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Abstract. We predict and describe a new collective mode in rotating
Bose–Einstein condensates, which is very similar to Rossby waves in
geophysics. In the regime of fast rotation, the Coriolis force dominates the
dynamics and acts as a restoring force for acoustic-drift waves along the
condensate. We derive a nonlinear equation that includes the effects of both
zero-point pressure and inhomogeneity of the gas. It is shown that such waves
have negative phase speed, propagating in the opposite sense of the rotation. We
discuss different equilibrium configurations and compare them to those resulting
from the Thomas–Fermi approximation.

The rotation of Bose–Einstein condensates (BECs) has attracted much attention recently, both
theoretically and experimentally [1, 2]. Due to the superfluid character of the BEC, the effects
of rotation are quite different from those observed in a normal fluid and its properties strongly
depend on the effects of confinement. The pioneering experiments based on both the phase
imprinting [3] and the rotating laser beam [4, 5] techniques independently confirmed the
nucleation of quantized vortices, which is a clear manifestation of the superfluid properties
of the condensate. Since then, much effort has been made to understand the dynamics of the
rotating BEC [6] and, in particular, the mechanisms of vortex nucleation [7, 8]. In particular,
interesting features of quantized vortices in BECs of alkali atoms are related to the formation of
vortex arrays, where singly quantized vortices are typically arranged in highly regular triangular
lattices, similar to the Abrikosov lattice for superconductors. Such a configuration is possible
only when a sufficient amount of angular momentum is effectively transferred to the system,
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corresponding to the situation of a rapid rotation. The acquired angular velocity then tends to
enlarge the rotating cloud, and the centrifugal force is responsible for the flattening of the density
profile towards a two-dimensional configuration. In the limit where the rotation frequency �
approaches the transverse trapping frequency ω⊥, the quadratic centrifugal and the harmonic
trapping potentials cancel out and the system is no longer bounded. The possibility of reaching
high angular velocities is therefore provided by the addition of anharmonic terms to the trapping
potential, making the investigation of new equilibrium configurations with different vortex states
and new collective modes worthwhile [9]. In the present work, we take advantage of such an
interesting medium to predict a different hydrodynamical mode in rotating BECs, in complete
analogy to the Rossby waves observed in geophysics. Rossby waves, also known as planetary
waves, have been recognized for a long time as the main pattern of long period variability
in the upper tropospheric winds [10]. These are responsible for the well-known cyclonic and
anticyclonic systems that characterize the day-to-day weather systems in mid-latitudes, and can
be observed both in the upper troposphere and in the oceans. The waves exist because of the
variation of the Coriolis parameter f with latitude, which acts as a restoring force for an air
particle that is disturbed from its equilibrium latitude. In a rotating BEC, the Coriolis parameter
is replaced by twice the angular rotation frequency, 2�. We show that such waves are dispersive,
their phase speed being always negative, which means that these oscillations always propagate
westward with respect to the BEC rotation. We derive here a new equation for the Rossby waves
in a rotating condensate, which accounts for the vortex lattice and the anharmonicity of the trap.

Cozzini and Stringari [11] showed, in the presence of a large number of vortices, that it is
possible to average the velocity field over regions containing many vortex lines and assume that
vorticity is spread continuously in the superfluid. This approximation is known as the diffused
vorticity approach [11] and simply corresponds to assuming a rigid-body rotation v = � × r,
where the angular velocity is � =�ẑ where �= π h̄nv/m, nv(r) is the average vortex density
in the vicinity of r and m stands for the atomic mass. Therefore, the usual irrotationality
condition ∇ × v = 0 is no longer valid and should be replaced by ∇ × v(r)= 2�. In that case,
the macroscopic dynamics of the rotating BEC is provided by the rotational hydrodynamical
equations in the rotating frame

∂n

∂t
+ ∇ · (nv)= 0, (1)(
∂

∂t
+ v · ∇

)
v = −

g∇n

m
−

∇V

m
+

h̄2

2m2
∇

(
∇

2√n
√

n

)
− 2� × v, (2)

where v · ∇v = ∇(v2)/2 − v × (� × v). The usual hydrodynamical calculations are based on
the Thomas–Fermi approximation, which neglects the quantum pressure proportional to h̄2.
In this work, however, we include this quantum term, since we may be interested in Bogoliubov-
like waves. Note that this procedure does not contradict the diffused vorticity approximation,
since the quantum features will be included only in the dynamics of the fluctuations and do not
affect the equilibrium configuration of the system. This allows one to cast quantum features that
may be relevant for describing the so-called quantum turbulence [12], where the healing length
sets a lower scale for the Kolmogorov cascade. Here, V (r, �)= Vtrap(r)− m�2r 2/2, where
r = (x2 + y2)1/2 stands for the effective trapping potential, which reads

V (r, �)=
h̄ω⊥

2

[(
1 −

�2

ω2
⊥

)
r 2

a2
ho

+β
r 4

a4
ho

]
, (3)
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with aho =
√

h̄/mω⊥ being the characteristic harmonic oscillator length and β the dimensionless
anharmonicity parameter. The term 2� × v in equation (2) represents the Coriolis force, which
will act as the restoring force for the oscillations considered here. We consider perturbations
around the equilibrium configuration, making n = n0 + δn and v = δv. In that case, the system
can be described by the following set of perturbed equations:

∂

∂t
δn + ∇ · (n0δv)= 0, (4)(
∂

∂t
+ δv · ∇

)
δv = −g∇δn − 2� × δv +

h̄2

4m2
∇

(
∇

2δn

n∞

)
, (5)

where n∞ is the peak density. Here, we have considered the quantum pressure to be important
only for the fluctuations,

h̄2

4m2
∇

(
∇

2(n0 + δn)

n0

)
≈

h̄2

4m2
∇

(
∇

2δn

n∞

)
, (6)

where the local density n0 is assumed to be slowly varying with respect to δn. The rotational
velocity field can be split into two parts, δv ≈ δv0 + δvp, where

δv0 =
1

2�
ẑ × S (7)

is the zeroth-order drift velocity, resulting from taking d/dt = ∂/∂t + δv · ∇ = 0 in equation (5)
and

S = −g∇δn +
h̄2

4m2
∇

(
∇

2δn

n∞

)
. (8)

The polarization velocity δvp is the first-order correction to the drift velocity (8) and satisfies
the following equation:(

∂

∂t
+ δv0 · ∇

)
δv0 = −2� × δvp, (9)

which yields

δvp = −
1

4�2

∂S⊥

∂t
−

1

8�3

(
ẑ × S

)
· ∇⊥S, (10)

where S⊥ = (Sx , Sy) is the transverse component of S. The continuity equation (4) can be written
in the following fashion:

d

dt
ln n + ∇ · δvp = 0, (11)

where the material derivative can be approximated as d/dt ≈ ∂/∂t + δv0 · ∇. Using the fact that
ln n ≈ ln n0 +φ, where φ = δn/n∞, and putting equations (7), (10) and (11) together, one should
obtain (

1 − r 2
0∇

2
⊥

+
1

2
r 2

0ξ
2
∇

4
⊥

)
∂φ

∂t
+ 2�

{
ψ, φ− ∇

2ψ + ln n0

}
= 0. (12)

This equation is formally similar and generalizes Charney’s equation [13], also referred to in the
literature as the Charney–Hasegawa–Mima (CHM) equation. Here, r0 = cs/2� represents the
generalized Rossby radius, cs =

√
gn∞/m is the sound speed, ξ = h̄/

√
2mgn∞ is the healing
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length [14] and ψ = r 2
0φ− r 2

0ξ
2
∇

2φ/2. The operator {a, b} = r−1(∂r a∂θb − ∂r b∂θa) is simply
the Poisson brackets in polar coordinates and θ represents the angular coordinate. The latter
equation describes hydrodynamical drift waves in a rapidly rotating BEC and includes new
features relative to the CHM equation, widely used in the study of the dynamics of waves and
turbulence in plasmas and in the atmosphere. Namely, the terms proportional to ξ 2 cast the
effects of zero-point pressure, which are known to play no role in geophysics. According to
typical experimental conditions, we estimate the sound speed to be cs ∼ 1 mm s−1, �∼ ω⊥ ≈

2π × 65 Hz [15], a transverse harmonic oscillator radius of aho ∼ 1.7µm and a Rossby radius
around r0 ∼ 1.2µm. The Rossby number, Ro, defines the ratio of the inertial to the Coriolis
force:

Ro =
cs

L f
, (13)

where L is the typical length of the system and f is the Coriolis parameter [10, 13]. It
characterizes the importance of Coriolis accelerations arising from planetary rotation and
typically ranges from 0.1–1 in the case of large-scale low-pressure atmospheres to 103 in the
case of tornados. Making L = aho in a BEC and f = 2�, we have Ro = r0/aho ∼ 0.7, which
suggests that the BEC can be regarded as a low-pressure atmosphere. Before proceeding, we
should remark that in the most general case, the dynamics along the vertical (axial) direction
couples to the transversal direction. In such a situation, equation (12) should be replaced
by an expression accounting for the z-direction, describing the analogue of the Poincaré (or
gyroscopic) waves in the atmosphere. The corresponding shallow atmosphere approximation,
which allows us to neglect the propagation along the axial direction, is envisaged in the case of a
rotating BEC by the condition ωz � ω⊥. Such a restriction does not compromise the following
result, however.

We now show that a rotating BEC can sustain a new hydrodynamic mode corresponding to
a drift-acoustic wave. For that purpose, we keep only the linear terms in equation (12) and look
for perturbations of the form φ ∼ ei(k·r−ωt). The respective dispersion relation is then readily
obtained and reads

ω = −vRkθ
1 + ξ 2k2/2

1 + r 2
0 k2(1 + ξ 2k2/2)

, (14)

where kθ = k · eθ is the polar (or zonal) component of the wave vector k = (kx , ky). The
description of the dynamics in terms of local wave vectors is valid (and consequently the
dispersion relation (14)) provided the inequality k � 1/aho holds. If the finiteness of the
system is considered, one must quantize the modes and the dispersion relation must be
changed. For the remainder of this paper we only address the former case. The term vR =

−2�r 2
0∂r ln n0 is the generalized Rossby (drift) velocity. Because the equilibrium profile is

generally very smooth, we expect vR to be small (compared to the Bogoliubov speed cs),
which suggests that these waves appear as a low-frequency oscillation (compared to both
ω⊥ and �). The dispersion relation (14) is similar to the expression for barotropic Rossby
waves in the atmosphere [10] and to the dispersion relation obtained for drift waves in a
magnetized plasma [16]. For long wavelengths r 2

0 k2
� 1 (and consequently ξ 2k2

� 1), equation
(14) reduces to the zonal flow dispersion relation ω ≈ −kθvR. One of the remarkable features
of the zonal, transverse acoustic waves is that of having negative zonal phase and group
velocities, c(ph)

θ = c(g)θ ≈ −vR. It means that they always propagate ‘westward’ in comparison
to the rotation of the condensate (which explains the negative values for the frequency in
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Figure 1. Dispersion relation of the Rossby waves in a rapidly rotating BEC, for
vR = 0.1cs. It is clearly shown that phase speed is generally negative. The blue
full line corresponds to the Thomas–Fermi case, ξ = 0. The black dashed and
red full lines, respectively, correspond to ξ = 0.7r0 and ξ = 1.3r0.

equation (14)). For short wavelengths, one obtains the dispersion relation for the (actual) Rossby
waves ω ≈ −vRkθ/(r 2

0 k2), with phase and group velocities given approximately by

c(ph)
θ ≈ −

vR

r 2
0 k2

c(g)θ ≈ vR
2kθ/k − 1

r 2
0 k2

.

(15)

In figure 1, we plot the dispersion relation (14) for different values of the healing length ξ , using
〈vR〉 = 0.1cs, where 〈vR〉 is the mean Rossby velocity inside the cloud. This procedure is similar
to a local density approximation, which is valid for sufficiently smooth equilibrium profiles.

Although a single Rossby wave of arbitrary amplitude is a solution of equation (14), a
superposition of waves is generally not. The nonlinear interaction between the waves leads to a
mechanism of energy transfer. To study the interaction properties, one decomposes the solution
into its Fourier series, φk =

∑
k φ̃k exp(ik · r), which, after plugging into equation (12), yields

the following nonlinear equation:

∂φ̃k

∂t
+ iωkφ̃k =

∑
k1,k2

3k
k1,k2

φ̃k1φ̃k2, (16)

where

3k
k1,k2

= 2r 2
0δ (k1 + k2 − k) (k2 × k1) · �

(
1 + ξ 2k2

1/2
) (

1 + r 2
0 k2

2 + r 2
0ξ

2k4
2/2

)
1 + r 2

0 k2 + r 2
0ξ

2k4/2
(17)

is the nonlinear coupling operator and ωk is given by equation (14). Only the waves that satisfy
the condition k1 + k2 = k interact nonlinearly. The set of waves satisfying this condition is
known in the literature as the resonant triad. This resonance mechanism is able to transfer
energy between different length scales, being one of the sources of classical turbulence in
plasmas and in the atmosphere [16, 17]. Here, due to the existence of additional terms that
properly account for the quantum hydrodynamical features of the system, i.e when large
variations of the density profile are present, we believe that equation (16) may be used
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to describe turbulence in rotating BECs, opening the stage to explore the similarities and
differences between classical and quantum turbulence.

Another interesting feature of Rossby waves in the BEC is the possibility of finding
localized structures, which may result, for example, from the saturation of the triad resonance
mechanism mentioned above. Such purely nonlinear solitary structures can be obtained from
the stationary solutions of equation (12), which readily yields(

1 +
ξ 2

2
∇

2
⊥

) {
φ,∇2

⊥
φ
}
−
ξ 2

2

{
φ,∇4

⊥
φ
}

= 0. (18)

In the Thomas–Fermi limit, the latter expression reduces simply to {φ,∇2
⊥
φ} = 0, which

is satisfied for a family of functions ∇
2
⊥
φ = F(φ), where F(x) is an arbitrary function of

its argument. The different choices for F will lead to different structures, which describe
many physical nonlinear stationary solutions. For example, for the choice F(φ)∝ exp(−2φ),
Stuart [18] showed that the so-called ‘cat-eye’ solution describes a vortex chain in a magnetized
plasma sheet, which has been observed experimentally in mixing layer experiments [19].
However, in the present case there are physical limitations that impose specific constraints on
the choice of the solutions. In particular, as discussed in [9], the equilibrium profile associated
with the potential in equation (3), which is given by n0(r)= n∞(R2

+ − r 2)(r 2
− R2

−
) (the peak

density is n∞ = βh̄ω⊥/2g), must vanish at the Thomas–Fermi radii defined as follows:

R2
±

a2
ho

=
�2

−ω2
⊥

2βω2
⊥

±

√(
�2 −ω2

⊥

2βω2
⊥

)2

+
2µ

β h̄ω⊥

, (19)

where µ represents the chemical potential. For µ > 0, the radius R− is purely imaginary and
the density vanishes at R = R+, whereas for µ < 0 both R− and R+ are present. This reflects
the transition occurring at µ= 0, where a hole forms at the centre of the condensate and the
equilibrium profile assumes an annular shape. The simplest nonlinear structure that verifies such
constraints is obtained for F(φ)= −κφ, and the respective radial solution, for `= 0, yields
φ(r)= AJ 0(κr)+ BY 0(κr). The values of κ , A and B are such that the solution vanishes at the
radii R±. In figure 2, we plot two possible solitary structures in the overcritical rotation regime
�> ω⊥, obtained for both µ > 0 and µ < 0. It is interesting to observe that, even for the same
set of parameters, the resulting solitary structures may differ from the usual Thomas–Fermi
equilibrium profiles discussed above.

A short discussion on the relation between the present waves and the well-known
Tkachenko waves in rotating BECs [20] is in order. Tkachenko waves are related to transverse
oscillations of the lattice, where the rigidity of the lattice is due to the quantization of the
vortices. The proposed Rossby waves, however, are inertial drift waves and the restoring force is
not due to the lattice itself, but to the diffused vorticity induced by the Coriolis force. The latter
can be formally confused with Tkachenko waves since they possess a transverse character, as
well. The main difference (for low k) is that the Tkachenko speed cT must be replaced here by
−vR. Firstly, one similarity between these two modes lies in the fact that the Rossby velocity
modulus vR � cs, which happens to also be the case for the Tkachenko velocity cT; secondly
and most strikingly, the Rossby waves are westward waves, i.e. they possess negative phase
velocities, which makes them wholly distinguishable from the Tkachenko waves.

In the spirit of a mean field description, we derived an equation that governs the dynamics
of a new drift mode in rotating BECs, which is in close analogy to the Rossby waves in
geophysics. Our equation, which has been established for the first time in the context of
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Figure 2. Nonlinear stationary solitary wave resulting from the saturation of the
triad resonant decay of Rossby waves, obtained for �= 2.4ω⊥ and β = 1.6:
(a) µ= 0.2h̄ω⊥ and (c) µ= −0.2h̄ω⊥. Plots (b) and (d), respectively, compare
the radial structures (full lines) of (a) and (c) with the corresponding
Thomas–Fermi equilibria (dashed lines) discussed in the text, obtained for the
same set of parameters.

superfluids (to the best of our knowledge), casts the effect of anharmonicity of the trap and
can thus be extended to the overcritical rotating regime. After linearization, we derived the
dispersion relation for the Rossby waves and showed that they propagate in the opposite sense
to that defined by the angular rotating frequency �. A particular feature of these waves is that
they decay resonantly in the form of triads, which is a clear manifestation of a three-wave mixing
mechanism in BEC. A very recent and interesting work by Bludov et al [21] also established
the connection between BECs and geophysics, where the authors reported on the occurrence
of rogue waves, a well-known phenomenon in deep oceans. We therefore believe that future
numerical and experimental work would reveal interesting features concerned with the nonlinear
dynamics in these systems, with special emphasis on the issue of the turbulence spectrum, where
we believe that the numerical integration of equation (16) would be relevant. A more detailed
investigation of the temporal evolution of the Rossby wave turbulence, as well as the stability
of solitary structures, certainly deserves further attention in the future.
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