowed by the theory.

These requirements are imposed on the framework of generalized probabilistic theories [3–9],
which already assumes that some operational notions (preparation, mixture, measurement
and counting relative frequencies of measurement outcomes) make sense. Owing to its
conceptual simplicity, this framework leaves room for an infinitude of possible theories,
allowing for weaker- or stronger-than-quantum non-locality [6], [10–14]. In this paper, we
show that QT and classical probability theory (CPT) are very special among those theories:
they are the only general probabilistic theories that satisfy the five requirements stated
above.

The non-uniqueness of the solution is not a problem, since CPT is embedded in QT; thus
QT is the most general theory satisfying the requirements. One can also proceed as Hardy in [4]:
if requirement 4 is strengthened by imposing continuity of the reversible transformations, then
CPT is ruled out and QT is the only theory satisfying the requirements. This strengthening can
be justified by the continuity of time evolution of physical systems.

It is conceivable that in the future, another theory may replace or generalize QT. Such a
theory must violate at least one of our assumptions. The clear meaning of our requirements
allows one to straightforwardly explore potential features of such a theory. The relaxation of
each of our requirements constitutes a different way to go beyond QT.

The search for alternative axiomatizations of QT is an old topic that goes back to
Birkhoff and von Neumann [8], and has been approached in many different ways: extending
propositional logic [7, 8], using operational primitives [3–6], [9], searching for information-
theoretic principles [5, 6, 10, 11], [19–21] and building upon the phenomenon of quantum
nonlocality [6], [10–13]. Alfsen and Shultz [22] have accomplished a complete characterization
of the state spaces of QT from a geometric point of view, but the result does not seem to have
an immediate physical meaning. In particular, the fact that the state space of a generalized bit is
a three-dimensional (3D) ball is an assumption there, whereas here it is derived from physical
requirements.

This work is particularly close to [4, 19], from which it takes some material. More
concretely, the multiplicativity of capacities and the Simplicity Axiom from [4] are replaced
by requirement 5. In comparison to [19], the fact that each state of a generalized
bit is mixture of two distinguishable ones, the maximality of the group of reversible
transformations and its orthogonality, and the multiplicativity of capacities, is also replaced by
requirement 5.

This paper is organized as follows: Section 2 contains an introduction to the framework
of generalized probabilistic theories, where some elementary results are stated without proof.
In section 3 the five requirements and their significance are explained in detail. Section 4
is the core of this work. It contains the characterization of all theories compatible with the
requirements, concluding that the only possibilities are CPT and QT. The conclusion (section 5)
recapitulates the results and adds some remarks. The appendix contains all lemmas and their
proofs.
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Figure 1. General experimental setup. From left to right, there are the
preparation, transformation and measurement devices. As soon as the release
button is pressed, the preparation device outputs a physical system in the state
specified by the knobs. The next device performs the transformation specified by
its knobs (which in particular can ‘do nothing’). The device on the right carries
out the measurement specified by its knobs, and the outcome (x or x̄) is indicated
by the corresponding light.

2. Generalized probabilistic theories

In CPT there can always be a joint probability distribution for all random variables under
consideration. The framework of generalized probabilistic theories (GPTs), also called the
convex operational framework, generalizes this by allowing the possibility of random variables
that cannot have a joint probability distribution or cannot be simultaneously measured (such as
noncommuting observables in QT).

This framework assumes that at some level there is a classical reality, where it makes
sense to talk about experimentalists performing basic operations such as preparations, mixtures,
measurements and counting the relative frequencies of outcomes. These are the primary
concepts of this framework. It also provides a unified way for all GPTs to represent states,
transformations and measurements. A particular GPT specifies which of these are allowed,
but it does not tell their correspondence to actual experimental setups. On its own, a GPT
can still make nontrivial predictions such as: the maximal violation of a Bell inequality [1],
the complexity-theoretic computational power [2, 18] and, in general, all information-theoretic
properties of the theory [6].

The framework of GPTs can be stated in different ways, but all lead to the same
formalism [3–9]. This formalism is presented in this section at a very basic level, providing
some elementary results without proofs.

2.1. States

Definition of a system. We associate with a setup like figure 1 a system if, for each configuration
of the preparation, transformation and measurement devices, the relative frequencies of the
outcomes tend to a unique probability distribution (in the large sample limit).

The probability of a measurement outcome x is denoted by p(x). This outcome can be
associated with a binary measurement that tells whether x happens or not (this second event
x̄ has probability p(x̄)= 1 − p(x)). The above definition of a system allows one to associate
with each preparation procedure a list of probabilities of the outcomes of all the measurements
that can be carried out on a system. As we show in section 4.3, our requirements imply that all
these probabilities p(x) are determined by a finite set of them; the smallest such set is used to
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represent the state

ψ =


1

p(x1)
...

p(xd)

=


ψ0

ψ1

...

ψd

 ∈ S ⊂ Rd+1. (1)

The measurement outcomes that characterize the state x1, . . . , xd are called fiducial, and in
general, there is more than one set of them (for example, a 1

2 -spin particle in QT is characterized
by the spin in any three linearly independent directions). Note that each of the fiducial outcomes
can correspond to a different measurement. The redundant component ψ0

= 1 is reminiscent of
QT, where one of the diagonal entries of a density matrix is redundant, since they sum up to
1. In fact ψ0

6= 1 is sometimes used to represent unnormalized states, but not in this paper,
where only normalized states are considered. The redundant component ψ0 allows one to use
the tensor-product formalism in composite systems (section 2.4), which simplifies the notation.

The set of all allowed states S is convex [23], because if ψ1, ψ2 ∈ S, then one can
prepare ψ1 with probability q, and ψ2 with probability 1 − q, effectively preparing the state
qψ1 + (1 − q)ψ2. The number of fiducial probabilities d is equal to the (affine) dimension of
S; otherwise one fiducial probability would be functionally related to the others and hence
redundant.

Suppose there is an Rd+1-vector ψ /∈ S, which is in the topological closure of S—that is, ψ
can be approximated by statesψ ′

∈ S to arbitrary accuracy. Since there is no observable physical
difference between perfect preparation and arbitrarily good preparation, we will consider ψ to
be a valid state and add it to the state space. This does not change the physical predictions of the
theory, but it has the mathematical consequence that state spaces become topologically closed.
Since state vectors (1) are bounded, and we are in finite dimensions (shown in section 4.3), state
spaces S are compact convex sets [23].

The pure states of a state space S are the ones that cannot be written as mixtures:
ψ 6= qψ1 + (1 − q)ψ2 with ψ1 6= ψ2 and 0< q < 1. Since S is compact and convex, all states
are mixtures of pure states [23].

2.2. Measurements

The probability of measurement outcome x when the system is in state ψ ∈ S is given by
a function �x(ψ). Suppose the system is prepared in the mixture qψ1 + (1 − q)ψ2, then the
relative frequency of outcome x does not depend on whether the label of the actual preparation
ψk is ignored before or after the measurement; hence

�x(qψ1 + (1 − q)ψ2)= q �x(ψ1)+ (1 − q)�x(ψ2) .

This means that the function �x is affine on S. The redundant component ψ0 in (1) allows one
to write this function as a linear map �x : Rd+1

→ R [3, 6].
An effect is a linear map � : Rd+1

→ R such that �(ψ) ∈ [0, 1] for all states ψ ∈ S.
Every function �x associated with an outcome probability p(x) is an effect. The converse
is not necessarily true: the framework of GPTs allows one to construct theories where some
effects do not represent possible measurement outcomes. These restrictions are analogous to
superselection rules, where some (mathematically well-defined) states are not allowed by the
physical theory. This is related to requirement 5. A tight effect � is one for which there are two
states ψ0, ψ1 ∈ S satisfying �(ψ0)= 0 and �(ψ1)= 1.
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An n-outcome measurement is specified by n effects �1, . . . , �n such that �1(ψ)+ . . .+
�n(ψ)= 1 for all ψ ∈ S. The number �a(ψ) is the probability of outcome a when the
measurement is carried out on the state ψ . The states ψ1, . . . , ψn are distinguishable if there
is an n-outcome measurement such that �a(ψb)= δa,b, where δa,b = 1 if a = b and δa,b = 0 if
a 6= b.

The capacity of a state space S is the size of the largest family of distinguishable states
and is denoted by c. This is the amount of classical information that can be transmitted by the
corresponding type of system, in a single-shot error-free procedure. (In QT the capacity of a
system is the dimension of its corresponding Hilbert space, which must not be confused with
the dimension of the state space d = c2

− 1, that is, the set of c × c complex matrices that are
positive and have unit trace.) A complete measurement on S is one capable of distinguishing c
states.

2.3. Transformations

Each type of system has associated with it the following: a state space, a set of measurements
and a set of transformations. A transformation T is a map T : S→ S. Similarly to
measurements, if a state is prepared as a mixture qψ1 + (1 − q)ψ2, it does not matter whether
the label of the actual preparation ψk is ignored before or after the transformation. Hence,

T (qψ1 + (1 − q)ψ2)= qT (ψ1)+ (1 − q)T (ψ2)

which implies that T is an affine map. The redundant component ψ0 in (1) allows one to extend
T to a linear map T : Rd+1

→ Rd+1 [3, 6].
A transformation T is reversible if its inverse T −1 exists and belongs to the set of

transformations allowed by the theory. The set of (allowed) reversible transformations of a
particular state space S forms a group G. For the same reason as for the state space itself, we
will assume that the group of reversible transformations is topologically closed. Previously, we
have seen that a state space S is bounded and hence the corresponding group of transformations
G is bounded, too. In summary, groups of transformations are compact [24].

2.4. Composite systems

Definition of a composite system. Two systems A and B constitute a composite system,
denoted AB, if a measurement for A together with a measurement for B uniquely specifies
a measurement for AB. This means that if x and y are measurement outcomes on A and B,
respectively, the pair (x, y) specifies a unique measurement outcome on AB, whose probability
distribution p(x, y) does not depend on the temporal order in which the subsystems are
measured.

The fact that subsystems are themselves systems implies that each has a well-defined
reduced state ψA, ψB , that does not depend on which transformations and measurements are
performed on the other subsystem (see the definition of a system in section 2.1). This is often
referred to as no-signaling. Let x1, . . . , xd A be the fiducial measurements of system A, and
y1, . . . , yd B those of B. The no-signaling constraints are

p(xi) = p(xi , y j)+ p(xi , ȳ j),

p(yi) = p(xi , y j)+ p(x̄i , y j)
(2)

for all i, j .

New Journal of Physics 13 (2011) 063001 (http://www.njp.org/)

http://www.njp.org/


7

An assumption that is often postulated additionally in the GPT context is requirement 2,
which states that the state of a composite system is completely characterized by the statistics of
measurements on the subsystems, that is, p(x, y). This and no-signaling (2) imply that states in
AB can be represented on the tensor-product vector space [3] as

ψAB =



1
...

p(xi)
...

p(y j)
...

p(xi , y j)
...


∈ SAB ⊂ RdA+1

⊗RdB +1. (3)

The joint probability of two arbitrary local measurement outcomes x, y is given by

p(x, y)= (�x ⊗�y)(ψAB) (4)

where �x is the effect representing x in A, that is, p(x)=�x(ψA), and analogously for
�y [3]. (The term ‘local’ is used when referring to subsystems, and has nothing to do
with spatial locations.) In other words, if {�A

1 , . . . , �
A
n } is an n-outcome measurement on

A and if {�B
1 , . . . , �

B
m} is an m-outcome measurement on B, then {�A

a ⊗�B
b | a = 1, . . . , n;

b = 1, . . . ,m} defines a measurement on AB with nm outcomes. Local transformations act on
the global state as

ψAB → (TA ⊗ TB)(ψAB), (5)

where TA is the matrix that represents the transformation in A, and analogously for TB [3]. The
reduced states

ψA =


1
...

p(xi)
...

 , ψB =


1
...

p(y j)
...

 (6)

are obtained from ψAB by picking the right components (3). Alternatively, reduced states can
be defined by �A(ψA)= (�A ⊗ 1)(ψAB) for any effect �A in A, where 1(ψB)= ψ0

B is the unit
effect. The reduced state ψA must belong to the state space of subsystem A, denoted SA, and
any state in SA must be the reduction of a state from SAB (analogously for subsystem B). This
implies that all product states

ψAB = ψA ⊗ψB (7)

are contained in SAB [3], and similarly, all tensor products of local measurements and
transformations are allowed on AB.

Given two fixed state spaces SA and SB , the previous discussion imposes constraints on
the state space of the composite system SAB . However, there are still many different possible
joint state spaces SAB , and some of them allow for larger violations of Bell inequalities than do
QT. In fact, this has been extensively studied [5, 6], [10–14], and is one of the reasons for the
popularity of generalized probabilistic theories.

Nothing prevents Bob’s system from being composite itself; hence, one can recursively
extend the definition of composite system and formulae (3)–(5) and (7) to more parties.

New Journal of Physics 13 (2011) 063001 (http://www.njp.org/)

http://www.njp.org/


8

2.5. Equivalent state spaces

Let L : S→ S ′ be an invertible affine map. If all states are transformed as ψ → L(ψ) and all
effects on S are transformed as �→� ◦L−1, then the outcome probabilities �(ψ) are left
unchanged. Analogously, if all transformations on S are mapped as T → L ◦ T ◦L−1, then their
action on the states is the same. The new state space S ′, together with the transformed effects
and transformations, is then just a different representation of S. In this case, we call S and S ′

equivalent. In the new representation, the entries of ψ need not be probabilities as in (1), but it
may have other advantages. In this work, several representations are used.

In the standard formalism of QT, states are represented by density matrices; however, they
can also be represented as in (1).

Changing the set of fiducial measurements is a particular type of L-transformation. For
example, if the components of the Bloch vector (of a quantum spin-1

2 particle) correspond
to spin measurements in non-orthogonal directions, then the Bloch sphere becomes an
ellipsoid.

2.6. Instances of generalized probabilistic theories

QT is an instance of GPT and can be specified as follows. The state space Sc with capacity
c is equivalent to the set of complex c × c-matrices ρ such that ρ > 0 and trρ = 1. This
set has dimension dc = c2

− 1, and its pure states are rank-one. The effects on Sc have the
form �(ρ)= tr(Mρ), where M is a complex c × c-matrix such that 06 M 6 I. The reversible
transformations act as ρ → VρV † with V ∈ SU(c). The capacity of a composite system AB is
the product of the capacities for the subsystems cAB = cAcB .

CPT is another instance of GPT, and can be specified as follows. The state space Sc with
capacity c is equivalent to the set of c-outcome probability distributions [p(1), . . . , p(c)], which
has dimension dc = c − 1 (in geometric terms, each Sc is a simplex). The pure states are the
deterministic distributions p(a)= δa,b with b = 1, . . . , c. The c-outcome measurement with
effects�a(ψ)= p(a) for a = 1, . . . , c distinguishes the c pure states; hence it is complete. Any
other measurement is a function of this one. The reversible transformations act by permuting the
entries of the state [p(1), . . . , p(c)]. The capacity of a composite system is also cAB = cAcB .
Note that CPT can be obtained by restricting the states of QT to diagonal matrices. In other
words, CPT is embedded in QT.

An instance of GPT that is not observed in nature is the generalized no-signaling theory [6],
colloquially called boxworld. By definition, state spaces contain all correlations (3) satisfying
the no-signaling constraints (2). Such state spaces have finitely many pure states, and some
of them violate Bell inequalities more strongly than any quantum state [12]. The effects in
boxworld are all generated by products of local effects. The group of reversible transformations
consists only of relabeling of local measurements and their outcomes, permutations of
subsystems and combinations thereof [14].

3. The requirements

This section contains the precise statement of the requirements, each followed by an explanation
of its significance.
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Requirement 1 (Finiteness). A state space with capacity c = 2 has finite dimension d.

If this did not hold, the characterization of a state of a generalized bit would require infinitely
many outcome probabilities, making state estimation impossible. It is shown below that this
requirement, together with the others, implies that all state spaces with finite capacity c have
finite dimension.

Requirement 2 (Local tomography). The state of a composite system AB is completely
characterized by the statistics of measurements on the subsystems A, B.

In other words, state tomography [3] can be performed locally. This is equivalent to the
constraint

(dAB + 1)= (dA + 1)(dB + 1) (8)

[3, 4]. This requirement can be recursively extended to more parties by letting subsystems A, B
be themselves composite.

Requirement 3 (Equivalence of subspaces). Let Sc and Sc−1 be systems with capacities c and
c − 1, respectively. If�1, . . . , �c is a complete measurement on Sc, then the set of states ψ ∈ Sc

with �c(ψ)= 0 is equivalent to Sc−1.

The notions of complete measurements and equivalent state spaces are defined in sections 2.2
and 2.5. In particular, the equivalence of Sc−1 and

S ′

c−1 := {ψ ∈ Sc :�c(ψ)= 0} ⊂ Sc (9)

implies that all measurements and reversible transformations on one of them can be
implemented on the other.

This requirement, first introduced in [4], implies that all state spaces with the same
capacity are equivalent: if Sc−1 and S̃c−1 are state spaces with capacity c − 1, then both are
equivalent to (9) and hence are equivalent to each other. In other words, the only property that
characterizes the type of system is the capacity to carry information. If we start with Sc and
apply requirement 3 recursively, we obtain a more general formulation: consider any subset of
outcomes {a1, . . . , ac′} ⊆ {1, . . . , c} of the complete measurement �1, . . . , �c; then the set of
states ψ ∈ Sc with

�a1(ψ)+ · · · +�ac′
(ψ)= 1 (10)

is equivalent to the state space Sc′ with capacity c′. This provides an onion-like structure for all
state spaces S1 ⊂ S2 ⊂ S3 ⊂ · · · .

The particular structure of QT simplifies the task of assigning a state space to a physical
system or experimental setup. It is not necessary to consider all possible states of the system, but
instead, the relevant ones for the context being analyzed need to be considered. For example,
an atom is sometimes modeled with a state space having two distinguishable states (c = 2),
even though its constituents have many more degrees of freedom. In particular, if we know that
only two energy levels are populated with nonzero probability, we can ignore all others and
effectively get a genuine quantum two-level state space. In a theory where this is not true, the
effective state space might depend on how many unpopulated energy levels are ignored, or on
the detailed internal state of the electron, for example. In order to avoid pathologies like this,
we postulate requirement 3.
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Requirement 4 (Symmetry). For every pair of pure states ψ1, ψ2 ∈ S there is a reversible
transformation G mapping one onto the other: G(ψ1)= ψ2.

The set of reversible transformations of a state space Sc forms a group, denoted Gc. This group
endows Sc with a symmetry, which makes all pure states equivalent. A group Gc is said to
be continuous if it is topologically connected: any transformation is the composition of many
infinitesimal ones [24]. Hardy invokes the continuity of time evolution in physical systems to
justify the continuity of reversible transformations [3, 4]; in this case, state spaces Sc must have
infinitely many pure states; this rules out CPT and singles out QT. However, all the analysis in
this work is done without imposing continuity, since we find it very interesting that the only
theory with state spaces having finitely many pure states, and satisfying the requirements, is
CPT.

Requirement 5 (All measurements allowed). All effects on S2 are outcome probabilities of
possible measurements.

It is shown below that, in combination with the other requirements, this implies that all effects
on all state spaces (with arbitrary c) appear as outcome probabilities of measurements in the
resulting theory. Note that requirement 5 has nontrivial consequences in conjunction with
the other requirements: adding effects as allowed measurements to a physical theory extends
the applicability of requirement 3.

For completeness, we would like to mention that requirement 5 can be replaced by the
following postulate, which was first put forward in an interesting paper that appeared after the
completion of this work [33]. It calls a state ‘completely mixed’ if it is in the relative interior of
state space. See lemma 9 in the appendix for details regarding how the proof of our main result
has to be modified in this case.

Requirement 5 ′ [33]. If a state is not completely mixed, then there exists at least one state
that can be perfectly distinguished from it.

4. Characterization of all theories satisfying the requirements

4.1. The maximally mixed state

We use the following notation: the system with capacity c has a state space Sc with dimension dc

and a group of reversible transformations Gc. The group Gc is compact (section 2.3) and, hence,
has a normalized invariant Haar measure [25]. This allows one to define the maximally mixed
state

µc =

∫
Gc

G(ψ) dG ∈ Sc, (11)

where ψ ∈ Sc is an arbitrary pure state. It follows from requirement 4 that the resulting state µc

does not depend on the choice of the pure state ψ . By construction, the maximally mixed state
is invariant:

G(µc)= µc for all G ∈ Gc. (12)

Moreover, lemma 1 shows that it is the only invariant state in Sc (this lemma and all others are
stated and proved in the appendix).

New Journal of Physics 13 (2011) 063001 (http://www.njp.org/)

http://www.njp.org/


11

S2
Ω
=
1 ψ1

ψ2

ψmix

Ω
on
e
=
1

ψone S2 Ω
on
e
=
1

ψone

Figure 2. The left panel is a state space whose boundary consists of facets (like
�= 1). Each facet contains infinitely many states (�= 1 contains ψ1, ψ2 and
all ψmix = qψ1 + (1 − q)ψ2). The right panel is a state space whose boundary
has no facets. Any state space has supporting hyperplanes containing a unique
state (like �one = 1 in both figures).

4.2. The generalized bit

A generalized bit is a system with capacity two. For any state ψ ∈ S2 in the standard
representation (1), its Bloch representation is defined by

ψ̂ = 2

 p(x1)−µ
1
2

...

p(xd2)−µ
d2
2

 ∈ Ŝ2 ⊂ Rd2 . (13)

States in the Bloch representation do not have the redundant component ψ0, so equations (4),
(5) and (7) become less simple. The invertible map L : S2 → Ŝ2 is affine but not linear; hence,
effects � in the Bloch representation (�̂=� ◦L−1) are affine but not necessarily linear. The
same applies to transformations (Ĝ = L ◦ G ◦L−1); however, the maximally mixed state in the
Bloch representation is the null vector µ̂2 = 0; therefore (12) becomes Ĝ(0)= 0, which implies
that Ĝ acts linearly (as a matrix).

Theorem 1. A state in Ŝ2 is pure if and only if it belongs to the boundary ∂Ŝ2.

Proof. In any convex set, pure states belong to the boundary [23]. Let us see the converse.
It is shown in [26] that any compact convex set has a supporting hyperplane containing

exactly one point of the set. Translated into our language: there is a tight effect �̂one on Ŝ2 such
that only one state ϕ̂one ∈ Ŝ2 satisfies �̂one(ϕ̂one)= 1; this is illustrated in figure 2. According
to requirement 5, the effect �̂one corresponds to a valid measurement outcome, and so does
1̂ − �̂one, where 1̂(ψ̂)= 1 for all ψ̂ ∈ Ŝ2. Thus, the two effects, �̂one and 1̂ − �̂one, define a
complete measurement on Ŝ2. Imposing requirement 3 on the single outcome �̂one constrains
the state space with unit capacity Ŝ1 to contain only one state.

Suppose there is a point in the boundary ϕ̂mix ∈ ∂Ŝ2 that is not pure: ϕ̂mix = qϕ̂1 + (1 − q)ϕ̂2

with ϕ̂1 6= ϕ̂2 and 0< q < 1. Every point in the boundary of a compact convex set has a
supporting hyperplane that contains it [23]. In our language: there is a tight effect �̂ on Ŝ2 such
that �̂(ϕ̂mix)= 1. The affine function �̂ is bounded: �̂(ϕ̂)6 1 for any ϕ̂ ∈ Ŝ2, which implies
�̂(ϕ̂1)= �̂(ϕ̂2)= 1; this is illustrated in figure 2. Like �̂one, the effect �̂ defines a complete
measurement, and requirement 3 can be imposed on the single outcome �̂, implying that Ŝ1
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contains more than one state. This is in contradiction to the previous paragraph; hence, all
points in the boundary are pure. ut

For the case d2 = 1, the state space S2 is a segment (a 1D ball) and hence the previous and
next theorems are trivial. For d2 > 1, the previous theorem implies that S2 contains infinitely
many pure states. The next theorem recovers the (quantum-like) Bloch sphere with a yet
unknown dimension, d2.

Theorem 2. There is a set of fiducial measurements for which Ŝ2 is a d2-dimensional unit ball.

Proof. Lemma 2 shows that there is an invertible real matrix S such that for each Ĝ ∈ Ĝ2

the matrix SĜS−1 is orthogonal. Let us redefine the set Ŝ2 by transforming the states as
ϕ̂ → ϕ̂′

= q Sϕ̂, where the number q > 0 is chosen such that all pure states are unit vectors
|ϕ̂′

|
2
= ϕ̂′Tϕ̂′

= 1. This is possible because in the transformed state space, all pure states are
related by orthogonal matrices (SGS−1) that preserve the norm. Since theorem 1 also applies to
the redefined set Ŝ ′

2, it must be a unit ball. In what follows, we define a new set of fiducial
measurements x ′

i such that the Bloch representation (13) associated with the new fiducial
probabilities p(x ′

i) coincides with the redefinition ϕ̂′.
Requirement 5 reveals that in Ŝ ′

2, all tight effects are allowed measurements. For each
unit vector ν̂ ∈ Rd2 , the function �̂ν̂(ϕ̂

′)= (1 + ν̂Tϕ̂′)/2 is a tight effect on the unit ball, and
conversely, all tight effects on the unit ball are of this form. The new set of fiducial measurements
x ′

i has effects �̂x ′

i
= �̂ν̂i , where

ν̂1 =


1
0
...

0

 , ν̂2 =


0
1
...

0

 , . . . , ν̂d2 =


0
0
...

1

 (14)

is a fixed orthonormal basis for Rd2 . For any state ϕ̂′ the new fiducial probabilities are p(x ′

i)=

�x ′

i
(ϕ̂′)= (1 + ϕ̂′i)/2, which implies ϕ̂′i

= 2[p(x ′

i)− 1/2]. This is just (13) with the new fiducial

measurements (note that µ̂′

2 = 0 and µ′i
2 = �̂x ′

i
(0)= 1/2). ut

In the rest of the paper, we will use the representation derived in theorem 2 above, where
the generalized bit is represented by a unit ball. Moreover, we will drop the prime in Ŝ ′

2, x ′

i , ϕ̂
′

used in the proof, and simply write Ŝ2, xi , ϕ̂.
As argued above, for each pure state ϕ ∈ S2, there is a binary measurement with associated

effect

�ϕ(ψ)= (1 + ϕ̂Tψ̂)/2, (15)

such that �̂ϕ(ϕ̂)= 1 and �̂ϕ(−ϕ̂)= 0. In summary, there is a correspondence between tight
effects and pure states in S2, and each pure state belongs to a distinguishable pair, {ϕ̂,−ϕ̂}.

4.3. Capacity and dimension

Requirements 1–3 imply that a state space with finite capacity c has finite dimension dc, which
generalizes requirement 1. To show this, consider a system composed of m generalized bits,
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with state space denoted by S2×m . Since d2 is finite, equation (8) implies that S2×m has finite
dimension. Owing to the fact that perfectly distinguishable states are linearly independent, its
capacity, denoted by cm , must be finite, too. Since systems with the same capacity are equivalent,
we must have cm 6= cn for m 6= n, and the sequence of integers c1, c2, . . . is unbounded. For any
capacity c there is a value of m such that c 6 cm; hence, by requirement 3 we have Sc ⊂ S2×m ,
which implies that Sc is finite dimensional.

In QT, the maximally mixed state (11) has two convenient properties. The first property: if
µA and µB are the maximally mixed states of systems A and B, then the maximally mixed state
of the composite system AB is

µAB = µA ⊗µB . (16)

The second property: in the state space Sc, there are c pure distinguishable states ψ1, . . . , ψc ∈

Sc such that

µc =
1

c

c∑
a=1

ψa. (17)

Lemmas 3 and 5 show that these two properties hold for every theory satisfying our
requirements. The following theorem exploits these properties to show that the capacity is
multiplicative (one of the axioms in [4]).

Theorem 3. If cA and cB are the capacities of systems A and B, then the capacity of the
composite system AB is

cAB = cAcB . (18)

Proof. Equation (17) allows one to write the maximally mixed states of systems A and B as

µA =
1

cA

cA∑
a=1

ϕA
a µB =

1

cB

cB∑
b=1

ϕB
b ,

where ϕA
1 , . . . , ϕ

A
cA

∈ SA are pure and distinguishable, and ϕB
1 , . . . , ϕ

B
cB

∈ SB are pure and
distinguishable, too. This and equation (16) imply

µAB = µA ⊗µB =
1

cAcB

cA∑
a=1

cB∑
b=1

ϕA
a ⊗ϕB

b . (19)

All states ϕA
a ⊗ϕB

b ∈ SAB can be distinguished with the tensor-product measurement; therefore

cAB > cAcB . (20)

Let (�1, . . . , �cAB ) be a complete measurement on AB that distinguishes the states
ψ1, . . . , ψcAB ∈ SAB ; that is, �k(ψk′)= δk,k′ . According to lemma 4 these states can be chosen
to be pure. Since

∑cAB
k=1�k(µAB)= 1, there is at least one value of k, denoted by k0, such that

�k0(µAB)6 1/cAB . (21)

The product of pure states ϕA
1 ⊗ϕB

1 is pure [3]; hence, requirement 4 reveals that there
is a reversible transformation G ∈ GAB such that G(ψk0)= ϕA

1 ⊗ϕB
1 . The measurement
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(�1 ◦ G−1, . . . , �cAB ◦ G−1) distinguishes the states G(ψ1), . . . ,G(ψcAB ). Inequality (21), the
invariance of µAB , expansion (19), the positivity of probabilities and (�k0 ◦ G−1)(ϕA

1 ⊗ϕB
1 )= 1

imply

1

cAB
> (�k0 ◦ G−1)(µAB)

=
1

cAcB

∑
a,b

(�k0 ◦ G−1)(ϕA
a ⊗ϕB

b )>
1

cAcB
.

This and (20) imply (18). ut

It is shown in [4] that the two multiplicativity formulae (8) and (18) imply the existence of
a positive integer r such that: for any c the state space Sc has dimension

dc = cr
− 1. (22)

The integer r is a constant of the theory, with values r = 1 for CPT and r = 2 for QT.

4.4. Recovering classical probability theory

Let us consider all theories with d2 = 1. In this case, equation (22) becomes dc = c − 1. In [4],
it is shown that the only GPT with this relation between capacity and dimension is CPT, as
described in section 2.6. We reproduce the proof for completeness.

Theorem 4. The only GPT with d2 = 1 satisfying requirements 1–5 is classical probability
theory.

Proof. Let Sc be a state space and (�1, . . . , �c) a complete measurement that distinguishes
the states ψ1, . . . , ψc ∈ Sc. The vectors ψ1, . . . , ψc ∈ Rc are linearly independent; otherwise
ψa =

∑
b 6=a tb ψb and 1 =�a(ψa) =

∑
b 6=a tb �a(ψb)= 0 gives a contradiction. Therefore, any

state ψ ∈ Sc ⊆ Rc can be written in this basis ψ =
∑

a qa ψa, where qa =�a(ψ) turns out to
be the probability of outcome a. The numbers (q1, . . . , qc) constitute a probability distribution;
hence, there is a one-to-one correspondence between states in Sc and c-outcome probability
distributions. This kind of set is called a dc-simplex. A similar argument shows that the effects
�1, . . . , �c are linearly independent. Hence, any effect� on Sc can be written as�=

∑
a ha�a,

and the constraint 06�(ψa)6 1 implies 06 ha 6 1. In other words, every measurement on
Sc is generated by the complete one.

Every reversible transformation on Sc is a symmetry of the dc-simplex, i.e. a permutation
of pure states. Due to requirement 4, there is a reversible transformation on the bit S2 that
exchanges the two pure states. Using requirement 3 inductively: if there is a transformation
on Sc−1 that exchanges two pure states and leaves the rest invariant, this transposition can be
implemented on Sc, also leaving all other pure states invariant. Therefore, all transpositions can
be implemented in Sc, and those generate the full group of permutations. ut

4.5. Reversible transformations for the generalized bit

In the rest of the paper, only theories with d2 > 1 are considered. Theorem 2 shows that Ŝ2 is a
d2-dimensional unit ball. Equation (22) for c = 2 implies that d2 is odd. The pure states in Ŝ2 are
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the unit vectors in Rd2 . A reversible transformation Ĝ ∈ Ĝ2 maps pure states onto pure states;
hence it preserves the norm and has to be an orthogonal matrix ĜT

= Ĝ−1. Therefore, Ĝ2 is a
subgroup of the orthogonal group O(d2).

Requirement 4 imposes that for any pair of unit vectors ϕ̂, ϕ̂′ there is Ĝ ∈ Ĝ2 such that
Ĝ(ϕ̂)= ϕ̂′. In other words, Ĝ2 is transitive on the sphere [27, 28]. According to lemma 6, if Ĝ2

is transitive on the sphere, then the largest connected subgroup Ĉ2 ⊆ Ĝ2 is also transitive on the
sphere. The matrix group Ĉ2 is compact and connected and hence it is a Lie group (theorem 7.31
in [24]). A classification of all connected compact Lie groups that are transitive on the sphere is
presented in [27, 28]. For odd d2, the only possibility is Ĉ2 = SO(d2), except for d2 = 7 where
there are additional possibilities: Ĉ2 = MG2 MT

⊂ SO(7) for any M ∈ O(7), where G2 is the
fundamental representation of the smallest exceptional Lie group [29]. For even d2, there are
many more possibilities [27, 28], but equation (22) implies that d2 must be odd.

The stabilizer of the vector ν̂1 defined in (14) is the subgroup Ĥ2 = {Ĝ ∈ Ĝ2 : Ĝ(ν̂1)= ν̂1}.
Each transformation Ĥ ∈ Ĥ2 has the form

Ĥ =

(
1 0T

0 H̄

)
,

where H̄ ∈ H̄2 is the nontrivial part. If Ĉ2 = SO(d2), then SO(d2 − 1)⊆ H̄2. In the case d2 = 7,
if Ĉ2 = MG2 MT then H̄2 contains (up to the similarity M) the real 6D representation of SU(3)
given by

H̄ =

(
re U im U

−im U re U

)
, (23)

where re U and im U are the real and imaginary parts of U ∈ SU(3) (see exercise 22.27 in [29]).

4.6. Two generalized bits

The joint state space of two S2 systems is denoted by S2,2. The multiplicativity of the capacity
(18) implies that S2,2 is equivalent to S4. However, we write S2,2 to emphasize the bipartite
structure.

In what follows, instead of using the standard representation for bipartite systems (3) we
generalize the Bloch representation to two generalized bits. A state ψAB ∈ S2,2 has the Bloch
representation ψ̂AB = [α, β,C] with

αi
= 2p(xi)− 1,

β j
= 2p(y j)− 1,

C i j
= 4p(xi , y j)− 2p(xi)− 2p(y j)+ 1

(24)

for i, j = 1, . . . , d2. Note that α = ψ̂A and β = ψ̂B are the reduced states in the Bloch
representation (13). The correlation matrix can also be written as C i j

= p(xi , y j)− p(xi , ȳ j)−

p(x̄i , y j)+ p(x̄i , ȳ j) and characterizes the correlations between subsystems. Product states have
the Bloch representation

(ϕA ⊗ϕB)
∧

=
[
ϕ̂A, ϕ̂B, ϕ̂Aϕ̂

T
B

]
(25)
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with a rank-one correlation matrix. In QT, where d2 = 3, two-qubit density matrices are often
represented by [α, β,C] through formula (41). Definition (24) implies

−16 αi , β j ,C i j 6 1. (26)

The invertible map L[ψAB] = ψ̂AB defined by (24) also determines the Bloch
representation of effects �̂= � ◦L−1. In particular, the tensor product of two effects of the
form (15) is

(�ϕA⊗�ϕB )
∧[α, β,C] = (1 + ϕ̂T

Aα + ϕ̂T
Bβ + ϕ̂T

AC ϕ̂B)/4. (27)

The map L also determines the action of reversible transformation in the Bloch representation.
Since L is affine but not linear, the action Ĝ = L ◦ G ◦L−1 need not be linear. Identities (16, 25)
and µ̂2 = 0 imply that the maximally mixed state in Ŝ2,2 is µ̂2,2 = (µ̂2, µ̂2, µ̂2µ̂

T
2)= 0. This and

(12) imply that transformations Ĝ2,2 act on the generic vector [α, β,C] as matrices. In particular,
local transformations G A,G B ∈ G2 act as

(G A ⊗ G B)
∧[α, β,C] = [Ĝ Aα, Ĝ Bβ, Ĝ ACĜT

B]. (28)

Section 4.5 concludes that Ĝ2 consists of orthogonal matrices, and lemma 8 shows that all
transformations in Ĝ2,2 are orthogonal, too. Orthogonal matrices preserve the norm of vectors;
therefore all pure states ψ ∈ S2,2 satisfy

|ψ̂ |
2
= |α|

2 + |β|
2 + tr(CTC)= 3. (29)

The constant in the right-hand side can be obtained by letting ψ̂ = [α, α, ααT] with |α| = 1.

4.7. Consistency in the subspaces of two generalized bits

In this subsection, we use a trick introduced in [19]: to impose the equivalence between a
particular subspace of S2,2 and S2 (requirement 3).

Consider the unit vector ν̂1 from (14) and the two distinguishable pure states ϕ̂0 = ν̂1 and
ϕ̂1 = −ν̂1 from Ŝ2. The four pure states ϕa,b = ϕa ⊗ϕb ∈ S2,2 can be distinguished with the
complete measurement �a,b =�ϕa ⊗�ϕb , where a, b ∈ {0, 1}. Formula (27) implies that

�̂0,0[α, β,C] = (1 +α1 +β1 + C1,1)/4, (30)

�̂1,1[α, β,C] = (1 −α1
−β1 + C1,1)/4. (31)

Requirement 3 implies that the subspace

S ′

2 = {ψ ∈ S2,2 : (�0,0 +�1,1)(ψ)= 1}

is equivalent to S2. By adding (30) and (31), it becomes clear that a state ψ̂ = [α, β,C] belongs
to Ŝ ′

2 if and only if C1,1
= 1. Moreover, if ψ ∈ S ′

2, then it follows from �̂0,1(ψ̂)> 0 and
�̂1,0(ψ̂)> 0 that α1

= β1.

Theorem 5. The state space of a generalized bit has dimension three (d2 = 3).

Proof. Recall that the case under consideration is odd d2 larger than one. The space S ′

2 ⊂ S2,2

is equivalent to S2, which is a d2-dimensional unit ball. If ϕ0,0 and ϕ1,1 are considered the poles
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of this ball, then the equator is the set of states ψeq such that �0,0(ψeq)=�1,1(ψeq)= 1/2.
Equations (30) and (31) reveal that equator states have α1

= β1
= 0, and then

ψ̂eq =

[(
0
ᾱ

)
,

(
0
β̄

)
,

(
1 τ̄ T

γ̄ C̄

)]
, (32)

where ᾱ, β̄, γ̄ , τ̄ ∈ Rd2−1 and C̄ ∈ R(d2−1)×(d2−1). Consider the action of G A ⊗ I for G A ∈ G2 on
an equator state, ψeq. Since Ĝ2 is transitive on the unit sphere, so if γ̄ 6= 0, then there is some
Ĝ A ∈ Ĝ2 such that the correlation matrix transforms into

Ĝ A

(
1 τ̄ T

γ̄ C̄

)
=

(√
1 + |γ̄ |2 ?

0 ?

)
,

which is in contradiction to (26). Therefore γ̄ = 0, and by a similar argument τ̄ = 0.
The stabilizer of ν̂1 is the largest subgroup Ĥ2 ⊂ Ĝ2, which leaves ν̂1 invariant (section 4.5).

For any pair HA, HB ∈H2 the identity�a,b ◦ (HA ⊗ HB)=�a,b holds, which implies that if ψeq

belongs to the equator (32), then

(HA ⊗ HB)(ψeq)
∧

=

[(
0

H̄Aᾱ

)
,

(
0

H̄Bβ̄

)
,

(
1 0T

0 H̄AC̄ H̄ T
B

)]
also belongs to the equator. The equator is a unit ball of dimension d2 − 1. Since the set

{(HA ⊗ HB)(ψeq) : HA, HB ∈H2} (33)

is a subset of the equator, the dimension of its affine span is at most d2 − 1.
Consider the case C̄ = 0. The normalization condition (29) implies |ᾱ| = |β̄| = 1. The set

{H̄Aᾱ : H̄A ∈ H̄2} has dimension d2 − 1, and the same for {H̄Bβ̄ : H̄B ∈ H̄2}. Therefore, the set
(33) has dimension at least 2(d2 − 1), generating a contradiction.

Consider the case C̄ 6= 0. The group action on C̄ corresponds to the exterior tensor product
H̄2� H̄2 = {H̄A ⊗ H̄B : H̄A, H̄B ∈ H̄2}. If d2 > 3 and SO(d2 − 1) ⊆ H̄2, then H̄2 is irreducible
in Cd2−1, and a simple character-based argument shows that H̄2� H̄2 is irreducible in (Cd2−1)⊗2

(see p 427 in [29]). Hence, the set

{H̄AC̄ H̄ T
B : H̄A, H̄B ∈ H̄2} (34)

has dimension (d2 − 1)2, which conflicts with the dimensionality requirements of (33). If d2 = 7
and H̄2 contains the representation of SU(3) given in (23), then the subgroup

H̄ =

(
U 0
0 U

)
with U ∈ SO(3)⊂ SU(3) has two invariant C3 subspaces. Therefore, the invariant subspaces of
H̄2� H̄2 have at least dimension 9, and independently of C̄ , the set (34) has at least dimension
9, which is in conflict with the dimensionality requirements of (33). So the only possibility is
d2 = 3. ut

From now on, only the case d2 = 3 is considered. Section 4.5 reveals that SO(3)⊆ Ĝ2 ⊆ O(3),
which implies that either Ĝ2 = O(3) and H̄2 = O(2), or Ĝ2 = SO(3) and H̄2 = SO(2).

New Journal of Physics 13 (2011) 063001 (http://www.njp.org/)

http://www.njp.org/


18

Let us show that the first case is impossible. The group H̄2 = O(2) is irreducible in C2;
therefore, H̄2� H̄2 is irreducible in (C2)⊗2. Three paragraphs above, it is shown that C̄ 6= 0,
hence the set (34) has dimension (d2 − 1)2, which is a lower bound for the one of (33), which is
larger than the allowed one (d2 − 1 = 2).

Let us address the second case. The group H̄2 = SO(2) is irreducible in R2 but reducible in
C2; so the previous argument does not hold. The vector space of 2 × 2 real matrices decomposes
into the subspace generated by rotations

R+ =

(
cos v sin v

− sin v cos v

)
, (35)

and the one generated by reflections

R− =

(
cos v sin v
sin v − cos v

)
, (36)

where detR± = ±1. For any pair H̄A, H̄B ∈ H̄2, the matrix H̄A R+ H̄ T
B is a rotation and the matrix

H̄A R− H̄ T
B is a reflection; therefore the 2D subspaces (35) and (36) are invariant under H̄2� H̄2.

Since the equator has dimension d2 − 1 = 2, all matrices C̄ 6= 0 must be fully contained in one
of the two subspaces spanned by (35) or (36); otherwise the dimension of the set (33) would be
too large again. For the same reason ᾱ = β̄ = 0.

Depending on whether C̄ is in the subspace generated by R+ from (35) or by R− from (36),
the states in the equator of S ′

2 are either ψ̂+
eq or ψ̂−

eq, where

ψ̂±

eq =

0
0
0

 ,
0

0
0

 ,
1 0 0

0 cos v sin v
0 ∓ sin v ± cos v

 .
The proportionality constants in C̄ ∝ R± are fixed by normalization (29). It turns out
that both the symmetric case ψ̂−

eq and the antisymmetric case ψ̂+
eq correspond to different

representations of the same physical theory—that is, the corresponding state spaces (together
with measurements and transformations) are equivalent in the sense of section 2.5. To see this,
define the linear map τ̂ : Ŝ2 → Ŝ2 as τ̂ (α1, α2, α3)

T := (α1, α2,−α3)
T; that is, a reflection in the

Bloch ball. The equivalence transformation is defined as L := τ ⊗ I (in quantum information
terms, this is a ‘partial transposition’). This map respects the tensor product structure, leaves
the set of product states invariant and satisfies L̂(ψ̂+

eq)= ψ̂−

eq [19]. In other words, we have
reduced the discussion of the antisymmetric theory to that of the symmetric theory6, which will
be considered in the rest of the paper.

The orthogonality of the matrices in Ĝ2,2 implies that Ŝ ′

2 is a 3D ball, and not just affinely
related to it. Hence, all states on the surface of the ball Ŝ ′

2 ⊂ Ŝ2,2 can be parameterized in polar

6 As a physical interpretation of the antisymmetric case, consider two observers who have never met before, but
who have independently built devices to measure spin- 1

2 particles in three orthogonal directions. If they never had
the chance to agree on a common ‘handedness’ of spatial coordinate systems, and happen to have chosen two
different orientations, they will measure antisymmetric correlation matrices on shared quantum states. The ‘three-
bit no-go result’ from [19] can be interpreted as follows: if there is a third observer, then it is impossible that every
pair of parties measures antisymmetric correlation matrices.
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coordinates u ∈ [0, π) and v ∈ [0, 2π) as

ψ̂(u, v)=

cos u
0
0

,
cos u

0
0

,
1 0 0

0 sin u cos v sin u sin v
0 sin u sin v − sin u cos v

 . (37)

These states cannot be written as proper mixtures of other states from Ŝ ′

2. It is easy to see that
this implies that they are pure states in Ŝ2,2.

4.8. The Hermitian representation

In this subsection, a new (more familiar) representation is introduced, where states in S2 are
represented by 2 × 2 Hermitian matrices. For any state ψ ∈ S2 in the standard representation
(1), define the linear map

L[ψ] = ψ0 I− σ 1
− σ 2

− σ 3

2
+

3∑
i=1

ψ iσ i . (38)

The Pauli matrices

σ 1
=

(
0 1
1 0

)
, σ 2

=

(
0 −i
i 0

)
, σ 3

=

(
1 0
0 −1

)
,

together with the identity I, constitute an orthogonal basis for the real vector space of Hermitian
matrices. In terms of the Bloch representation, the map (38) has the familiar form

L[ψ] =
1

2

(
I+

3∑
i=1

ψ̂ iσ i

)
.

All positive unit-trace 2 × 2 Hermitian matrices can be written in this way with ψ̂ in the unit
sphere. Since Ŝ2 is a 3D unit sphere, the set L[S2] is the set of quantum states. The extreme
points of L[S2] are the rank-one projectors: each pure state ψ ∈ S2 satisfies L[ψ] = |ψ〉〈ψ |,
where the vector |ψ〉 ∈ C2 is defined up to a global phase. The effect (15) associated with the
pure state ϕ ∈ S2 is

�ϕ(ψ)=
(
�ϕ◦L−1

)
(L[ψ])= tr (|ϕ〉〈ϕ|L[ψ]) . (39)

Note that the state ϕ and its associated effect �ϕ are both represented by |ϕ〉〈ϕ|. The action of a
reversible transformation Ĝ ∈ Ĝ2 = SO(3) in the Hermitian representation is

L[G(ψ)] = UL[ψ]U †,

where U ∈ SU(2) is related to Ĝ via

3∑
j=1

Ĝ j iσ j
= Uσ iU †, (40)

and Ĝ j i are the matrix components (equation VII.5.12 in [25]). In summary, the generalized bit
in all theories satisfying d2 > 1 and the requirements is equivalent to the qubit in QT.
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4.9. Reconstructing quantum theory

In this subsection, the main result of this work is proved. But before that, let us introduce some
notation.

In QT, the state space with capacity c and the corresponding group of reversible
transformations are

SQ
c = {ρ ∈ Cc×c : ρ > 0, trρ = 1},

GQ
c = {U ⊗ U ∗ : U ∈ SU(c)}.

The joint state space of m generalized bits is denoted by S2×m and the corresponding group of
reversible transformations by G2×m . The Hermitian representation of a state ψ ∈ S2×m is defined
as L⊗m[ψ], where L⊗m := L⊗ · · · ⊗L, and L has been defined in (38). The map L⊗m acts
independently on each tensor factor; hence it translates the tensor product structure from the
standard representation (4), (5) and (7) into the Hermitian one. For example, if ϕ ∈ S2 is a pure
state, then L⊗m[ϕ⊗m] = |ϕ〉〈ϕ|

⊗m . The notation

SH
2×m = L⊗m[S2×m ],

GH
2×m = L⊗m

◦G2×m ◦ (L⊗m)−1

will be useful. The Hermitian representation of a state ψ̂AB = [α, β,C] ∈ Ŝ2,2 is

L⊗2[ψAB] =
1

4

I⊗ I+ 3∑
i=1

αiσ i
⊗ I+

3∑
j=1

β jI⊗ σ j +
3∑

i, j=1

C i jσ i
⊗ σ j

 . (41)

The action of local transformations G A,G B ∈ G2 on ψAB ∈ S2,2 is

L⊗2
[
(G A ⊗ G B)(ψAB)

]
= (UA ⊗ UB)ρAB(UA ⊗ UB)

†, (42)

where ρAB = L⊗2[ψAB] and UA,UB ∈ SU(2) are related to G A,G B via (40). Now, we are ready
to prove theorem 6.

Theorem 6. The only GPT with d2 > 1 satisfying requirements 1–5 is QT.

Proof. We start by reproducing an argument from [19] that shows that SQ
4 ⊆ SH

2,2. A particular
family of pure states in S2,2 is ψ(u)= ψ(u, 0), defined in (37). The Hermitian representation of
ψ(u) is the projector L⊗2[ψ(u)] = |ψ(u)〉〈ψ(u)| onto the C2

⊗C2-vector

|ψ(u)〉 = cos
u

2
|+〉⊗|+〉 + sin

u

2
|−〉⊗|−〉,

where |+〉 = (1, 1)T/
√

2 and |−〉 = (−1, 1)T/
√

2. From the Schmidt decomposition, it follows
that all rank-one projectors in C4×4 can be written as (UA ⊗ UB)|ψ(u)〉〈ψ(u)|(UA ⊗ UB)

† for
some value of u and some local unitaries UA,UB ∈ SU(2). Thus, all rank-one projectors are
pure states in SH

2,2. Their mixtures generate all of SQ
4 ; therefore SQ

4 ⊆ SH
2,2.

Direct calculation shows that

tr
(
L⊗2[ψ]L⊗2[ψ ′]

)
=

1
4 + 1

4

[
αTα′ +βTβ ′ + tr(CTC ′)

]
(43)
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for any pair of states ψ̂ = [α, β,C] and ψ̂ ′
= [α′, β ′,C ′] from Ŝ2,2. Lemma 8 shows that all

Ĝ ∈ Ĝ2,2 are orthogonal matrices. Therefore, the Euclidean inner product between states, as
in the right-hand side of (43), is preserved by the action of any Ĝ ∈ Ĝ2,2. Equality (43) maps
this property to the Hermitian representation: any H ∈ GH

2,2 preserves the Hilbert–Schmidt inner
product between states:

tr
[
H(ρ) H(ρ ′)

]
= tr(ρ ρ ′), (44)

for all ρ, ρ ′
∈ SH

2,2.
For any pure state ϕ ∈ S2, the rank-one projector |ϕ〉〈ϕ| ⊗ |ϕ〉〈ϕ| = L⊗2[ϕ⊗ϕ] is a pure

state in SH
2,2, and tr(|ϕ〉〈ϕ| ⊗ |ϕ〉〈ϕ| ρ)= (�ϕ ⊗�ϕ) ◦ (L⊗2)−1(ρ) is a measurement on SH

2,2.
Any rank-one projector |ψ〉〈ψ | ∈ C4×4 is a pure state in SH

2,2; hence there is H ∈ GH
2,2 such

that H(|ϕ〉〈ϕ| ⊗ |ϕ〉〈ϕ|)= |ψ〉〈ψ |. Composing the transformation H with the effect �ϕ ⊗�ϕ

generates the effect (�ϕ ⊗�ϕ) ◦ (L⊗2)−1
◦ H−1, which maps any ρ ∈ SH

2,2 to

tr
[
|ϕ〉〈ϕ| ⊗ |ϕ〉〈ϕ| H−1(ρ)

]
= tr[|ψ〉〈ψ | ρ] , (45)

where (44) has been used. In summary, every rank-one projector |ψ〉〈ψ | ∈ C4×4 has an
associated effect (45) which is an allowed measurement on SH

2,2, and these generate all quantum
effects.

We have seen that all quantum states SQ
4 are contained in SH

4 . But can there be other states?
If so, the associated Hermitian matrices should have a negative eigenvalue (note that all states
in the Hermitian representation (41) have unit trace). If ρ has a negative eigenvalue and |ψ〉

is the corresponding eigenvector, then the associated measurement outcome (45) has negative
probability. Hence, we conclude that SQ

4 = SH
4 , and similarly for the measurements.

All reversible transformations H ∈ GH
4 map pure states to pure states, i.e. rank-one

projectors to rank-one projectors. According to Wigner’s theorem [30], every map of this kind
can be written as H(|ψ〉〈ψ |)= (U |ψ〉)(U |ψ〉)†, where U is either unitary or anti-unitary. If U is
anti-unitary, it follows from Wigner’s normal form [31] that there is a 2D U -invariant subspace
spanned by two orthonormal vectors |θ0〉, |θ1〉 ∈ C4 such that U (t0|θ0〉 + t1|θ1〉) equals either
t̄0|θ0〉 + t̄1|θ1〉 or t̄1eis

|θ0〉 + t̄0e−is
|θ1〉 for some s ∈ R. In both cases, U acts as a reflection in the

corresponding Bloch ball, which contradicts requirement 3, because we know that G2 = SO(3).
Therefore GH

4 ⊆ GQ
4 .

We know that GH
2,2 contains all local unitaries. Since this group is transitive on the pure

states, it contains at least one unitary that maps a product state to an entangled state. It is well
known [32] that this implies that the corresponding group of unitaries constitutes a universal
gate set for quantum computation; that is, it generates every unitary operation on two qubits.
This proves that GH

4 = GQ
4 .

Consider m generalized bits as a composite system. From the previously discussed case
of S2,2, we know that every unitary operation on every pair of generalized bits is an allowed
transformation on SH

2×m . But two-qubit unitaries generate all unitary transformations [32]; hence
GQ

2m ⊆ GH
2×m . By applying all these unitaries to |ϕ〉〈ϕ|

⊗m , all pure quantum states are generated;
hence SQ

2m ⊆ SH
2×m . Reasoning as in the S2,2 case, for every rank-one projector |ψ〉〈ψ | acting

on C2m
, the associated effect that maps ρ ∈ SH

2×m to tr(|ψ〉〈ψ |ρ) is an allowed measurement
outcome on SH

2×m . This implies that all matrices in SH
2×m have positive eigenvalues; therefore,

SH
2×m = SQ

2m and GH
2×m = GQ

2m .
The remaining cases of capacities c that are not powers of two are treated by applying

requirement 3, assuming that Sc ⊂ S2m for large enough m. ut
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5. Conclusion

We have imposed five physical requirements on the framework of generalized probabilistic
theories. These requirements are simple and have a clear physical meaning in terms of basic
operational procedures. It is shown that the only theories compatible with them are CPT and QT.
If requirement 4 is strengthened by imposing the continuity of reversible transformations, then
the only theory that survives is QT. Any other theory violates at least one of the requirements;
hence, the relaxation of each constitutes a different way to go beyond QT.

The standard formulation of QT includes two postulates that do not follow from our
requirements: (i) the update rule for the state after a measurement and (ii) the Schrödinger
equation. If desired, these can be incorporated into our derivation of QT by imposing the
following two extra requirements: (i) if a system is measured twice ‘in rapid succession’ with
the same measurement, the same outcome is obtained both times [4] and (ii) closed systems
evolve reversibly and continuously in time.

This derivation of QT contains two steps that deserve a special mention. Firstly, a direct
consequence of requirement 3 is that S2 is fully surrounded by pure states, which together with
requirement 4 implies that S2 is a ball. Secondly, this ball has dimension three, since d = 3 is
the only value for which SO(d − 1) is reducible in Cd .

Modifications and generalizations of QT are of interest in themselves and could be
essential to construct a QT of gravity. Some well-known attempts [15, 16] have shown that
straightforward modifications of QT’s mathematical formalism quickly lead to inconsistencies,
such as superluminal signaling [17]. This work provides an alternative way to proceed. We have
shown that the Hilbert space formalism of QT follows from five simple physical requirements.
This gives five different consistent ways to go beyond QT, each obtained by relaxing one of our
requirements.
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Appendix. Lemmas

Lemma 1. In any state space Sc, the only state ψ ∈ Sc that is invariant under all reversible
transformations

G(ψ)= ψ for all G ∈ Gc (A.1)

is the maximally mixed state µc, defined in (11).
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Proof. Suppose ψ ∈ Sc satisfies (A.1). Any state can be written as a mixture of pure states:
ψ =

∑
k qk ψk . The normalization

∫
Gc

dG = 1, condition (A.1), the linearity of G, the purity of
all ψk , the definition of µc and

∑
k qk = 1 imply that

ψ =

∫
Gc

ψ dG =

∫
Gc

G(ψ) dG

=

∑
k

qk

∫
Gc

G(ψk) dG =

∑
k

qk µc = µc,

which proves the claim. ut

Lemma 2. If G is a compact real matrix group, then there is a real matrix S > 0 such that for
each G ∈ G the matrix SGS−1 is orthogonal.

Proof. Since the group G is compact, there is an invariant Haar measure [25], which allows us
to define

P =

∫
G
GTG dG.

Since each G is invertible, the matrix GTG is strictly positive, and P is positive too.
Define S =

√
P > 0, where both S, S−1 are real and symmetric. For any G ∈ G, we have

(SGS−1)T(SGS−1)= I, which implies orthogonality. ut

Lemma 3. If µA and µB are the maximally mixed states of the state spaces SA and SB , then the
maximally mixed state of the composite system SAB is

µAB = µA ⊗µB .

Proof. The pure states ψ A in SA linearly span RdA+1, and the pure states ψ B in SB linearly span
RdB +1. Therefore, pure product states ψ A

⊗ψ B span RdA+1
⊗RdB +1. In particular, the maximally

mixed state (11) of SAB can be written as

µAB =

∑
a,b

ta,b ψ
A
a ⊗ψ B

b , (A.2)

where ta,b ∈ R are not necessarily positive coefficients, and all ψ A
a , ψ

B
b are pure. From

definition (1), the first component of the vector equality (A.2) implies
∑

a,b ta,b = 1. The
maximally mixed state is invariant under all reversible transformations, in particular under the
local ones

µAB =

∫
GA

dG A

∫
GB

dG B (G A ⊗ G B)(µAB)

=

∑
a,b

ta,b

[∫
GA

dG A G A(ψ
A
a )

]
⊗

[∫
GB

dG B G B(ψ
B
b )

]
=

∑
a,b

ta,b µA ⊗µB = µA ⊗µB,

where the same tricks as those of lemma 1 have been used. ut
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Lemma 4. For every tight effect �, there is a pure state ψ such that �(ψ)= 1. Also, if a
measurement �1, . . . , �n distinguishes n states ψ1, . . . , ψn, then these states can be chosen to
be pure.

Proof. By definition, for each tight effect � there is a (not necessarily pure) state ψ ′ such
that �(ψ ′)= 1. Every ψ ′ can be written as a mixture of pure states ψk , i.e. ψ ′

=
∑

k qk ψk

with qk > 0 and
∑

k qk = 1. Effects are linear functions such that �(ψ)6 1 for any state ψ .
Therefore, it must happen that all pure states ψk in the above decomposition satisfy
�(ψk)= 1.

To prove the second part, let ψ ′

1, . . . , ψ
′

n be the states that are distinguished by the
measurement, i.e. �a(ψ

′

b)= δa,b. Every ψ ′

b can be written as a convex combination of pure
states ψ ′

b =
∑

k qk ψb,k . But effects are linear functions such that 06�(ψ)6 1 for any state
ψ . Hence, �(ψ ′

b)= 0 is only possible if �(ψb,k)= 0 for all k, and similarly for the case
�(ψ ′

b)= 1. It follows that �a(ψb,1)= δa,b. ut

Lemma 5. If Sc is a state space with capacity c > 1 and µc the corresponding maximally mixed
state, then there are c pure distinguishable states ψ1, . . . , ψc ∈ Sc such that

µc =
1

c

c∑
a=1

ψa.

Proof. Since S1 contains a single state the claim is trivially true for c = 1. Since S2 is the d2-
dimensional unit ball, the two antipodal points ϕ̂1 and ϕ̂2 = −ϕ̂1 are pure and distinguishable
and satisfy

µ2 =
1
2(ϕ1 +ϕ2). (A.3)

Now, consider the joint state space of n generalized bits, denoted by S2×n . Lemma 3 and (A.3)
imply that the maximally mixed state of S2×n is

µ(n) = (µ2)
⊗n

=
1

2n

∑
ai ∈{1,2}

ϕa1 ⊗ · · · ⊗ϕan . (A.4)

The states ϕa1 ⊗ · · · ⊗ϕan ∈ S2×n for all a1, . . . , an ∈ {1, 2} can be perfectly distinguished by the
corresponding product measurement; hence, the capacity of S2×n , denoted by cn, satisfies

cn > 2n. (A.5)

Let (�1, . . . , �cn) be a complete measurement that distinguishes the states ψ1, . . . , ψcn ∈ S2×n .
According to lemma 4 these states can be chosen to be pure. Since

∑cn
k=1�k(µ(n))= 1, there is

at least one value of k, denoted by k0, such that

�k0(µ(n))6 1/cn. (A.6)

The state ϕ1 ∈ S2 from (A.3) is pure; hence ϕ⊗n
1 ∈ S2×n is pure too. Requirement 4 reveals that

there is a reversible transformation G acting on S2×n such that G(ψk0)= ϕ⊗n
1 . The measurement

(�1 ◦ G−1, . . . , �cn ◦ G−1) distinguishes the states G(ψ1), . . . ,G(ψcn). Inequality (A.6), the
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invariance of µ(n) under G, expansion (A.4), the positivity of probabilities and (�k0 ◦

G−1)(ϕ⊗n
1 )= 1 imply that

1

cn
> (�k0 ◦ G−1)(µ(n))

=
1

2n

∑
ai ∈{1,2}

(�k0 ◦ G−1)(ϕa1 ⊗ · · · ⊗ϕan)>
1

2n
.

This and (A.5) imply that cn = 2n. This together with (A.4) shows the assertion of the lemma
for state spaces whose capacity is a power of two. The rest of the cases are shown by
induction.

Let us prove that if the claim of the lemma holds for a state space with capacity c, with
c > 1, then it holds for a state space with capacity c − 1, too. The induction hypothesis
reveals that there is a complete measurement (�1, . . . , �c) that distinguishes the pure
states ψ1, . . . , ψc ∈ Sc, and µc =

1
c

∑c
k=1ψk ∈ Sc is the corresponding maximally mixed state.

Requirement 3 reveals that the state space Sc−1 is equivalent to

S ′

c−1 = {ψ ∈ Sc |�1(ψ)+ · · · +�c−1(ψ)= 1} .

According to requirement 3, for each G ∈ Gc−1 there is G ′
∈ Gc which implements G on S ′

c−1.
Hence G ′(ψk) ∈ S ′

c−1 for k = 1, . . . , c − 1, which implies (�c ◦ G ′)(ψk)= 0 for those k values
and

1

c
=�c(µc)= (�c ◦ G ′)(µc),

=
1

c

c∑
k=1

(�c ◦ G ′)(ψk)=
1

c
(�c ◦ G ′)(ψc),

and (�c ◦ G ′)(ψc)= 1. Requirement 3 reveals that the set

S ′

1 = {ψ ∈ Sc |�c(ψ)= 1}

is equivalent to S1, which contains a single state. This and �c(ψc)= 1 imply that G ′(ψc)= ψc

and then G ′(µ′

c−1)= µ′

c−1, where we define

µ′

c−1 =
1

c − 1

c−1∑
k=1

ψk =
c

c − 1
µc −

1

c − 1
ψc ∈ S ′

c−1.

For any G ∈ Gc−1 the corresponding G ′ satisfies G ′(µ′

c−1)= µ′

c−1. Due to lemma 1, the invariant
state µ′

c−1 must be the maximally mixed state in S ′

c−1, which has the claimed form, and
requirement 3 extends this to Sc−1. ut

Lemma 6. Let S be a state space such that the subset of pure statesP is a connected topological
manifold. If the corresponding group of transformations G is transitive on P , then the largest
connected subgroup C ⊆ G is transitive on P , too.
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Proof. This proof involves basic notions of point set topology.
Since G is compact, it is the union of a finite number of (disjoint) connected components

G = C1 ∪ · · · ∪ Cn. If n = 1 the lemma is trivial. Let C be the connected component Ci containing
the identity matrix I, which is the largest connected subgroup of G. Each connected component
Ci is clopen (open and closed) and compact and is a coset of the group: Ci = G i ◦ C for some
G i ∈ G [29].

Pick ψ ∈ P , and consider the continuous surjective map f : G→ P , defined by f (G)=

G(ψ) ∈ P . Since C is compact, f (C)⊆ P is compact too. Since the manifold P is, in particular,
a Hausdorff space, f (C) is closed. Consider the set D = f −1( f (C)). If two group elements
G, H ∈ G are in the same component, i.e. G−1 H ∈ C, then G ∈ D implies H ∈ D, assuming that
C is a normal subgroup of G. This implies that D is the union of some connected components
Ci , and so is G\D. In particular, G\D is compact; thus, f (G\D) is compact and hence closed.
Therefore, f (C)= P\ f (G\D) is open. We have thus proved that f (C) 6= ∅ is clopen. Since P
is connected, it follows that f (C)= P . ut

The following lemma shows that there are transformations for two generalized bits which
perform the ‘classical’ swap and the ‘classical’ controlled-NOT in a particular basis. Note that
these transformations do not necessarily swap other states that are not in the given basis, as
in QT. However, they implement a minimal amount of reversible computational power which
exceeds, for example, that of boxworld, where no controlled-NOT operation is possible [14].

Lemma 7. For each pair of distinguishable states ϕ0, ϕ1 ∈ S2, there are transformations
Gswap,Gcnot ∈ G2,2 such that

Gswap(ϕa ⊗ϕb)= ϕb ⊗ϕa, (A.7)

Gcnot(ϕa ⊗ϕb)= ϕa ⊗ϕa⊕b, (A.8)

for all a, b ∈ {0, 1}, where ⊕ is addition modulo 2.

Proof. Let (�0, �1) be the measurement that distinguishes (ϕ0, ϕ1), i.e. �a(ϕb)= δa,b. Define
ψa,b = ϕa ⊗ϕb and �a,b =�a ⊗�b for a, b ∈ {0, 1}. Define

S ′

3 = {ψ ∈ S2,2 | (�0,1 +�1,0 +�1,1)(ψ)= 1},

S ′

2 = {ψ ∈ S2,2 | (�0,1 +�1,0)(ψ)= 1},

and note that S ′

2 ⊂ S ′

3 ⊂ S2,2. At the end of section 4.2, it is shown that two distinguishable
states ϕ0, ϕ1 ∈ S2 have Bloch representation satisfying ϕ̂0=−ϕ̂1. According to requirement 4,
there is G ∈ G2 such that G(ϕ0)= ϕ1, and by linearity, Ĝ(ϕ̂1)= −Ĝ(ϕ̂0)= −ϕ̂1 = ϕ̂0.
Requirement 3 implies that there is a transformation G ′

swap for S ′

3 such that G ′

swap(ψ0,1)= ψ1,0

and G ′

swap(ψ1,0)= ψ0,1. According to lemma 5, the maximally mixed state in S ′

3 can be written
as µ′

3 = (ψ0,1 +ψ1,0 +ψ1,1)/3. Equalities G ′

swap(µ
′

3)= µ′

3 and G ′

swap(ψ0,1 +ψ1,0)= ψ0,1 +ψ1,0

imply that G ′

swap(ψ1,1)= ψ1,1. Using requirement 3 again, there is a reversible transformation
Gswap ∈ G2,2 that implements G ′

swap in the subspace S ′

3. Repeating the argument with the
maximally mixed state (now in S2,2), we conclude that Gswap(ψ1,1)= ψ1,1; hence Gswap satisfies
(A.7).

The existence of Gcnot is shown similarly, by exchanging the roles of ψ0,1 and ψ1,1. ut

New Journal of Physics 13 (2011) 063001 (http://www.njp.org/)

http://www.njp.org/


27

Lemma 8. Reversible transformations for two generalized bits in the Bloch representation (24)
are orthogonal:

Ĝ2,2 ⊆ O(d4).

Proof. In section 4.6, the Bloch representation for two generalized bits is defined, and it is
argued that reversible transformations Ĝ2,2 act on [α, β,C] as matrices. In particular, local
transformations (28) are

(G A ⊗ G B)
∧

=

Ĝ A 0 0
0 Ĝ B 0
0 0 Ĝ A ⊗ Ĝ B

 , (A.9)

where each diagonal block acts on an entry of [α, β,C], and Ĝ A, Ĝ B ∈ Ĝ2. In section 4.5, it is
argued that Ĝ2 ⊆ O(d2); hence local transformations (A.9) are orthogonal.

Lemma 2 shows the existence of a real matrix S > 0 such that for any Ĝ ∈ Ĝ2,2 the matrix
SĜS−1 is orthogonal. In particular,[

S · (G A ⊗ G B)
∧

· S−1
]T[

S · (G A ⊗ G B)
∧

· S−1
]
= I,

which implies the commutation relation

S · (G A ⊗ G B)
∧

= (G A ⊗ G B)
∧

· S. (A.10)

Section 4.5 concludes that d2 is odd, and that SO(d2)⊆ Ĝ2 except when d2 = 7, where
MG2 M−1

⊆ Ĝ2 and G2 is the fundamental representation of the smallest exceptional Lie
group [29]. For d2 > 3 these groups act irreducibly in Cd2; hence, Ĝ2 acts irreducibly in Cd2 ,
too [29]. The first two diagonal blocks in (A.9) are irreducible. The exterior tensor product of
two irreducible representations (in Cd) is also an irreducible representation; hence, the third
diagonal block in (A.9) is also irreducible. This, together with (A.10), implies that

S =

aI 0 0
0 bI 0
0 0 sI


for some a, b, s > 0 (Schur’s lemma [29]).

According to lemma 7, for each unit vector α ∈ Ŝ2 there is a transformation Gswap ∈ G2,2

such that

Ĝswap[α, 0, 0] = Ĝswap

(
[α, α, ααT] + [α,−α,−ααT]

)
/2

=
(
[α, α, ααT] + [−α, α,−ααT]

)
/2

= [0, α, 0].

Since SĜswapS−1 is orthogonal, the vectors [α, 0, 0] and [0, ba−1α, 0] have the same modulus;
hence a = b. Also, there is a transformation Gcnot ∈ G2,2 such that

Ĝcnot[0, 0, ααT] = Ĝcnot

(
[α, α, ααT] + [−α,−α, ααT]

)
/2

=
(
[α, α, ααT] + [−α, α,−ααT]

)
/2

= [0, α, 0].
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Since SĜcnotS−1 is orthogonal, the vectors [0, 0, ααT] and [0, bs−1α, 0] have the same modulus;
hence s = b. Consequently, S = aI, and the claim follows. ut

Lemma 9. The results of this paper also hold if requirement 5 is replaced by requirement 5′.

Proof. Assume requirement 5′, but not requirement 5. It follows that S1 contains a single state
only: if it contained more than one state, there would exist some ψ ∈ S1 which is not completely
mixed, which would then be distinguishable from some other state, contradicting that S1 has
capacity 1. Requirement 5 is used in the proof of theorem 1. This proof is easily modified to
comply with requirement 5′ instead: adopting the notation from the proof, the state ϕmix is not
completely mixed and thus it is distinguishable from some other state. This proves the existence
of some �̂ with the claimed properties, and the other arguments remain unchanged, proving that
Ŝ2 can be represented as a unit ball. All pure states in Ŝ2 are not completely mixed and hence
they have a corresponding tight effect which is physically allowed. But in the case of every state
on the surface of the ball, there exists only one unique tight effect that gives probability one for
that state. Hence, all these effects must be allowed, and since they generate the set of all effects,
this proves requirement 5 for use in (14) and the rest of the paper. ut
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