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Abstract. We examine spin diffusion in a two-component homogeneous Fermi
gas in the normal phase. Using a variational approach, analytical results are
presented for the spin diffusion coefficient and the related spin relaxation time as
a function of temperature and interaction strength. For low temperatures, strong
correlation effects are included through the Landau parameters, which we extract
from Monte Carlo results. We show that the spin diffusion coefficient has a
minimum for a temperature somewhat below the Fermi temperature with a value
that approaches the quantum limit ∼h̄/m in the unitarity regime, where m is the
particle mass. Finally, we derive a value for the low-temperature shear viscosity
in the normal phase from the Landau parameters.
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1. Introduction

Cold atomic gases provide a unique possibility for studying many-body physics in a controlled
way, as one can tune properties such as the strength and sign of the interaction as well as
the population in various internal states. Fermi gases in the unitarity regime characterized
by a diverging scattering length |a| → ∞ are being intensively investigated. They represent
a universal realization of a strongly interacting Fermi gas in the sense that their properties
are independent of the details of the interaction. Thermodynamic as well as microscopic
equilibrium quantities have been measured in a series of impressive experiments [1]–[6]. For
high temperatures, one can calculate their properties in a controlled way using the virial
expansion [7]–[9]. For low temperatures, the system is strongly interacting and poses a
challenging problem. Quantum Monte Carlo calculations are therefore at present the most
reliable method for extracting their equilibrium properties [10]–[12].

There is increasing focus on the transport properties of these gases. As opposed to
thermodynamic quantities, strong interactions can change transport coefficients by orders of
magnitude, making them attractive to study. The shear viscosity η of a Fermi gas has been
extracted from the damping of collective modes [13] as well as expansion experiments [14].
One can calculate the viscosity accurately for a Fermi gas in the unitarity limit for high
temperatures [15]. Furthermore, for T � Tc with Tc being the critical temperature for
superfluidity, the contribution to the viscosity from phonons has been calculated for superfluid
4He [16] and for a superfluid Fermi gas in the unitarity regime [17]. These two results agree if the
sound velocity of a Fermi gas is inserted in the expression for 4He, showing that the microscopic
origin of superfluidity is irrelevant [18]. At intermediate temperatures, it is very challenging
to calculate η from a microscopic theory, since many effects have to be considered including
particle self-energies [19], pairing and vertex corrections [18, 20]. Using methods from string
theory, it has been shown that the viscosity of a class of strongly interacting many-body systems
obeys the bound η/s > h̄/4πkB, where s is the entropy density [21], and it has been conjectured
that this bound holds for all fluids [22]. This has made the study of the viscosity of cold atomic
Fermi gases in the unitarity limit directly relevant to other fields including quark-gluon and
high-energy physics [23].

Very recently, measurements of spin transport properties of a two-component Fermi
gas have been reported [24]. Inspired by this, we analyze in this paper the spin diffusion
coefficient D of a two-component homogeneous Fermi gas in the normal phase. Using
a variational approach, we calculate D for both weak and strong interactions. For high
temperatures, our calculations are analogous to the ones leading to the accurate result for
shear viscosity [15]. In the low temperature regime where the system is strongly correlated,
we use Fermi liquid theory to calculate D. The strong coupling effects are contained in
the Landau parameters which are extracted from Monte Carlo calculations. In this way, we
expect to obtain reliable results for D even in the unitarity limit. It follows from our high
and low T results that the spin diffusion coefficient exhibits a minimum for a temperature
below TF. In the unitarity limit, we find that the minimum is D ∼ h̄/m. Since D in general
decreases with increasing coupling strength, this value can be interpreted as the quantum
limit for how small D can become in atomic gases, when interactions are as strong as
quantum mechanics allows. In analogy with the intriguing conjecture of a global minimum
bound for η, it would be very interesting to compare this quantum minimum for D with
experimental results as well as with D for other strongly interacting systems. We also calculate
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the closely related spin relaxation time, and briefly discuss how η can be extracted from the
Landau parameters.

2. Spin diffusion in the hydrodynamic regime

We consider a gas of fermions of mass m in two internal states, which we denote by spin
σ = ↑, ↓. In equilibrium, the densities of the two components are equal, n↑ = n↓ = n/2 =

k3
F/6π2, with n being the total density. We shall focus on the non-equilibrium situation with

a spatially varying magnetization n↑(r) − n↓(r). The corresponding spin current j = j↑ − j↓ is
in the hydrodynamic regime given by Fick’s law

j = −D∇(n↑ − n↓), (1)

where D is the spin diffusion coefficient. The main goal of this paper is to calculate D as a
function of the coupling strength and temperature.

In vacuum, the interaction between atoms with spins ↑ and ↓ is given by the cross section

dσ ↑↓

sc

d�
=

a2

1 + p2
r a2

, (2)

where a is the s-wave scattering length and pr the relative momentum. There are many-body
corrections to (2) but they are small for T � TF with TF being the Fermi temperature of the
gas, even in the unitarity limit [15, 25]. For the densities and temperatures of interest, we can
ignore the bare interaction between atoms with equal spin. For high temperature, the typical
scattering momenta scale as ∼

√
mkBT and it follows from (2) that the gas is weakly interacting

irrespective of the value of a.
For low T , the gas is strongly interacting in the unitarity regime |a| → ∞ and there is

at present no quantitatively reliable microscopic theory for calculating its transport properties.
Assuming that the gas is in the normal phase for T � TF, we can, however, use the Fermi liquid
theory. Combined with the relevant Landau parameters extracted from non-perturbative Monte
Carlo calculations, we can in this way derive reliable results for D in the strongly interacting
normal phase [26, 27]. Since the gas is superfluid for T < Tc and Tc is predicted to be a sizable
fraction of TF in the unitarity limit [12], it is not obvious that one can fulfill the criterion
Tc < T � TF for a normal Fermi liquid. However, we will show that the minimum of D seems to
be located for T > Tc where pairing is not relevant. Also, one can in fact quench the superfluid
order for T < Tc by rotating the gas [28].

2.1. The Landau–Boltzmann equation

We proceed using kinetic theory for high T and Fermi liquid theory for low T to describe the
spin dynamics of the gas. In the hydrodynamic regime, the typical length scale of the dynamics
is much longer than the mean free path. The non-equilibrium distribution function is then close
to a local hydrodynamic form, i.e. fσ (r, p) ' 1/{exp[εp − µσ (r)] + 1} with εp being the quasi-
particle energy and µ↑(r) and µ↓(r) spatially varying chemical potentials corresponding to the
magnetization n↑(r) − n↓(r). Plugging the local equilibrium distributions into the left side of
the steady state linearized Landau–Boltzmann equation for the two-spin components and taking
the difference yields [26, 29]

βvp · ∇(µ↑ − µ↓) = −
I↑ − I↓

f 0(1 − f 0)
, (3)
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with vp = ∇pεp being the velocity and f 0 the distribution function in equilibrium. The
difference of the linearized collision integrals is

I↑ − I↓ =

∫
d3 p2

(2π)3
d�

|p − p2|

m∗

dσ ↑↓

sc

d�
(9 − 92 − 93 + 94) f 0 f 0

2

(
1 − f 0

3

) (
1 − f 0

4

)
, (4)

with m∗ being the effective mass. We have written δ f↑(r, p) − δ f↓(r, p) = f 0(r, p)[1 −

f 0(r, p)]9σ (r, p) with δ fσ being the deviation of the distribution function away from local
equilibrium. The differential cross section for the scattering between particles with opposite
spins is dσ ↑↓

sc /d� with � being the solid angle between the outgoing and ingoing relative
momenta, p′

r = (p4 − p3)/2 and pr = (p2 − p)/2. There is also a term in (4) coming from the
induced interaction between parallel spin quasi-particles which we have not written explicitly,
since it does not contribute to the variational results for D given below. In the following, we
take the magnetization to vary in the z-direction. The spin current is then given by

jz =

∫
d3 p

(2π)3
(δ f↑ − δ f↓)vz. (5)

2.2. A variational expression for D

The Landau–Boltzmann equation (3) can be written as κ = H [8] with H = (I↑ −

I↓)/ f 0(1 − f 0) and κ = −βvz∂z(µ↑ − µ↓). Likewise, the spin current (5) can be written as
−〈κ9〉kBT/∂z(µ↑ − µ↓) with the definition 〈A〉 =

∫
d3 p f 0(1 − f 0)A/(2π)3. Using this, one

can in analogy with the case of charge current [29, 30] derive a variational bound for the spin
current given by

jz >−
kBT

∂z(µ↑ − µ↓)

〈Uκ〉
2

〈UH [U ]〉
. (6)

Here, U is a trial function for the deviation function 9. By expanding U in polynomials, it has
been shown that using the driving term in the Landau–Boltzmann equation as an ansatz, i.e.
U ∝ κ , yields very accurate results for the viscosity η [19]. We will therefore use the ansatz
U = pz ∝ κ appropriate for spin diffusion in the following. This gives

D =
β

m∗2

1

χs

〈p2
z 〉

2

〈pz H [pz]〉
(7)

as our variational expression for the spin diffusion coefficient with χs = ∂(n↑ − n↓)/∂(µ↑ − µ↓)

being the spin susceptibility. Equation (7) serves as the starting point for our results concerning
spin diffusion. It is in fact the use of the ansatz U = pz combined with momentum conservation
which gives that it is only the scattering between opposite spins that enters in the variational
expression for D.

3. High temperature limit

We now calculate D in the classical limit T � TF. Using f 0
= exp[ − β(p2/2m − µ)] � 1 with

µ being the chemical potential in equilibrium, the integrals in (7) can be performed and we
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obtain

D =
3
√

π

8

√
kBT

√
mnσ̄

↑↓

sc

=
9π3/2h̄

32
√

2 m
×


1

(kFa)2

(
T

TF

)1/2

for T � Ta (weak coupling)(
T

TF

)3/2

for T � Ta (unitarity limit)

. (8)

Here,

σ̄ ↑↓

sc = 4πa2

∫
∞

0
dx

x5e−x2

1 + x2T/Ta
, (9)

where kBTa = h̄2/ma2 is the thermal average of the scattering cross section weighted with p3.
We have σ̄ ↑↓

sc = 4πa2 and σ̄ ↑↓

sc = 2π h̄2/mkBT in the weak coupling and unitarity limits,
respectively. To derive (8), we have used χs = n/2kBT for the spin susceptibility in the classical
limit. The temperature dependence in (8) can be understood as follows: The spin diffusion
coefficient scales as D ∼ lmfv with lmf = 2/nσsc being the mean free path and v a typical
velocity. In the classical regime, lmf ∼ 1/na2 for weak coupling and lmf ∼ mkBT/h̄2n in the
unitarity limit. Since v ∼

√
kBT/m, we recover the T 1/2 and T 3/2 scaling in (8). The temperature

scaling is analogous to what is found for the shear viscosity [15]. The result (8) for a gas in the
classical limit T � TF has also recently been derived in [24].

4. Low temperature limit

For T � TF, the quasi-particle scattering takes place around the Fermi surface. The collision
integral can then be reduced to

〈pz H [pz]〉 =
m∗2k3

F

18π 2
(kBT )3 Iangle, (10)

where

Iangle =

∫ π

0
dθ

sin θ(1 − cos θ)

cos(θ/2)

∫ 2π

0
dφ

dσ ↑↓

sc

d�
(1 − cos φ) (11)

is the cross section averaged over the Fermi surface. Here, θ is the angle between the incoming
scattering momenta p and p2 and φ is the angle between the relative momenta pr and p′

r. The
cross section at the Fermi surface can be written as

dσ↑↓(θ, φ)

d�
=

π 2

16k2
F

[N (0)T ↑↓(θ, φ)]2, (12)

where T ↑↓ is the scattering matrix for opposite spins and N (0) = m∗kF/π
2 is the density of

states at the Fermi level. The scattering matrix can be parameterized in terms of the Landau
parameters F i

l as [26]

N (0)T ↑↓(θ, φ) =
1

2

∑
l

[
As

l − 3Aa
l +

(
As

l + Aa
l

)
cos φ

]
Pl(cos θ), (13)

where Pl(x) are the Legendre polynomials and

Ai
l =

F i
l

1 + F i
l /(2l + 1)

. (14)
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In (14), the symmetry of the triplet part of the scattering is taken into account by the cos φ

factor [31]. We now assume that it is sufficient to use the l = 0 Landau parameters. Using
equations (12) and (13) in (11) and solving the resultant trigonometric integrals yields, when
plugged into (7),

D =
24h̄

π3m

1 + Fa
0

C2
1 + C2

3/2 − C1C3

(
TF

T

)2

=
3h̄

8πm

(
TF

T

)2

×


1

(kFa)2
for kFa � 1 (weak coupling),

2.6 for kFa � 1 (unitarity limit).
(15)

We have defined C1 = As
0 − 3Aa

0 and C3 = As
0 + Aa

0 and used 〈p2
z 〉 = kBT m∗k3

F/6π 2, and χs =

N (0)/2(1 + Fa
0 ) for T/TF � 1 to derive (15). Also, m∗

= m when F s
1 = 0. For kF|a| � 1, one

has F s
0 = 2kFa/π and Fa

0 = −2kFa/π , which gives the weak coupling result in (15). The spin
diffusion coefficient increases as T −2 for low T. This is the usual effect of Fermi blocking
of the scattering which enables the quasi-particles to travel, further thereby increasing the
spin current.

To obtain the numerical value in (15) for kF|a| � 1, we have used values for the Landau
parameters extracted from Monte Carlo calculations for a strongly interacting two-component
Fermi gas: F s

0 ' −0.44 and Fa
0 ' 2 [10, 32], giving As

0 ' −0.79 and Aa
0 ' 0.7. Since As

0 + Aa
0 '

−0.1 almost fulfills the sum rule
∑

l(As
l + Aa

l ) = 0, it seems that it is reasonable only to use the
l = 0 Landau parameters. Note that the interaction between opposite spins (13) is attractive for
these Landau parameters: N (0)T ↑↓

' −1.4 − 0.06 cos φ. This reflects the tendency for pairing
in the gas, which suppresses the spin susceptibility by the factor 1/(1 + Fa

0 ) ' 1/3. Since it is
the chemical potentials and not the magnetization n↑ − n↓ which drive the Landau–Boltzmann
equation (3), the spin diffusion coefficient is increased by the same factor.

5. Minimum of the spin diffusion coefficient

In figures 1 and 2, we summarize our results by plotting D as a function of T and 1/kF|a|. In
figure 1(a), we plot D in units of Dhigh/(kFa)2 with Dhigh = 9π 3/2h̄/32

√
2 m as a function of T

in the weak coupling regime. The low and high T curves are given by the weak coupling limits
of (8) and (15). Likewise, we plot in figure 1(b) D(T )/Dhigh in the unitarity limit as given by (8)
and (15). Since D(T ) will interpolate between these two limits, these results show that D(T )

will exhibit a minimum. Figure 1 indicates that in the unitarity limit, the minimum is for T
somewhat below TF but above Tc ∼ 0.2TF, where pairing effects have to be included. The scale
of the minimum value is Dmin ∼ 9π 3/2h̄/32

√
2 m ' 1.1h̄/m. Since D decreases with increasing

coupling strength, this result can be regarded as the quantum limit of D when the interactions
are as strong as quantum mechanics allows.

In figure 2, we plot D as a function of 1/kF|a| in the high temperature limit (a) and
in the low temperature limit (b) using the units Dhigh × (T/TF)

1/2 and 3h̄/8πm × (TF/T )2
=

Dlow × (TF/T )2, respectively. The weak and strong coupling results are again obtained from
(8) and (15), and D(1/kF|a|) will interpolate between these two limits. We see that D
decreases with increasing coupling strength kF|a| and that it eventually flattens out in the limit
kF|a| → ∞.

New Journal of Physics 13 (2011) 035005 (http://www.njp.org/)

http://www.njp.org/


7

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

T/T
F

D
in

un
its

of
D

h i
g h

/(
k F

a)
2

High T limit
Low T limit(a) Weak Coupling 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T/T
F

D
in

un
its

of
D

hi
gh

High T limit
Low T limit

(b) Unitarity limit

Figure 1. The spin diffusion coefficient as a function of T in (a) the weak and
(b) the strong coupling limit.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

1/k
F
|a|

D
in

un
its

of
D

hi
gh

(T
/T

F
)1 /

2

Weak coupling limit
Unitarity limit

(a) High T limit T/T
F
=2

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

1/k
F
|a|

D
in

un
its

of
D

lo
w
(T

F
/T

)2

Weak coupling limit
Unitarity limit

(b) Low T limit

Figure 2. The spin diffusion coefficient as a function of 1/kF|a| in (a) the high
T and (b) the low T limit.

6. Spin relaxation time

From our results, we now derive an expression for the spin relaxation time that gives the typical
time between scattering events for spin dynamics. A suitable definition of τD can be obtained
from the relaxation time approximation, i.e. by assuming I↑ − I↓ = −(δ f↑ − δ f↓)/τD. Using
this, the linearized Landau–Boltzmann equation (3) is easily solved for δ f↑ − δ f↓. Plugging into
(5) then gives the usual expression D =

1
3(1 + Fa

0 )v2
FτD for T � TF with vF being the Fermi

velocity. We define the spin diffusion time τD by comparing this to (15), which gives

τD =
9h̄

16πkBTF

(
TF

T

)2

×


1

(kFa)2
for kFa � 1 (weak coupling),

0.9 for kFa � 1 (unitarity limit).
(16)
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Figure 3. The spin relaxation time as a function of T in (a) the weak and
(b) the strong coupling limit.

for T � TF. Likewise, the relaxation time approximation yields D = kBT τD/m for T � TF. On
comparison with (8), this gives

τD =
9π 3/2h̄

32
√

2kBTF

×


1

(kFa)2

(
T

TF

)−1/2

for T � Ta (weak coupling)(
T

TF

)1/2

for T � Ta (unitarity limit)

, (17)

for T � TF. In figure 3, we plot the high and low T limits spin relaxation times as given by
(16) and (17). We have used the units τhigh/(kFa)2 for the weak coupling case and τhigh in
the unitarity limit with τhigh = 9π 3/2h̄/32

√
2kBTF. Again, we see that the spin relaxation time

exhibits a minimum for T < TF in the unitarity limit. However, τD increases monotonically with
decreasing T in the weak coupling regime.

The spin relaxation time is useful for estimating the nature of the spin dynamics in a
particular trapped atomic gas experiment: when ωτD � 1 with ω being the relevant trapping
frequency, the spin dynamics is hydrodynamic, whereas the spin dynamics is collisionless for
ωτD � 1.

7. Viscosity for low T

For completeness, we briefly outline how one can obtain the viscosity η and the viscous
relaxation time τη for T/TF � 1 for a normal gas from the Landau parameters. The variational
approach for calculating η is explained in [30]. For T/TF � 1, the viscosity is determined by
the angular average of the cross section over the Fermi surface as in (10) and (11). For the
viscosity however, it is the full scattering cross section dσ ↑↓

sc /d� + 1
2dσ ↑↑

sc /d� that enters. Here
dσ ↑↑

sc /d� describes the induced interaction between parallel spins, which cannot be ignored in
general, even though the bare interaction (2) is only between opposite spins. One has, in analogy
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with (12),
dσ↑↑(θ, φ)

d�
=

π 2

16k2
F

[N (0)T ↑↑(θ, φ)]2, (18)

with
N (0)T ↑↑(θ, φ) =

∑
l

(
As

l + Aa
l

)
Pl(cos φ) cos φ. (19)

Taking only the l = 0 Landau parameters, we obtain N (0)T ↑↑(θ, φ) = (As
0 + Aa

0) cos φ =

−0.12 cos φ. This means that the induced interaction between parallel spins is attractive but
much weaker than the interaction between different spins. Following steps analogous to the
spin diffusion case described above, we obtain

η =
24

π 3

T 2
F

T 2

1

C2
1 + (3/4)C2

3

nh̄ = 0.1

(
TF

T

)2

nh̄. (20)

for T � TF. Using the relaxation time result, η = n k2
F

m∗ τη/5, to define the viscous relaxation time
τη, we obtain

τη =
60

π 3

T 2
F

T 2

1

C2
1 + (3/4)C2

3

h̄

kBTF
= 0.2

(
TF

T

)2 h̄

kBTF
. (21)

Comparing (21) with (16), we see that the two relaxation times are qualitatively the same as
expected. They therefore yield the same prediction for the crossover between hydrodynamic
and collisionless behavior.

8. Conclusions

Using a variational approach, we analyzed the spin diffusion coefficient and the spin relaxation
time for a two-component homogeneous Fermi gas in the hydrodynamic limit. We derived
analytical results in the high and low temperature regimes including strong coupling effects
through Landau parameters extracted from Monte Carlo calculations. Our results indicate that
the spin diffusion coefficient exhibits a minimum for a temperature below TF but above Tc, with
a value that scales as ∼h̄/m in the unitarity regime. It would be very interesting to compare this
result with the value of the spin diffusion coefficient in other strongly interacting systems. Also,
one should analyze the effects of pairing on spin diffusion in atomic gases. New experimental
insight is particularly relevant due to the lack of a controllable method for calculating the
minimum value of D quantitatively in the strong coupling limit. We finally provided expressions
for shear viscosity in terms of the Landau parameters.
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