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Abstract. We propose the realization of linear crystals of cold ions that
contain different atomic species for investigating quantum phase transitions and
frustration effects in spin systems beyond the commonly considered case of
s =

1
2 . Mutual spin–spin interactions between ions can be tailored via the Zeeman

effect by applying oscillating magnetic fields with strong gradients. Further,
collective vibrational modes in the mixed ion crystal can be used to enhance and
to vary the strength of spin–spin interactions and even to switch the nature of the
interacting forces from a ferro- to an antiferromagnetic character. We consider
the behavior of the effective spin–spin couplings in an ion crystal of spin-1/2
ions doped with high-magnetic-moment ions with spin S = 3. We analyze the
ground state phase diagram and find regions with different spin orders including
ferrimagnetic states. In the most simple nontrivial example, we deal with a linear
{Ca+,Mn+,Ca+

} crystal with spins of {
1
2 , 3, 1

2}. To demonstrate feasibility with
current state-of-the-art experiments, we discuss how quantum phases might be
detected using a collective Stern–Gerlach effect of the ion crystal and high-
resolution spectroscopy. Here, the state-dependent laser-induced fluorescence of
the indicator spin-1/2 ion, of species 40Ca+, is used to reveal also the spin state
of the simulator spin-3 ions, 50Mn+, which does not possess suitable levels for
optical excitation and detection.
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1. Introduction

Current ion trapping technology has led to rapid progress toward the realization of elementary
quantum processors [1, 2]. The ability to control the motional and internal states of the
trapped ions with high accuracy allows for the experimental implementation of several textbook
models such as quantum simulations of a Dirac equation with the Zitterbewegung and the
Klein paradox [3, 4]. On the other hand, the internal states of laser-cooled and trapped ions
represent effective spins, which can be made to interact with each other for performing magnetic
quantum phase simulations. These interactions may be realized by applying magnetic field
gradients [5–10] or by laser light fields [11–15]. In both cases, spin-1/2 ion crystals allow for a
detailed investigation of complex quantum phase transitions and magnetic frustrated effects.
Preliminary experimental steps in ion crystals have been realized with interacting spins of
two 25Mg+ [16] and up to nine 171Yb+ ions [15, 17] in a linear configuration. Because of the
long-range spin–spin interactions, the larger collections of trapped ions are expected to lead
to intriguing and so far unobserved phenomena, such as the formation of super-solids [18] or
exotic quantum phases [19], where the specific advantages of the ion crystal are: almost perfect
state preparation and readout with single-site addressability, long coherence times and a full
tunability of the spin–spin interactions, even for long ranges beyond next-neighbor couplings.

Going beyond spin-1/2 systems and trapping different ion species with spin S > 1/2 will
allow the study of novel aspects of quantum magnetism in mixed spin chains [20, 21]. Such
impurity-doped systems might model effects that are of interest in solid state physics [22, 23].
Our proposal is inspired by the outstanding progress in quantum logic spectroscopy [24, 25],
where a single clock ion and a single readout ion are simultaneously confined and coupled
through mutual Coulomb repulsion, such that one can transfer the clock ion electronic state to
the readout ion for high-fidelity quantum state detection [26]. A different, new type of quantum
logic readout technique enables us to propose quantum simulation in mixed ion crystals. For the
case of interacting neutral atoms, the high magnetic moment of 6µB of chromium has led to a
wealth of novel effects [27, 28], made possible by the tuning of its spin interactions. 50Mn, with
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Figure 1. Sketch of the proposed experimental sequence, beginning with (a)
the initialization of the spins (indicated by solid arrows) by using the static
magnetic gradient field, followed by (b) a radiofrequency (RF) π/2 pulse on
the Mn+ ions and (c) the creation of spin–spin interactions (red dashed lines)
by using an oscillating magnetic gradient field, and finally concluded by (d)
a collective spin readout on the auxiliary Ca+ ion (left red circle) using the
position-dependent Stern–Gerlach effect. The shift of the equilibrium position of
the auxiliary ion due to the spin-dependent force causes a frequency separation
indicated by δωZeeman (see section 4). This leads to a bright or dark state of the
Ca+ ion, which is imaged on a CCD camera via state-dependent fluorescence.

an atomic number that is +1 higher as compared with Cr, features a similar electronic structure
and magnetic moment when singly ionized to Mn+ for being trapped in the ion crystal.

In this paper, we propose an efficient method for the creation of effective spin–spin
interactions in ion crystals of spin-1/2 ions doped with different ion species with spin S = 3. An
oscillating magnetic field gradient [8] can be used to implement coupling between the spin states
of both ion species and the collective motional states of the impurity-doped crystal (see figure 1).
The advantage of using an oscillating magnetic field instead of a laser field is that it is possible
to avoid technical difficulties such as sideband cooling of the many vibrational modes and the
necessity to use additional lasers to provide the spin–spin couplings. We show that by a proper
choice of the frequencies and direction of the magnetic field gradient, the anisotropic Heisenberg
model can be realized with tunable spin–spin couplings [29]. We investigate the particular
case of a field gradient applied along the trapping axis such that the spin–spin interactions are
described by the transverse Ising model with single-ion anisotropy. We consider the ground state
phase diagram for a small system consisting of two spin-1/2 ions and one spin-3 ion placed at
the center, which is realizable with current ion-trap technology. Due to the complex competition
between the spin–spin couplings and the single-ion anisotropy, we are able to distinguish four
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regions with different spin orders [15]. We found that for sufficiently strong antiferromagnetic
nearest-neighbor coupling, the spin order is ferrimagnetic wherein the two different spins are
arranged in opposite directions. We show that the ferrimagnetic order can be frustrated due to
competing next-nearest-neighbor coupling and the single-ion anisotropy which gives rise to a
highly entangled ground state.

It has been shown that the atomic gases in an optical lattice may be used to realize various
condensed-matter models with high spin symmetry [21, 30]. The ability to trap ions with large
spins at a fixed position [31] and to tune the range and strength of the interactions makes
the impurity-doped ion crystal an analogue quantum simulator for quantum magnetism and
frustration effects in a mixed spin system [32, 33].

The paper is organized as follows. In section 2, we describe the theoretical background
for the implementation of the effective spin–spin interactions in an (S, s)= (3, 1

2) mixed spin
system by using an oscillating magnetic field gradient. In section 3, we provide an analysis of
the ground state phase diagram for the transverse Ising Hamiltonian with single-ion anisotropy
describing a spin system with two spin-1/2 ions and one spin-3 ion placed at the center. The
method for state preparation and readout of the spin states based on frequency addressing of the
auxiliary ion is considered in section 4. Finally, in section 5 we give a summary of the results
and discuss further and even more complex possibilities of quantum simulation with mixed ion
crystals.

2. Theoretical model

We consider a harmonically confined impurity-doped ion crystal with N − K spin-1/2 ions
with mass m and K spin-3 ions with mass M . For instance, this is the case of a 40Ca+ ion crystal
doped with 50Mn+ ions, which have 7S3 electronic ground state. If the radial trap frequencies
are much larger than the axial trap frequency (ωx,y � ωz), the ions arrange themselves in a
linear configuration along the axial z-axis and occupy equilibrium positions [34]. The axial trap
potential is independent of the mass, so that the equilibrium position of the ions is independent
of the composition of the ion crystal. A static magnetic field B0 along the trap axis defines the
quantization axis. The spin-1/2 sublevels |↑〉 and |↓〉 are Zeeman split by the applied magnetic
field with a resonance frequency ω0 = (gJµB/h̄)B0. Here gJ denotes the Landé g-factor and µB

is the Bohr magneton. The spin sublevels of spin-3 ions possess seven Zeeman states, which we
index as |m〉 with magnetic quantum number m = −3,−2, . . . ,+3 and resonance frequency ω̃0.
In the case of an ion crystal consisting of 40Ca+ ions with electronic ground state 2S1/2 doped
with 50Mn+ ions, the Landé g-factor is gJ ≈ 2 such that the resonance frequencies ω0 and ω̃0 of
both ion species are equal.

2.1. Magnetic field gradient along the z-direction

We assume that the impurity-doped ion crystal interacts collectively with the oscillating
magnetic gradient field with frequency ω applied along the z-direction (for simplicity we omit
the constant magnetic offset)

EB = EezzBz cosωt. (1)
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The Hamiltonian for N ions interacting with the magnetic field is Ĥ = Ĥ0 + ĤI . Here

Ĥ0 =
h̄ω0

2

N−K∑
j=1

σ z
j + h̄ω0

K∑
k=1

Sz
k + h̄

N∑
n=1

ωn,zâ
†
n,zân,z (2)

is the interaction-free Hamiltonian, with σ z
j being the Pauli matrix for the j th spin-1/2 ion and

Sz
k is the spin operator for the kth spin-3 ion with Sz|m〉 = m|m〉. â†

n,z and ân,z are, respectively,
the creation and annihilation operators of collective phonons along the z-axis with frequency
ωn,z. The displacement ẑ j of the j th ion from its equilibrium position can be expressed in
terms of this set of operators as ẑ j =

∑N
n=1 bz

j,n1zn(â†
n,z + ân,z). Here 1zn(a)=

√
h̄/2aωn,z

with a = m,M being the spread of the ground state wave function and bz
j,n (n = 1, 2, . . . , N )

being the normal mode eigenvectors in the z-direction (see appendix) [34, 35]. The interaction
between the magnetic dipole moment of the ion species and the magnetic gradient is described
by ĤI = −Êµ. EB. The z-component of the magnetic-dipole moment for the spin-1/2 ion is
µ̂z = (γ /2)σz and that for a spin-3 is µ̂z = γ Sz with γ = µBgJ . Then, we may transform the
Hamiltonian in the interaction picture with respect to Ĥ0 to obtain

Ĥ z
I = −h̄

N∑
n=1

N−K∑
j=1

�z
j,n

2
σ z

j +
K∑

k=1

�z
k,n Sz

k

 (
â†

n,ze
i(ω+ωn,z)t + ân,ze

−i(ω+ωn,z)t
)

−h̄
N∑

n=1

N−K∑
j=1

�z
j,n

2
σ z

j +
K∑

k=1

�z
k,n Sz

k

 (
â†

n,ze
−i(ω−ωn,z)t + ân,ze

i(ω−ωn,z)t
)
. (3)

The function �z
j,n = bz

j,n1zn Bzγ /2h̄ is the Rabi frequency of the j th ion, which quantifies the
coupling to the nth vibrational mode. Hence, the oscillating magnetic gradient field mediates
a coupling between the internal states of the ions and the external (motional) states of the ion
crystal. Indeed, the two terms in the Hamiltonian (3) describe a time-varying spin-dependent
displacement with frequencies (ω +ωn,z) and (ω−ωn,z). If the frequency ω is not resonant
to any vibrational mode and the condition |ωn,z −ω| ��z

j,n is satisfied for any n, then we
can perform time averaging of the rapidly oscillating terms in (3) [36]. Thus, we arrive at the
following time-averaged effective Hamiltonian:

Ĥ z
eff = h̄

N−K∑
j, j ′=1

j> j
′

J (1,z)
j, j ′ σ

z
j σ

z
j ′ + h̄

K∑
k,k′=1

k>k
′

J (2,z)k,k′ Sz
k Sz

k′ + h̄
N−K∑
j=1

K∑
k=1

J (3,z)j,k σ z
j Sz

k + h̄
K∑

k=1

Az
k(S

z
k)

2. (4)

Therefore, the off-resonant oscillating magnetic gradient creates an effective spin–spin
interaction between identical [14, 15] and different ion species in the crystal. The first two terms
in (4) quantify the spin–spin coupling between the spin-1/2 ions and the spin-3 ions. The third
term in (4) describes the spin–spin coupling between the different ion species. Surprisingly,
the adiabatic elimination of the vibrational modes for an ion crystal with s > 1/2 ions gives
rise to the single-ion anisotropy term H (k)

SI = Az
k(S

z
k)

2, which quantifies the nonlinear Zeeman
shift of the spin-3 magnetic sublevels. This term resembles the situation in a solid state, where
the single-ion anisotropy describes the coupling between the spins and a crystal field, which
is created by the neighboring atoms [37]. In the case of the impurity-doped ion system, this
interaction results in an energy preference of the spins S > 1

2 to align in a particular direction.

New Journal of Physics 13 (2011) 125008 (http://www.njp.org/)

http://www.njp.org/


6

For ions with s =
1
2 the nonlinear Zeeman shift is equal for both magnetic sublevels, and thereby

proportional to the unit matrix. The couplings in (4) are given by

J (1,z)j, j ′ =
B2

z γ
2

8h̄m

N∑
n=1

bz
j,nbz

j ′
,n

ω2 −ω2
n,z

, J (2,z)k,k′ =
B2

z γ
2

2h̄M

N∑
n=1

bz
k,nbz

k′
,n

ω2 −ω2
n,z

,

J (3,z)j,k =
B2

z γ
2

4h̄
√

mM

N∑
n=1

bz
j,nbz

k,n

ω2 −ω2
n,z

, Az
k =

B2
z γ

2

4h̄M

N∑
n=1

(bz
k,n)

2

ω2 −ω2
n,z

. (5)

The main advantage of using an oscillating magnetic field gradient instead of constant is that we
may engineer a variety of interactions between the ions. Figure 2 shows the spin–spin couplings
and the single-ion anisotropy (5) for a chain of two spin-1/2 ions and one spin-3 ion placed
at the center versus the frequency ω. In contrast to having constant magnetic field gradient
applied along the trapping axis z wherein the spin couplings can be only ferromagnetic, here
the magnitude and sign of the couplings change as ω is varied, which allows the creation of
ferromagnetic, antiferromagnetic or frustrated interaction between the ions. The ground state of
the Hamiltonian (4) highly depends on the sign of the single-ion anisotropy terms Az

k . Indeed,
for sufficiently large positive single-ion anisotropy (Az

k � 0), the spin-3 ions have magnetic
quantum number m = 0 for the ground state, while in the opposite limit (|Az

k| � 0) the spin-3
ground state projection is m = ±3.

2.2. Magnetic field along the xyz-direction

Consider the magnetic gradient applied along the xyz-direction

EB(x, y, z)= EezzBz cosωt + Eex x Bx f (t)− Eey y By f (t), (6)

with f (t)= (cosωbt + cosωr t). Such a field can be created in a micro-structured planar ion trap,
which contains a central wire loop [9]. The oscillating field in the x–y-plane provides additional
coupling �

q
j,n = bq

j,n1qn Bqγ /2h̄ (q = x, y) between the internal and motional degrees of
freedom of the ion crystal. We assume that the frequencies ωb −ω0 = δ and ωr −ω0 = −δ

are tuned to the blue- and red-sideband transitions with detuning ±δ. Then the x–y gradients
induce a spin-dependent displacement with frequencies (δ +ωn,q) and (δ−ωn,q) similar to
equation (3), where ωn,q are the vibrational frequencies in the x- and y-directions, respectively
(see appendix). After applying an optical rotating-wave approximation (neglecting the terms
ω0 +ωb,r ) and assuming that |ωn,q − δ| ��

q
j,n is fulfilled for any vibrational mode in the

x–y-direction, the time-averaged effective Hamiltonian is given by

Ĥeff = h̄
∑

q=x,y,z


N−K∑
j, j

′
=1

j> j ′

J (1,q)
j, j ′ σ

q
j σ

q
j ′ +

K∑
k,k′=1
k>k′

J (2,q)k,k′ Sq
k Sq

k′ +
N−K∑
j=1

K∑
k=1

J (3,q)j,k σ
q
j Sq

k +
K∑

k=1

Aq
k (S

q
k )

2

 . (7)

The spin–spin couplings in the x–y direction are identical in form to (5) by replacing ω→ δ and
z → x, y. We note that the condition div EB = 0 for the magnetic field in the x–y plane gives rise
to a constraint for the magnetic field gradients, Bx = By . However, this condition does not give
the restriction to the spin couplings as long as the trapping frequencies ωx and ωy are different,
such that in general we have J (x)

k,k′ 6= J (y)
k,k′ . Hence, the magnetic field (6) creates an anisotropic

(XY Z ) Heisenberg interaction between the effective spins.
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Figure 2. (Left) The nearest neighbor J12 = J23 = J , the next-nearest neighbor
J13 spin–spin couplings and the single-ion anisotropy A as a function of ω
for an ion crystal consisting of two spin-1/2 ions and one spin-3 ion placed
at the center (see equation (5)). The couplings J , J13 and A are normalized
to ε = (1z∂zω0)

2/(2ωz), which quantifies the change of the spin resonance
frequency ω0 due to the shift of the equilibrium position of the ion with trap
frequency ωz by an amount equal to the spread of the ground state wavefunction,
1z =

√
h̄/2mωz. (Right) Quantum phases differ in the region (I)–(IV).

3. Transverse Ising model

The quantum transverse Ising Hamiltonian is given by

HTI = H z
eff − h̄ B0

x


N−K∑
j=1

σ x
j

2
+

K∑
k=1

Sx
k

 . (8)

The last term in (8) can be simulated by driving transitions between the ion spin states
employing a radiofrequency (RF) field EB0 = Eex B0 cos ω̃t . Assuming that the resonance
condition is fulfilled, i.e. ω̃ = ω0 we obtain the effective transverse field B0

x = γ B0/2h̄.
The simplest nontrivial case is to consider an ion chain with two spin-1/2 ions and one

spin-3 ion placed at the center. Such an ordering of ions is consistent with natural behavior, as
observed in [31]. When applying an oscillating gradient field, the resulting spin–spin couplings
are shown in figure 2 as a function of the drive frequency ω. We may distinguish between
four different regions wherein the spin–spin interactions are ferromagnetic, antiferromagnetic
or frustrated. The presence of the single-ion anisotropy A in (8) changes substantially the
ground state phase diagram compared to the case of spin-1/2 ion chain. In contrast to the
spin-1/2 string, the ground state of the mixed (S, s)= (3, 1

2) spin system can be frustrated
due to the complex competition between the spin–spin couplings J and J13 and the single-ion
anisotropy A.

In region (I) (see figure 2) all interactions are ferromagnetic (J, J13 < 0) and the resulting
ground state of the Hamiltonian (8) as B0

x → 0 is a coherent superposition of two ferromagnetic
states |↑↑〉|3〉 and |↓↓〉|− 3〉. Because the single-ion anisotropy is negative (A < 0), the ground
state energy is minimized for the spin-3 state with magnetic quantum number m = ±3. The
ferromagnetic population P f m,3 = P↑↑3 + P↓↓−3 as a function of the effective magnetic field and
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Figure 3. The ground state phase diagram calculated by an exact diagonalization
of the Hamiltonian (8). (a) The ferromagnetic population P f m,3 as a function
of the normalized transverse magnetic field B0

x/ε and the frequency ω. In
region (I), the spin–spin couplings are ferromagnetic J, J13 < 0 and the single-
ion anisotropy is A < 0. (b) The population difference P f,1 − P f,2 + P f,3 −

Pa,3 as a function of the normalized transverse magnetic field B0
x/ε and the

frequency ω. In region (II), the spin–spin couplings are antiferromagnetic
J, J13 > 0 and the single-ion anisotropy is A > 0. By increasing ω as
B0

x → 0 the system undergoes the transition |ψ f,1〉 → |ψ f,2〉 → |ψ f,3〉 → |ψa,3〉.
(c) The ferrimagnetic population P f,3 as a function of the normalized transverse
magnetic field B0

x/ε and the frequency ω. In region (III), the spin–spin couplings
are J > 0, J13 < 0, respectively, and the single-ion anisotropy is A < 0. (d) The
antiferromagnetic population Pa,0 as a function of the normalized transverse
magnetic field B0

x/ε and the frequency ω. In region (IV), the spin–spin couplings
are J < 0, J13 > 0, respectively, and the single-ion anisotropy is A > 0.

the frequency ω is shown in figure 3(a). In region (II), the spin interactions are antiferromagnetic
(J, J13 > 0). This is the case for ferrimagnetism in which spins of two types interact by nearest-
neighbor antiferromagnetic coupling (see figure 3(b)). However, the ferrimagnetic interaction
is frustrated due to the competing next-nearest-neighbor antiferromagnetic coupling J13 > 0,
which disturbs the ferrimagnetic order and tends to align the two spins- 1

2 in an antiferromagnetic
state. Additionally, the ferrimagnetic interaction is also frustrated due to the strong positive
single-ion anisotropy A > 0, which attempts to project the spin-3 state |m〉 in a quantum
number m = 0. In the beginning of region (II), A > 0 is high but the ferrimagnetic configuration
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is still energetically favorable such that the ground state of the Hamiltonian (8) as B0
x → 0

becomes a superposition of two ferrimagnetic states |ψ f,1〉 = (|↑↑〉|− 1〉 + |↓↓〉|1〉)/
√

2,
wherein the spins S = 3 and s =

1
2 are aligned anti-parallel to each other. By increasing ω,

the single-ion anisotropy A decreases, which allows the quantum number m to increase and the
resulting ground state is |ψ2, f 〉 = (|↑↑〉|− 2〉 + |↓↓〉|2〉)/

√
2. For A/J = 2/3, which occurs at

ω ≈ 1.24ωz, the ground state for B0
x = 0 is an entangled superposition of four ferrimagnetic

states |↑↑〉|− 1〉, |↓↓〉|1〉, |↑↑〉|− 2〉 and |↓↓〉|2〉. By decreasing A the ferrimagnetic state
|ψ2, f 〉 undergoes a transition to |ψ3, f 〉 = (|↑↑〉|− 3〉 + |↓↓〉|3〉)/

√
2. At the transition point

ω = 1.4ωz and A/J = 0.4 the resulting ground state for B0
x = 0 is an entangled superposition

of four ferrimagnetic states, |↑↑〉|− 2〉, |↓↓〉|2〉, |↑↑〉|− 3〉 and |↓↓〉|3〉. For sufficiently high
positive J13 the ferrimagnetic arrangement is not favorable and the two spin- 1

2 ions are arranged
in an antiferromagnetic state. Hence, the ferrimagnetic configuration is broken and the ground
state is |ψa,3〉 = (|↑↓〉 + |↓↑〉)(|3〉 + |− 3〉)/2. At the transition point ω ≈ 1.65ωz, the ground
state of the Hamiltonian (8) is an entangled superposition of six states: two ferrimagnetic
states |↑↑〉|− 3〉 and |↓↓〉|3〉 and four antiferromagnetic states |↑↓〉|3〉, |↑↓〉|− 3〉, |↓↑〉|3〉

and |↓↑〉|− 3〉. In region (III), the nearest-neighbor spin coupling is antiferromagnetic (J > 0)
such that the ferrimagnetic configuration is favorable. In contrast with region (II), no frustration
exists because the next-nearest-neighbor coupling is ferromagnetic J13 < 0 and A < 0. In the
entire region the ground state is ferrimagnetic |ψ f,3〉, which minimizes all interactions. In
figure 3(c), the ferrimagnetic population P f,3 = P↑↑−3 + P↓↓3 versus the effective magnetic
field and the frequency ω is shown. In region (IV), the single-ion anisotropy is positive
(A > 0), which causes the spin-3 to be projected into quantum number m = 0. Additionally, the
next-nearest-neighbor coupling is antiferromagnetic J13 > 0 and the resulting ground state as
B0

x → 0 is antiferromagnetic |ψa,0〉 = (|↑↓〉 + |↓↑〉)|0〉/
√

2. The antiferromagnetic population
Pa,0 = P↑↓0 + P↓↑0 is shown in figure 3(d).

3.1. Towards larger and more complex mixed crystals

By increasing the number of ions the spin–spin interactions become more complex and
consequently the new ground states exhibit a variety of spin orders. In alternating mixed-spin
chains we can find regions in which the nearest-neighbor interactions are antiferromagnetic
with ferrimagnetic ground states (see figure 4). Such antiferromagnetic mixed-spin chains have
been proposed as a model for describing certain molecular-based magnets of experimental
interest [38]. Moreover, one of the most studied topics in alternating mixed-spin chains is
the appearance of a plateau in the magnetization curve [33, 39–41]. It has been shown that
the formation of these plateaux depends strongly on the competing interactions and single-ion
anisotropy. Thus, the proposed ion trap-based simulator of quantum magnetism in the mixed-
spin system will allow for detailed studies of such phenomena.

4. Preparation and spin readout

In order to prepare the initial state of the Hamiltonian

Ĥ 0
TI = −h̄ B0

x

{
σ x

1

2
+ Sx

2 +
σ x

3

2

}
(9)
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Figure 4. (a). The spin–spin couplings and single-ion anisotropy in an alternating
mixed-spin chain {

1
2 , 3, 1

2 , 3, 1
2} consisting of three spin-1/2 ions and two

spin-3 ions. All couplings are normalized to ε. The frequency of the oscillating
magnetic field is set to ω = 1.8ωz. The nearest-neighbor couplings are
antiferromagnetic. Similar antiferromagnetic behavior is observed in larger
alternating odd number ion crystals. (b) Because of the antiferromagnetic
nearest-neighbor interactions, the different spins are aligned anti-parallel to each
other and the resulting ground state as B0

x/ε→ 0 is ferrimagnetic |ψ f,2〉 =

(|↑↑〉|− 2,−2〉+|↓↓〉|2, 2〉)/
√

2 or |ψ f,3〉= (|↑↑〉|− 3,−3〉+|↓↓〉|3, 3〉)/
√

2.
The figure shows the population difference P f,3 − P f,2 as a function of ω
and B0

x/ε.

and to readout the final state after the adiabatic ramping of the spin couplings, we can apply a
static magnetic field gradient EB = EB0 + bzEez along the trapping axis z which shifts the resonance
frequencies of transitions between Zeeman states (see figure 5(a) and the general scheme in
figure 1). Due to the spatial variation of the magnetic field, the spin states exhibit site-specific
resonance frequencies, ω′

0 = ω0 + γ bz/h̄. Due to the applied gradient field, the equilibrium
position of each of the ions is shifted depending on the spin states of the other ions in the
linear crystal. Indeed, the total force that acts on the magnetic dipole moment of spin-1/2 ions
along the trapping axis z is F1 = F (2)

z + F (3)
z , where F (2)

z = h̄∂zω〈Sz〉 and F (3)
z = (h̄/2)∂zω〈σz〉

are forces associated with the spins h̄Sz and (h̄/2)σz in a magnetic field EB and 〈〉 indicates the
expectation value [5]. The spin-dependent force shifts the equilibrium position by an amount
dz = (F (2)

z + F (3)
z )/(mω2

z ). Consequently, the spin resonance frequency is changed from ω1 to
ω′

1, with ω′

1 = ω1 + γ bdz/h̄ (see figure 5(b)). The frequency separation δωZeeman = |ω′

1 −ω1|

between the two spin resonances of spin-1/2 ion is given by

δωZeeman =
µBgJ b

h̄
|dz|. (10)

Assuming a high but realistic magnetic gradient of b = 20 T m−1 [10] and an axial trap
frequency of ωz = 2π × 100 kHz, the shift from the equilibrium position of a spin-1/2
ion corresponding to the state |m = 3〉2|↑〉3 is dz ≈ 50 nm, which gives rise to frequency
separation (10) of δωZeeman ≈ 174 kHz. Note that much smaller frequency shifts are easily
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Figure 5. (a) In the presence of static magnetic field gradient, the Zeeman shift
of the spin states is different for each ion. (b) The ion equilibrium position is
shifted due to the spin-dependent force acting on the magnetic dipole moment.
The direction and magnitude of the displacement depend on the spin states of
the other ions. Thus, the spin resonance frequency will change from ω1 to ω′

1. By
scanning the frequency of the applied laser light, the spin transition comes into
resonance and consequently the ion scatters light.

resolved on a narrow Raman or quadrupole transition, such that in a final step the observation of
laser-induced fluorescence allows one to determine the spin states. The experimental sequence
is started by preparing the two spin-1/2 ions in a state |↓↓〉|9S〉, where |9S〉 is a still unknown
state of the spin-3 ion. Additionally, we may trap an auxiliary ion initially prepared by optical
pumping in the state |↓〉a which can be used to readout the spin states of the remaining three
ions. In the second step we switch on the static magnetic gradient, which creates the spin-
dependent force. Next, we expose the auxiliary ion to laser light with frequency ω′

1, which drives
the transition |↓〉a ↔ |↑〉a only if the state of the spin-3 ion is |m = −3〉. If the auxiliary ion does
not scatter light we have to discard the measurement and restart. If we observe fluorescence, then
the state of the spin-3 ion is measured in |− 3〉 and results, after performing a π/2 rotation along
the y-axis, in the desired ground state |90〉 of Hamiltonian (9)

|90〉 = e−i π4 σ
y
1 e−i π2 Sy

2 e−i π4 σ
y
3 |↓↓〉 | − 3〉. (11)

In the same way, the probability observable Ps1,s3,m for the state |s1s3〉|m〉 can be
determined. By scanning the laser frequency, the auxiliary spin-1/2 ion comes into resonance
and consequently scatters light. The auxiliary resonance frequency is defined depending on
the spin states of the other three ions. The readout method cannot be applied directly to a
general collective spin state with more than one spin-3 ion. For example, in a mixed-spin system
with two spin-1/2 ions and two spin-3 ions, the states |↑↑〉|m,−m〉 and |↑↑〉|− m,m〉 create
equal amounts of displacement to the equilibrium position of the auxiliary ion, such that both
states are indistinguishable. For these more general cases, the state detection problem can be
solved by (i) applying a spatially varying magnetic field gradient with ∂2 B/∂z2

6= 0, which
allows one to distinguish the spin states due to the position dependence of the force, or
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(ii) separating the entire ion crystal into smaller sub-crystals and transporting them into
magnetic gradient detection zones [42, 43], which is a promising solution, especially for
segmented micro traps [9]. The very precise measurement of the position wave function of an
ion, which was a key element in experiments that demonstrated the quantum random walk [44],
was also used in other ion trap experiments with single ions and relies on the light ion interaction
in either Raman [45] or bichromatic light fields [3, 44]. These methods can determine the wave
packet position to an accuracy of a few per cent of the ground state wavepacket extension
1zm , but for an application here one would need to lock the laser light phases for position
determination with respect to the initialization RF pulses on the ions, which has not been
experimentally realized so far.

5. Conclusion and outlook

We have proposed a method for the creation and manipulation of the spin–spin interactions
in spin-1/2 ion crystals doped with high-magnetic-moment ions with spin S = 3. It is shown
that by tuning the frequency and direction of oscillating magnetic field gradients, various
fundamental models in quantum magnetism of mixed-spin systems can be realized. Because
of the competing long-range spin–spin couplings, the spin orders are extremely numerous even
for spin systems consisting of a small number of ions. We have proposed a technique for spin
preparation and readout based on the frequency addressing of an indicator spin-1/2 ion in the
presence of a spatially varying magnetic field.

In future, we will investigate the decoherence properties of such states and how the
quantum simulation is affected by typical noise sources in an ion trap experiment. As the
different quantum states are affected very differently by the expected dominating source
of noise, the ambient magnetic field fluctuations, we expect that states in decoherence-
free subspaces, such as for example |ψ f,1〉 = (|↑↑〉|− 1〉 + |↓↓〉|1〉)/

√
2, or |ψa,3〉 = (|↑↓〉 +

|↓↑〉)(|3〉 + |− 3〉)/2 with zero effective magnetic moment will be preferred. A second future
research theme is the combination of spin-dependent forces by magnetic gradients using
sophisticated control of multiple segments in a micro trap [9, 46] which form the axial potential
for the confinement of the ion crystal in the z-direction. As this potential may be shaped in
non-trivial, non-harmonic ways and even with multiple potential wells [47, 48], the interspatial
distances in the ion crystal become free parameters instead of being given by the Coulomb
repulsion in an overall harmonic potential. Here, it was shown that 2 × N cluster states can be
generated [49] as a resource for one-way quantum computing.
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Appendix. Calculation of the eigenfrequencies and eigenvectors of the impurity-doped
ion crystal

In order to determine the spin–spin interactions we need to calculate the eigenfrequencies and
eigenvectors of the impurity-doped ion crystal. The potential energy of a collection of N − K
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ions with mass m and K ions with mass M is

V =
mωz(m)2

2

N−K∑
j=1

z2
j +

mωr(m)2

2

N−K∑
j=1

(x2
j + y2

j )+
Mωz(M)2

2

K∑
k=1

z2
k +

Mωr(M)2

2

K∑
k=1

(x2
k + y2

k )

+
e2

8πε0

N∑
j,k=1
j 6=k

1√
(x j − xk)2 + (y j − yk)2 + (z j − zk)2

, (A.1)

where for simplicity of the notation we assume that the trapping confinements in the radial
x–y-direction are equal, ωx = ωy = ωr . Here ωz(m)∼ m−1/2 and ωz(M)∼ M−1/2 are,
respectively, the axial trap frequency for an ion with mass m and M . The radial oscillation
frequency ω0

r (a)∼ a−1 with a = m,M is reduced by the axial trap frequency according to

ωr(a)= ω0
r (a)

(
1 −

ωz(a)2

2ω0
r (a)

2

)1/2

, (A.2)

in lowest-order approximation [50]. For small displacements the motional degrees of freedom
in x-, y- and z-directions are decoupled. The Hessian matrices Ai j and Bi j that describe the
small oscillation of the ions around their equilibrium position in the axial z, and respectively,
x–y-directions are given by

Ai j =


1 + 2

N∑
j=1
j 6=p

1∣∣u j − u p

∣∣3 (i = j),

−2

|ui − u j |
3

(i 6= j),

(A.3)

Bi j =



1 −
α2

2
−α2

N∑
j=1
j 6=p

1∣∣u j − u p

∣∣3 (i = j 6= jM),

1

µ
−
α2

2
−α2

N∑
j=1
j 6=p

1∣∣u j − u p

∣∣3 (i = j = jM),

α2

|ui − u j |
3

(i 6= j).

(A.4)

Here we have introduced the mass ratio µ= M/m and anisotropy parameter α = ωz(m)/ω0
r (m)

with u j being the dimensionless equilibrium position of the j th ion. In the above expressions,
the index jM denotes the position of the j th ion with mass M . The eigenfrequencies
ωz,n = ωz(m)

√
λn and eigenvectors bz

n (n = 1, 2, . . . , N ) in the z-direction are given by the
diagonalization of the following matrix:

Ãi j =



Ai j (i = j 6= jM),

Ai j/µ (i = j = jM),

Ai j (i 6= j 6= jM),

Ai j/
√
µ (i or j = jM, i 6= j),

Ai j/µ (iM 6= jM),

(A.5)

New Journal of Physics 13 (2011) 125008 (http://www.njp.org/)

http://www.njp.org/


14

such that
∑N

j=1 Ãi j b
z
j,n = λnbz

i,n. In the same way the eigenfrequencies ωq,n = ω0
r (m)

√
γn and

eigenvectors bq
n (q = x, y) in the radial direction are obtained by the diagonalization of the

following matrix:

B̃i j =



Bi j (i = j 6= jM),

Bi j/µ (i = j = jM),

Bi j (i 6= j 6= jM),

Bi j/
√
µ (i or j = jM, i 6= j),

Bi j/µ (iM 6= jM),

(A.6)

with
∑N

j=1 B̃i j b
q
j,n = γnbq

i,n.
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