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Abstract. We unify two recent results concerning equilibration in quantum
theory. We first generalize a proof of Reimann (2008 Phys. Rev. Lett. 101
190403), that the expectation value of ‘realistic’ quantum observables will
equilibrate under very general conditions, and discuss its implications for the
equilibration of quantum systems. We then use this to re-derive an independent
result of Linden et al (2009 Phys. Rev. E 79 061103), showing that small
subsystems generically evolve to an approximately static equilibrium state.
Finally, we consider subspaces in which all initial states effectively equilibrate
to the same state.
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1. Introduction

Recently there has been significant progress in understanding the foundations of statistical
mechanics, based on fundamentally quantum arguments [1]–[12]. In particular, Reimann [1, 2]
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has shown that the expectation value of any ‘realistic’ quantum observable will equilibrate to
an approximately static value, given very weak assumptions about the Hamiltonian and initial
state. Interestingly, the same assumptions were used independently by Linden et al [4, 5], to
prove that any small quantum subsystem will evolve to an approximately static equilibrium
state (such that even ‘unrealistic’ observables on the subsystem equilibrate). In this paper, we
unify these two results, by deriving the central result of Linden et al [4] from a generalization of
Reimann’s result. We also offer a further discussion and extension of Reimann’s results, showing
that systems will appear to equilibrate with respect to all reasonable experimental capabilities.
Finally, we identify subspaces of initial states which equilibrate to the same state.

2. Equilibration of expectation values

We prove below a generalization of Reimann’s result that the expectation value of any operator
will almost always be close to that of the equilibrium state [1]. We extend his results to include
non-Hermitian operators (which we will need in section 5 to prove equilibration of subsystems),
correct a subtle mistake made in [2] when considering degenerate Hamiltonians, and improve
the bound obtained by a factor of 4. As in [2, 5], we make one assumption in the proof, which
is that the Hamiltonian has non-degenerate energy gaps. This means that given any four energy
eigenvalues Ek, El, Em and En,

Ek − El = Em − En ⇒

(Ek = El and Em = En)

or
(Ek = Em and El = En).

(1)

Note that this definition allows degenerate energy levels, which may arise due to symmetries.
However, it ensures that all subsystems physically interact with each other. In particular, given
any decomposition of the system into two subsystems H=HA ⊗HB , equation (1) will not
be satisfied by any Hamiltonian of the form H = HA ⊗ IB + IA ⊗ HB (unless either HA or HB

is proportional to the identity). To see this, consider the four energy eigenstates |k〉 = |0〉|0〉,
|l〉 = |0〉|1〉, |m〉 = |1〉|0〉, |n〉 = |1〉|1〉, which are products of eigenstates of HA and HB .

Theorem 1 (Generalization of Reimann’s result [1]). Consider a d-dimensional quantum
system evolving under a Hamiltonian H =

∑
n En Pn, where Pn is the projector onto the

eigenspace with energy En. Denote the system’s density operator by ρ(t), and its time-averaged
state by ω ≡ 〈ρ(t)〉t . If H has non-degenerate energy gaps, then for any operator A,

σ 2
A ≡ 〈|tr(Aρ (t))− tr(Aω)|2〉t 6

1(A)2

4deff
6

‖A‖
2

deff
(2)

where ‖A‖ is the standard operator norm1,

1(A)≡ 2 min
c∈C

‖A − cI‖, (3)

and

deff ≡
1∑

n (tr(Pnρ(0)))
2 . (4)

1
‖A‖ = sup{

√
〈v|A† A|v〉 : |v〉 ∈Hwith 〈v|v〉 = 1}, or equivalently ‖A‖ is the largest singular value of A.

New Journal of Physics 13 (2011) 053009 (http://www.njp.org/)

http://www.njp.org/


3

This bound will be most significant when the number of different energies incorporated in the
state, characterized by the effective dimension deff, is very large. Note that 16 deff 6 d, and that
deff = N when a measurement of H would yield N different energies with equal probability.
For pure states deff = tr(ω2)−1 as in [4, 5], but it may be smaller for mixed states when the
Hamiltonian is degenerate.

The quantity1(A) gives the range of eigenvalues when A is Hermitian, and gives a slightly
tighter bound than the operator norm. Following [2], we could improve the bound further by
replacing1(A) with a state- and Hamiltonian-dependent term2; however, we omit this step here
for simplicity.

Proof. To avoid some difficulties, which arise when considering degenerate Hamiltonians, we
initially consider a pure state ρ(t)= |ψ(t)〉〈ψ(t)|, then extend the results to mixed states via
purification.

We can always choose an energy eigenbasis such that |ψ(t)〉 has non-zero overlap
with only a single energy eigenstate |n〉 of each distinct energy, by including states
|n〉 = Pn|ψ(0)〉/

√
〈ψ(0)|Pn|ψ(0)〉 whenever 〈ψ(0)|Pn|ψ(0)〉> 0. The state at time t is then

given by

|ψ(t)〉 =

∑
n

cne−iEn t/h̄
|n〉, (5)

where cn = 〈n|ψ(0)〉. This state will evolve in the subspace spanned by {|n〉} as if it were acted
on by the non-degenerate Hamiltonian H ′

=
∑

n En|n〉〈n|. For any operator A, it follows that

σ 2
A =

〈
|tr(A[ρ(t)−ω])|2

〉
t

=

〈∣∣∣∣∑
n 6=m

cnc∗

mei(Em−En)t/h̄〈m|A|n〉

∣∣∣∣2
〉

t

=

∑
n 6= m
k 6= l

cnc∗

mckc∗

l

〈
ei(Em−En+El−Ek)t/h̄

〉
t
〈m|A|n〉〈l|A†

|k〉

=

∑
n,m

|cn|
2
|cm|

2
〈m|A|n〉〈n|A†

|m〉 −

∑
n

|cn|
4
|〈n|A|n〉|

2

6 tr(AωA†ω)

6
√

tr(A†Aω2) tr(AA†ω2)

6 ‖A‖
2 tr(ω2)

= ‖A‖
2 tr

(∑
n

|cn|
2
|n〉〈n|

)2


= ‖A‖
2
∑

n

(tr(Pnρ(0)))
2

=
‖A‖

2

deff
. (6)

2 In particular, we could replace 1(A) with 1′′(A)= min Ã 2‖ Ã‖, where the operators Ã are obtained by
subtracting any function of H from A and projecting onto the support of ω.
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In the fourth line, we have used the assumption that the Hamiltonian has non-degenerate energy
gaps, in the sixth line we have used the Cauchy–Schwartz inequality for operators with scalar
product tr(A† B) and the cyclic symmetry of the trace, and in the seventh line we have used the
fact that for positive operators P and Q, tr(P Q)6 ‖P‖tr(Q). This gives the weaker bound in
the theorem.

To obtain the tighter bound, we note that σA is invariant if A is replaced by Ã = A − cI
for any complex c. Performing this substitution with c chosen so as to minimize ‖ Ã‖ we can
replace ‖A‖ with ‖ Ã‖ =1(A)/2.

An extension to mixed states can be obtained via purification, following the approach
discussed in [5]. Given any initial state ρ(0) on H, we can always define a pure state |φ(0)〉
on H⊗H such that the reduced state of the first system is ρ(0). By evolving |φ(t)〉 under the
joint Hamiltonian H ′

= H ⊗ I , we will recover the correct evolution ρ(t) of the first system,
and H ′ will have non-degenerate energy gaps whenever H does. The expectation value of any
operator A for ρ(t) will be the same as the expectation value of A′

= A ⊗ I on the total system,
and we also obtain 1(A′)=1(A), ‖A‖ = ‖A′

‖, and d ′

eff = deff. However, note that tr(ω′2) does
not equal tr(ω2). Using the result for pure states, we can obtain (2) in the mixed state case from

σ 2
A = σ 2

A′ 6
1(A′)2

4d ′

eff

=
1(A)2

4deff
. (7)

This completes the proof. ut

In [1], Reimann proves that σ 2
A 61(A)

2 tr(ω2) when A is Hermitian and the Hamiltonian
has non-degenerate levels as well as non-degenerate gaps. However, it appears that there is a
subtle mistake in [2] when extending this proof to degenerate Hamiltonians. Specifically, the
step from equation (D.11) to (D.12) in [2] does not follow if the state has support on more than
one energy eigenstate in a degenerate subspace. A counterexample is provided by the mixed
state ρ(0)=

1
k |0〉〈0| ⊗ I , of a qubit and a k-dimensional system, with H = (|0〉〈1| + |1〉〈0|)⊗ I

and A = (|0〉〈0| − |1〉〈1|)⊗ I . In this case σ 2
A =

1
2 , 1(A)= 2 and tr(ω2)=

1
2k , giving σ 2

A >

1(A)2 tr(ω2) when k > 4. However, subsequently in [2], tr(ω2) is replaced by an upper bound
of maxn tr(ρ(0)Pn), and this also upper bounds d−1

eff , so later results are unaffected. Note that
the bound given by Theorem 1 for the same example is satisfied tightly for all k, as deff = 2 and
thus σ 2

A =
1
2 =

1(A)2

4deff
.

3. Distinguishability

When A represents a realistic physical observable and ρ(0) a realistic initial state, it is argued
in [1] that the difference between tr(Aρ(t)) and tr(Aω) will almost always be less than realistic
experimental precision. The fact that this holds for all realistic observables suggests that ρ(t)
will be indistinguishable from ω for the overwhelming majority of times.

However, this issue is somewhat subtle, as the fact that two states yield the same
expectation value for a measurement does not necessarily imply that they cannot be
distinguished by it. For example, a measurement yielding an equal mixture of +1 and −1
outcomes for one state and always yielding 0 for a second state clearly can distinguish the
two states, despite the expectation values in the two cases being identical. We could rule
out this example by considering the expectation value of A2, which must also equilibrate,
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but it is not clear how to derive a good bound on the distinguishability in general using this
approach.

Furthermore, even though any particular realistic measurement cannot distinguish ρ(t)
from ω for almost all times, this does not imply that for almost all times, no realistic
measurement can distinguish ρ(t) from ω. This is because the optimal measurement to
distinguish the two states may change over time. This issue is discussed in a slightly different
context in [3].

Finally, the measurement precision is not easy to define for measurements with discrete
outcomes, which may not even have numerical labels.

To address these issues, we first note that the most general quantum measurement is not
described by a Hermitian operator, but by a positive operator valued measure (POVM). For
simplicity, we consider POVMs with a finite set of outcomes, which is reasonable for realistic
measurements, as even continuous outputs such as pointer position cannot be determined or
recorded with infinite precision. For example, the measurement of a continuous observable
A with precision δA can be modeled by a discrete measurement with 1(A)/δA outcomes.
Alternatively, our results can be extended to continuous output sets using measure theory.
A general measurement M is described by giving a positive operator Mr for each possible
measurement result r , satisfying

∑
r Mr = I . The probability of obtaining result r when

measuring M on ρ is given by tr(Mrρ).
Suppose you are given an unknown quantum state, which is either ρ1 or ρ2 with equal

probability. Your maximum success probability in guessing which state you were given after
performing the measurement M is3

psucc
M =

1
2(1 + DM(ρ1, ρ2)), (8)

where

DM(ρ1, ρ2)≡
1

2

∑
r

|tr(Mrρ1)− tr(Mrρ2)|. (9)

We refer to DM(ρ1, ρ2) as the distinguishability of ρ1 and ρ2 using the measurement M .
Similarly, the optimal probability of guessing which state you have using any single

measurement from a setM is

psucc
M =

1
2(1 + DM(ρ1, ρ2)), (10)

where

DM(ρ1, ρ2)≡ max
M∈M

DM(ρ1, ρ2). (11)

DM(ρ1, ρ2) expresses the distinguishability of the states given the set of measurementsM. Note
that any sequence of measurements is itself a measurement, and can be included as an element
ofM if desired. Furthermore,

06 DM(ρ1, ρ2)6 D(ρ1, ρ2)6 1, (12)

where D(ρ1, ρ2)≡
1
2 tr|ρ1 − ρ2| is the trace-distance between ρ1 and ρ2. This is because the

trace-distance is equal to the distinguishability of ρ1 and ρ2 using the optimal measurement,

3 Defining pr = tr(Mrρ1) and qr = tr(Mrρ2), the optimal strategy given result r is to guess ρ1 if pr > qr and ρ2

otherwise. This gives psucc
M =

1
2

∑
r max(pr , qr )=

1
4

∑
r (pr + qr + |pr − qr |)=

1
2 (1 + DM(ρ1, ρ2)).
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which is a two-outcome projective measurement onto the positive and negative eigenspaces of
(ρ1 − ρ2) [13]. Applying (9) to this measurement we obtain the definition of the trace distance
given. Hence the trace-distance is equal to DM(ρ1, ρ2) whenM includes all measurements.

4. Effective equilibration of large systems

For typical macroscopic systems, the dimension of H will be incredibly large (e.g. for
Avagardo’s number NA of spin-1/2 particles, we would have d > 101023

), and it is unrealistic to
be able to perform any measurement with this many outcomes, let alone all such measurements.
For practical purposes, we are therefore restricted to some set of realistic physical measurements
M. In this case, we would expect M to be a finite set, as all realistic experimental setups
(including all settings of variable parameters) will be describable within a finite number of
pages of text.

We say that a state effectively equilibrates if

〈DM(ρ(t), ω)〉t � 1. (13)

This means that for almost all times, it is almost impossible to distinguish the true state ρ(t)
from the equilibrium state ω using any achievable measurement.

We can obtain an upper bound on the average distinguishability as a corollary of theorem 1.

Corollary 1. Consider a quantum system evolving under a Hamiltonian with non-degenerate
energy gaps. The average distinguishability of the system’s state ρ(t) from ω, given a finite set
of measurementsM, satisfies

〈DM(ρ(t), ω)〉t 6

∑
M∈M

∑
r 1(Mr)

4
√

deff
6

N (M)

4
√

deff
, (14)

where N (M) is the total number of outcomes for all measurements inM.

The first bound will be tighter when measurements are imprecise, as each outcome is
weighted by 1(Mr) ∈ [0, 1], reflecting its usefulness in distinguishing states (in particular,
1(Mr) is the maximum difference in probability of result r occurring for any two states). Note
that for any measurement on a dS-dimensional subsystem4

∑
r 1(Mr)6 dS.

Proof.

〈DM(ρ(t), ω)〉t =

〈
max

M(t)∈M
DM(t)(ρ(t), ω)

〉
t

6
∑

M∈M

〈DM(ρ(t), ω)〉t

=
1

2

∑
M∈M

∑
r

〈|tr(Mrρ(t))− tr(Mrω)|〉t

6
1

2

∑
M∈M

∑
r

√〈
|tr(Mrρ(t))− tr(Mrω)|2

〉
t

4 Write Mr = M S
r ⊗ I , where the first subsystem is the one on which the measurement acts. Then note that∑

r 1(Mr )=
∑

r 1(M
S
r )6

∑
r trS(M S

r )= trS(I )= dS .
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=
1

2

∑
M∈M

∑
r

√
σ 2

Mr

6

∑
M∈M

∑
r 1(Mr)

4
√

deff

6
N (M)

4
√

deff
. (15)

ut

In realistic experiments, we would expect the bound on the right of (14) to be much
smaller than 1, implying that the state of the system effectively equilibrates to ω. Consider
again our system of NA spins. If deff > d 0.1, even if we take M to include any experiment
whose description could be written in 1019 words, each of which generates up to 1021 bytes of
data, we would still obtain 〈DM(ρ(t), ω)〉t 6 1/(101022

).

5. Equilibration of small subsystems

Now consider that the system can be decomposed into two parts, a small subsystem of interest
S, and the remainder of the system which we refer to as the bath B. Then H=HS ⊗HB ,
where HS/B has dimension dS/B . It is helpful to define the reduced states of the subsystem
ρS(t)= trB(ρ(t)) and ωS = trB(ω).

In such cases, it was shown in [4, 5] that for sufficiently large deff the subsystem’s state
fully equilibrates, such that for the vast majority of times, ρ(t) and ω are almost impossible to
distinguish using any measurement on the subsystem (even ‘unrealistic’ ones). In particular,
when ρ(t) is pure and the Hamiltonian has non-degenerate energy levels as well as non-
degenerate energy gaps, it is proven in [4] that

〈D(ρS(t), ωS)〉t 6
1

2

√
d2

S

deff
. (16)

Extending this result to degenerate Hamiltonians and initially mixed states is discussed in [5].
We cannot recover this bound directly from (14) by considering the set of all measurements

on the subsystem, because this set contains an infinite number of measurements. However, we
can derive (16) from theorem 1 by considering an orthonormal operator basis for the subsystem,
given by the d2

S operators [14]

F(dSk0+k1) =
1

√
dS

∑
l

e
2π ilk0

dS |(l + k1)mod dS〉〈l|, (17)

where k0, k1 ∈ {0, 1, . . . , dS − 1} and the states |l〉 are an arbitrary orthonormal basis for the
subsystem. Then writing (ρS(t)−ωS)=

∑
k λk(t)Fk we have

〈D(ρS(t), ωS)〉t =
1

2

〈
tr|
∑

k

λk(t)Fk|

〉
t

6
1

2

〈√√√√dS tr

(∑
kl

λk(t)λ∗

l (t)F
†
l Fk

)〉
t
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6
1

2

√
dS

∑
kl

〈
λk(t)λ∗

l (t)
〉
t
tr(F†

l Fk)

=
1

2

√
dS

∑
k

〈
|λk(t)|2

〉
t

=
1

2

√
dS

∑
k

〈|tr((ρ(t)−ω)F†
k ⊗ I )|2〉t

6
1

2

√√√√dS

∑
k

‖F†
k ⊗ I‖2

deff

6
1

2

√
d2

S

deff
. (18)

In the second line, we have used a standard relation between the 1- and 2-norm, and in the sixth
line we have used theorem 1 for the non-Hermitian operator F†

k ⊗ I . Note that
√

dS Fk is unitary,
and thus ‖F†

k ⊗ I‖ =
1

√
dS

.

6. Universality of equilibrium states

We have so far been concerned with when states equilibrate, rather than the nature of their
equilibrium state. However, one of the notable properties of equilibration is that many initial
states effectively equilibrate to the same state, determined only by macroscopic properties such
as temperature. Given a particular Hamiltonian and a set of realistic measurementsM, we can
construct a partition of the Hilbert space into a direct sum of subspaces H=

⊕
k Hk , such that

all states within Hk with large enough deff effectively equilibrate to the same state �k .
One way to achieve this is to choose the subspaces such that each projector 5k onto Hk

commutes with the Hamiltonian, and such that any two energy eigenstates in Hk are hard to
distinguish, i.e. for some fixed ε satisfying 0< ε � 1, and all normalized energy eigenstates
|i〉, | j〉 ∈Hk

DM(|i〉〈i |, | j〉〈 j |)6 ε. (19)

When deff is sufficiently large, it follows that all states in Hk effectively equilibrate to �k =

5k/tr(5k), as

〈DM(ρ(t),�k)〉t 6 〈DM(ρ(t), ω)〉t + 〈DM(ω,�k)〉t

6
N (M)

4
√

deff
+
∑
i, j

〈i |ω|i〉

tr(5k)
DM(|i〉〈i |, | j〉〈 j |)

6
N (M)

4
√

deff
+ ε, (20)
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where the sums in the second line are over an eigenbasis of ω (which is also a basis of
Hk), and we have used the fact that DM(ρ, σ ) satisfies the triangle inequality (DM(ρ, σ )6
DM(ρ, τ )+ DM(τ, σ )) and convexity,

DM

(∑
i

piρi , σ

)
6
∑

i

pi DM(ρi , σ ), (21)

where pi > 0 and
∑

i pi = 1.
WhenHk can be chosen to be a small band of energies, the equilibrium state�k will be the

usual microcanonical state.

7. Conclusions

To summarize, we have shown that two key results of [1, 4] about the equilibration of
large systems can be derived from very weak assumptions (non-degenerate energy gaps, and
sufficiently large deff) and a single theorem (theorem 1). In particular, for the vast majority
of times, the state of an isolated quantum system will be almost indistinguishable from its
equilibrium state ω using any realistic experiment, and the state of a small subsystem will be
almost indistinguishable from ωS using any experiment.

Although the first result has a similar flavor to the classical equilibration of coarse-grained
observables such as density and pressure, it is really much stronger, as it encompasses any
measurement you could describe and record the data from in a reasonable length of text,
including microscopic measurements. The second result has no classical analogue, as it yields
an essentially static description of the true micro-state of a subsystem, rather than the rapidly
fluctuating dynamical equilibrium of particles in classical statistical mechanics. Given the
difficulty of proving similar results in the classical case, it seems that quantum theory offers
a firmer foundation for statistical mechanics.
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