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Abstract. We present a simple technique for studying the collisions of
ultracold atoms in the presence of a magnetic field and radiofrequency (rf)
radiation. Resonant control of scattering properties can be achieved by using
rf to couple a colliding pair of atoms to a bound state. We show, using the
example of 6Li, that in some ranges of rf frequency and magnetic field this
can be done without giving rise to losses. We also show that halo molecules of
large spatial extent allow resonant control with much less rf power than deeply
bound states. Another way to exert resonant control is with a set of rf-coupled
bound states, linked to the colliding pair through the molecular interactions
that give rise to magnetically tunable Feshbach resonances. This was recently
demonstrated for 87Rb (Kaufman et al 2009 Phys. Rev. A 80 050701) [1]. We
examine the underlying atomic and molecular physics that made this possible.
Lastly, we consider the control that may be exerted over atomic collisions by
placing atoms in superpositions of Zeeman states, and suggest that it could be
useful where small changes in scattering length are required. We suggest other
species for which rf and magnetic field control could together provide a useful
tuning mechanism.
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1. Introduction

Many recent studies of ultracold gases have depended on the manipulation of atomic collisions
with external fields. One way of achieving such control uses magnetically tunable Feshbach
resonances [2]–[4]. Lasers have also been used to create optical Feshbach resonances by
coupling a colliding pair to a bound state of an excited potential [5, 6]. A number of recent
works have used optical frequency lasers in combination with magnetically tunable Feshbach
resonances to probe [7, 8] and modify [9] scattering and bound state properties. This can
provide additional control capabilities, due to advantageous properties of laser beams such as
ready tunability of power and frequency. Furthermore, some experiments of current interest,
such as colour superfluidity [10] and Efimov physics [11], could benefit from the ability to
independently control scattering lengths between different pairs of a multicomponent gas.

Radiofrequency (rf) radiation is an essential and much-used tool in atomic physics,
being central to the operation of experiments such as atomic clocks [12]. In the context of
ultracold gases, rf has been used to both dissociate [13] and associate [14]–[16] molecules,
as well as to drive transitions between bound states [17]. As a probe, rf allows measurement
of interaction effects [18, 19], molecular binding energies [13]–[15] and the pairing gap of
fermionic superfluids [20]. These experiments creating or studying bound states used the rf to
create a degeneracy between dressed bound and scattering states, i.e. a Feshbach resonance.
This provides a clear motivation for studying how the same degeneracy can be used to control
the collision properties of a pair of atoms.

In [1], rf control of 87Rb collisions was demonstrated and studied theoretically.
Furthermore, rf has been considered as a means of controlling scattering lengths in a variety
of scenarios, with a number of different theoretical methods. Moerdijk et al [21] considered
collisions of rf-dressed Na atoms in a magnetic trap using a coupled-channels approach. They
showed that favourable conditions for evaporative cooling could be created, and suggested
controlling scattering lengths using rf coupling to create a Feshbach resonance. Zhang et al
[22] used a two-channel parametrization of a magnetically tunable Feshbach resonance, together
with atomic rf dressing, to tune the resonance location, or multifrequency rf to independently
tune different scattering lengths in a multicomponent gas. Tscherbul et al [23] performed a
coupled-channels analysis of 87Rb collisions, studying both the creation and manipulation of
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resonances with rf. Papoular et al [24] suggested rf control of collisions in gases at zero
magnetic field. Lastly, we note the suggestions of Alyabyshev et al [25] to use rf to control
atom–molecule interactions, particularly to suppress inelastic collisions [26].

Studies of ultracold gases have benefited immensely from the theoretical prediction and
characterization of Feshbach resonances [27], for which coupled-channels calculations are a
leading technique [2, 28, 29]. These have the drawback of being computationally intense in
some cases. For this reason, a number of simpler techniques have been developed, including
the asymptotic bound state [30, 31], accumulated phase [32] and three-parameter van der Waals
models [33]. Our technique [33] is able to calculate scattering and bound state properties on the
basis of only three parameters describing the interactions. In [1] we extended it to include the
effects of rf radiation on collisions of 87Rb. In this paper we explain our model in greater detail,
and present several new results that illustrate the utility of rf for controlling ultracold collisions.

rf radiation can modify collision properties in three ways, each of which we examine here.
Firstly, rf can couple a colliding pair and a bound state (bound–free coupling), as used in the
above-mentioned experiments on the creation and measurement of molecules [13]–[16]. This
is similar to an optical Feshbach resonance. We consider nonzero magnetic fields, and large
halo states created by magnetically tunable Feshbach resonances, giving example results for
6Li. We show that this reduces the power required for useful control from that necessary for
a deeply bound state. In general, rf resonances cause losses by coupling the colliding pair
to a large number of energetically lower configurations of the internal atomic states, which
we refer to as channels. Interestingly, though, we have found some regions of rf frequency
and magnetic field in which creating a resonance using a deeply bound state does not lead to
losses. Secondly, rf can couple several bound states together (bound–bound coupling), which
can then interact with the colliding pair through the molecular interactions that give rise to
magnetically tunable Feshbach resonances. This was recently demonstrated for 87Rb in [1].
The Franck–Condon factors between two bound states are generally larger than those between
bound and scattering states, allowing rf control with comparatively low power. Our theory was
applied to this situation in [1]; here, we give a more detailed analysis. Lastly, dressing an atom
with rf creates a superposition of atomic states. The collision of two such atoms then involves
a superposition of several entrance channels (free–free coupling). If the scattering length varies
significantly between channels, this alone could be used to vary the scattering length.

To make this paper self-contained, we start with a description of our three-parameter model
in section 2. The main extension necessary to include the effects of rf is the formulation of an
appropriate basis for the scattering calculation, which we discuss in section 3. Our results for
bound–free, bound–bound and free–free coupling are presented in sections 4.1, 4.2 and 4.3,
respectively. For each, we consider the extent of control that is possible, the rf power required
and the accompanying losses. We conclude in section 5.

2. Scattering theory approach

We consider the collision of two 2S alkali atoms. In the presence of a magnetic field, EB = Bẑ,
the internal Hamiltonian of each atom is diagonalised by a set of Zeeman states |α〉 with energies
Eα. We label such states α = a, b, . . ., in order of increasing energy. This is illustrated in figure 1
for 87Rb and 6Li, which are considered in the present work. Zeeman states correlate with the
zero field states | f,m f 〉, where f is the total angular momentum of the atom and mf is its
projection along ẑ. At nonzero field, mf remains a good quantum number, but f does not.
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Figure 1. Zeeman state energies of (a) 6Li and (b) 87Rb atoms, shown as
a function of magnetic field. Energies are given relative to the barycentre,
the statistically weighted average of zero-field hyperfine energies. The total
angular momenta f of these states are as indicated. The alphabetical labels used
throughout this work are shown to the right of each figure, with the total angular
momentum projection m f in parentheses.

The collision of a pair of atoms is described by an expansion of the Hamiltonian in channels
|α1 +α2〉|`m`〉, defined by the state of atoms 1 and 2, the partial wave ` of their collision and m`,
the projection of È along ẑ. Several coupled channels are typically involved in a collision. The
threshold energy of a channel is defined as Eα1+α2 = Eα1 + Eα2 , i.e. the energy of two atoms in
the relevant atomic states at asymptotically large separation r , with zero relative kinetic energy.
If the threshold energy of a channel is below the total energy of the colliding atoms, the channel
is called open; otherwise, it is referred to as closed. At zero magnetic field, channels of the same
total angular momentum ET = Ef1 + Ef2 + È are coupled. At nonzero field, however, channels of the
same MT = m1 + m2 + m` are coupled.

The full Hamiltonian takes the form [27]

H = H0 + Vel . (1)

Here, H0 represents the relative kinetic energy term and the internal Hamiltonians of the two
atoms. The valence electrons of the two colliding atoms give rise to two Born–Oppenheimer
(BO) interaction potentials, one each of singlet and triplet symmetry, represented by Vel. Weaker
effects, such as relativistic spin-dependent interactions [27], are not included in the present
calculations. The BO potentials are isotropic, independent of ` and m`, and for large r take
the form of a van der Waals potential, −C6/r 6. Here, C6 is the van der Waals coefficient,
which is the same for both BO potentials. Expanding the Hamiltonian in terms of the channels
|α1 +α2〉|`m`〉, the diagonal matrix elements have the long-range form

V (lr)
α1α2
(r)= −

C6

r 6
+

h̄2`(`+ 1)

2mrr 2
+ Eα1 + Eα2 , (2)

where mr is the reduced mass. Off-diagonal elements of the BO potentials decay exponentially
as r increases. These can lead to inelastic spin relaxation (ISR), the loss of atoms by decay
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into an energetically lower channel. Such losses are also referred to as inelastic spin-exchange
collisions. The potential converges to V (lr)

α1α2
(r) for r > r∗, where r∗ is the distance at which

the splittings between diagonal elements have the same order of magnitude as the off-diagonal
elements. This distance is usually of order 20 a0, where a0 = 0.05292 nm is the Bohr radius.

For r < r∗, the depths of and splittings between the singlet and triplet BO potentials are
much larger than the relative kinetic energy of the colliding atoms and the atomic hyperfine
splittings. This energy-scale separation leads to the concept of a quantum defect, in which a
simple parametrization is used to account for the short-range physics, and is matched with
solutions for the long-range potential. These long-range solutions are much easier to obtain.
Such an approach is valid because the short range region is not probed in detail by the colliding
pair. We note that quantum defect theory has been used in a wide variety of contexts, including
atomic scattering [34, 35], electron–ion collisions and Rydberg states [36, 37], and nucleon
scattering [38].

Our approach is based on a series of papers by Gao (see [35], [39]–[41] and references
therein), in which a number of powerful tools for pure Cn/r n potentials were developed. For
each channel we define a reference potential, taken to be equation (2) extended over all r . From
this we calculate reference functions f and g, which are two linearly independent solutions of
the Schrödinger equation. We use these to form vectors Ef and Eg spanning all channels. In the
original problem, mixing between channels occurred due to spin exchange. Here, this mixing is
incorporated into the r = 0 boundary condition. As in the work of Gao et al [35], by choosing
Ef and Eg appropriately we can express this boundary condition as a short-range K matrix, K(s),

that is independent of collision energy E and partial wave. Here, we use a bold font to indicate
a matrix. In fact, the multichannel wavefunction with our approximate Hamiltonian can be
written as

Eψ(r)= Ef (r)− K(s)
Eg(r), (3)

for all r .
A convenient molecular basis for calculating K(s) is that described by |(s1s2)S(i1i2)I ;

F`; T MT 〉, where s1,2 and i1,2 are the electronic and nuclear spin angular momenta of atoms 1
and 2, respectively. The two electron spins are coupled together, as are the two nuclear spins,
to give the total electron spin ES = Es1 + Es2 and the total nuclear spin EI = Ei1 +Ei2. These are then
coupled to give EF = ES + EI , which is coupled to the partial wave È to give the total angular
momentum ET . On this basis, K(s) is diagonal, with diagonal entries depending only on whether
the corresponding channel is of singlet (S = 0) or triplet (S = 1) symmetry. Their values Ks,t

are given by the relation [35]

as,t/ā =
√

2
Ks,t + tan(π/8)

Ks,t − tan(π/8)
. (4)

Here, as,t are the scattering lengths of the singlet and triplet potentials, respectively, ā =

2−1/2[0(3/4)/0(5/4)] lvdW is the mean scattering length, lvdW = (2mrC6/h̄
2)1/4/2 is the van

der Waals length and 0(z) is the gamma function. We use a frame transformation [42, 43] to
convert the K matrix to the basis |α1 +α2〉|`m`〉. As these are not associated with singlet or
triplet symmetry, we then have off-diagonal terms in K(s).

Determination of scattering properties is based on calculation of the reference functions f
and g. These may be calculated analytically for the potential of equation (2). The properties of
the reference functions, and the manner in which they link the short-range boundary condition to
the long-range scattering properties, are discussed in [35, 39, 40, 44]. They allow us to find the
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physical K(E) matrix for the open channels, from which scattering properties can be extracted.
This takes the form [35]

K(E)= −[Z f c(E)− Zgc(E)Keff][Z f s(E)− Zgs(E)Keff]
−1, (5)

where

Keff = K(s)
oo + K(s)

oc [χ(E)− K(s)
cc ]−1K(s)

co . (6)

Here, the ‘oo’ and ‘cc’ refer to the open and closed channel blocks of K(s), while ‘oc’ and ‘co’
indicate the open–closed blocks. The diagonal Z and χ matrices are derived from the reference
functions for open and closed channels, respectively. Bound state energies can be found from
the determinantal equation [35],

det(χ(E)− K(s)
cc )= 0. (7)

All desired scattering properties can be derived from K(E). We first calculate the S matrix,
S(E)= [1 + iK(E)][1 − iK(E)]−1. In the presence of just one open channel and the limit of
k → 0, the scattering length can then be found from the relation

S(E)= exp(−2ika). (8)

We note that S(E), which is only defined for open channels, is a scalar for this case. Equation (8)
can still be used when there are several open channels. However, the diagonal S matrix element
of the entrance channel will have less than unit modulus. We can then reinterpret the right side
of equation (8) as exp(−2ikã), where ã = a − ib is the complex scattering length, and a and b
are real. For any collision energy, the two-body decay rate coefficient is

K2 =
π h̄

mrk

∑
i 6=e

|Sei(E)|
2, (9)

where the index i ranges over all open channels other than the entrance channel e. For the
multichannel case, an alternative way of finding b is to extract it from K2 in the limit k → 0,
using the formula

b =
mr

2 h
K2. (10)

Our model can be optimized to measured data by using the singlet and triplet scattering
lengths as fit parameters [33]. This can be used for the prediction of further resonances, or
just to offset the limitations of our simplified approach. These limitations were discussed
in [33]. Briefly, resonances arising as a result of deeply bound states can be predicted only
approximately, as non-van der Waals parts of the potential are significant. For bound states
accurately reproduced by the −C6/r 6 potentials, however, our approach is accurate. The
examples considered in the present work fall within this category. With the approximations
of using a van der Waals potential and assuming energy independence at short range, our
approach can predict all observable scattering properties from known atomic parameters and
three properties of the interactions, as, at and C6.

2.1. Decaying resonances

Resonances invariably create some losses in ultracold collisions. ISR, spin–spin dipole coupling
between partial waves and three-body recombination are all enhanced near a Feshbach
resonance. As shown in equation (10), two-body decay into energetically lower exit channels
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leads to an imaginary part of the scattering length. The losses in our calculations represent ISR.
The energy gap between channels is typically large enough that atoms undergoing ISR are lost
from the system. Our calculations do not include three-body recombination or decay into other
partial waves.

Theoretical work on decaying resonances has focused on the optical case, where a laser
couples a colliding pair to an excited bound state that can spontaneously decay. This theory
can be readily adapted to a magnetically tunable decaying resonance, or one in which both a
magnetic field and rf are used. Following Bohn and Julienne [45], we can write the complex
scattering length in the limit k → 0 as

a(B)= abg

(
1 −

1(B − B0)

(B − B0)2 + (γB/2)2

)
, (11)

b(B)= 2ares
(γB/2)2

(B − B0)2 + (γB/2)2
. (12)

Here, abg is the background scattering length, representing the scattering length of the entrance
channel in the absence of a resonance. We have expressed the decay rate of the bound state, γ ,
in magnetic field units, γB = h̄γ /µres, where µres is the difference in magnetic moment between
the entrance channel and the bound state causing the resonance. The resonance length ares is
defined by aresγB = abg1. The width and magnetic field location of the resonance are given by
1 and B0, respectively. In the limit of γ → 0 the above formulae reduce to the standard relation
describing the scattering length around a nondecaying resonance:

a(B)= abg

(
1 −

1

B − B0

)
. (13)

3. Radiofrequency-dressed basis

In the presence of a magnetic field, rf drives transitions between atomic Zeeman states.
Equivalently, in the two-body picture, rf couples Zeeman channels together. This can lead
to a large number of channels being necessary in a calculation. The computational speed of
our approach, as compared to the coupled-channels technique, therefore becomes even more
advantageous. We use a basis of rf-dressed channels, |α1 +α2, N 〉, where N is the number of
photons in the rf field. In the following sections we consider only s-wave collisions, and so omit
the partial wave labels. In figure 2, we show a schematic of how we generate our basis. All
channels with the same MT are coupled together by spin exchange, the molecular interactions
that give rise to magnetically tunable Feshbach resonances and ISR in the absence of rf. We
refer to a set of channels with the same (MT , N ) as a spin-exchange block, indicated by a box
in figure 2. Arrows indicate rf coupling. It is usually possible to identify the entrance channel in
which the gas and rf field are initially prepared, and for which we set MT = M0 and N = N0.

The polarization of the rf field significantly alters the collisional and loss properties by
determining which blocks couple. Light that has σx polarization, i.e. linear and perpendicular
to the magnetic field quantization axis, drives (1MT = ±1,1N = ±1) transitions, as sketched
in figure 2. Here, the two ‘±’ signs are independent—that is, both an increase and decrease in
MT can be achieved with either absorption or emission of an rf photon. As a consequence, σx

rf will always couple energetically lower exit channels, and so create losses. This can be seen
from figure 2; if a channel |α +β, N 〉 is part of the basis, it is coupled to |α +β, N − 2〉, via
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Figure 2. Schematic of our basis for scattering in the presence of rf and a
magnetic field, showing photon number N versus total angular momentum
projection MT . Boxes represent groups of rf-dressed Zeeman channels with the
same (MT , N ), which we call spin-exchange blocks. The entrance channel is
in the central (M0, N0) block. Arrows indicate rf coupling. A σx rf photon can
couple in four additional spin-exchange blocks, with a second photon adding
another eight. Circular polarized light, by contrast, constrains the system to one
diagonal, as indicated by the σ± labels.

a two-photon transition. When the transition occurs through absorption of rf photons, 2h̄ω of
energy is transferred from the rf field to the kinetic energy of the atom pair. This is typically
enough energy for the atoms to be lost from the trap. Circularly polarized light, however, will
constrain the sign of 1MT with emission or absorption. This corresponds to moving on only
one diagonal of figure 2, which makes it possible to create a situation in which a pair of atoms in
the entrance channel have no allowed exit channels. For σ± and σx light, the change in MT with
absorption or emission means that only spin-exchange blocks for which (MT − M0)+ (N − N0)

is even appear.
The rf coupling between Zeeman channels is taken to be that between the constituent

atomic states, including the appropriate two-body symmetrization. The rf adds a term to the
Hamiltonian of equation (1) of the form Hrf = −(Eµ1 + Eµ2) · EBrf, where Eµ1,2 are the magnetic
moments of atoms 1 and 2, and EBrf is the rf magnetic field operator. The two-body matrix
element can be easily formed from the matrix elements between rf-dressed atomic Zeeman
states |α, N 〉. For σx radiation, the atomic matrix element is

〈α, N | − Eµ · EBrf|α
′, N ′

〉 = −δN ,N ′±1
Brf

2

(
µe〈α|Sx |α

′
〉 +µn〈α|Ix |α

′
〉
)
. (14)

Here, Brf is the amplitude of the oscillating field, the N dependence of which will be neglected
since N is assumed to be large, Sx = (S+1 − S−1)/

√
2, and µe,n are the magnetic moments of the

electronic state and the nucleus, respectively. For σ± polarized light, Sx and Ix must be replaced
with S±1 and I±1. The remaining matrix elements are calculated by decomposing the Zeeman
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states into the components of the electron spin s and nuclear spin i , and realizing that

〈s ′m ′

s|Sq |sms〉 = δs′sδm′
s ,(ms+q)(−1)q

√
s(s + 1)C(s1 s; ms + q,−q,ms). (15)

Here, C is a Clebsch–Gordan coefficient, and q = −1, 0 or 1 [46]. The matrix element for Iq

can be calculated in the same manner. In this paper, we find it convenient to express the strength
of the rf coupling in terms of the Rabi frequency between the two energetically lowest Zeeman
states, with the pertinent polarization

h�= 2 |〈a, N0| − Eµ · EBrf|b, N0 − 1〉|. (16)

The Rabi frequencies for all the other atomic transitions then follow from angular momentum
algebra. This definition is weakly dependent on the bias field B; however, its variation over the
field ranges shown in our examples is negligible.

In extending the method of section 2 to include rf, we add to the approximations that the rf
coupling is negligible at short range. That is, the matrix K(s) is still independent of energy, and
is also diagonal in N . In order to use the established tools of scattering theory, a basis must be
chosen that makes the Hamiltonian diagonal at asymptotically large r . For the present case, a
basis of two-body Zeeman channels will have off-diagonal rf coupling matrix elements, as well
as Zeeman energies on the diagonal. We therefore explicitly diagonalize the Hamiltonian for the
case r → ∞, which provides a basis of rf coupled states. The eigenvectors can then be used to
express the scattering matrix in this basis.

An example of dressed 87Rb channel energies for magnetic fields around 8.6 G and
an rf frequency of 6 MHz is shown in figure 3. For this example, which we discuss at
length in section 4.2, the Zeeman effect is mainly linear, leading to several nearby avoided
crossings between channels with different photon numbers. In figure 3, we have only shown
the channels corresponding to the B = 0 limit ( f1 = 1)+ ( f2 = 2). However, our calculations
include all Zeeman channels of the relevant (MT , N ) blocks. We cannot make a rotating wave
approximation in the rf-dressed channel energies, because channels with off-resonant energies
can contain a near-resonant bound state. To make sure that no such bound states are omitted,
we begin with the block containing the entrance channel and add all blocks that can be coupled
by the chosen rf polarization, up to the required number of rf transitions. The number of rf
transitions that must be included for convergence of a calculation depends on the two-body
spectrum, as well as the strength of the rf radiation and its detuning from the atomic transition
frequencies. Including three transitions from the entrance channel, as sketched in the inset of
figure 3, was sufficient for the examples presented in this paper.

4. Results

The technique we have developed is general and can be used to examine any pair of 2S alkali
atoms. In this section we present three significantly different examples. In section 4.1 we
consider directly creating resonances by rf coupling a colliding pair to a bound state, focusing on
the example of 6Li. In section 4.2, we discuss 87Rb, in which several bound states are coupled
together by rf. This bound state manifold is then coupled to the colliding pair by molecular
interactions, allowing resonant control of the collisions. Lastly, we consider the control that can
be obtained with rf dressing of atomic Zeeman states of 6Li in section 4.3.
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entrance channel in the absence of coupling to other channels. Avoided crossings
between many states having different photon numbers, indicated at the left of the
figure, occur near 8.6 G. The inset shows the same quantities over a wider range,
illustrating that the channel energies for a certain photon number are given by
a common Zeeman structure offset by the relevant number of photon energies.
Here, the rf oscillation frequency is 6 MHz, the Rabi frequency is 38 kHz and
1 G = 10−4 T.

4.1. 6Li: bound–free coupling

The broad s-wave resonances in the a + b, a + c and b + c channels of 6Li have been used for
studying effects such as the BEC–BCS crossover [47]–[49] and Efimov physics [50]–[52].
Three-component 6Li gases (with atoms in Zeeman states a, b and c) near these broad,
overlapping resonances have also been considered as candidates for observing colour
superfluidity [10]. This and other applications could benefit from a second degree of control
to allow tuning of the interactions between different component pairs. In this subsection, we
consider rf resonances in which the colliding pair of atoms is coupled to a bound state, as
sketched in figure 4. The strongest bound–free Franck–Condon overlaps are provided by halo
states (red arrow in figure 4). Substantial control of scattering properties is then possible with
less power than is required for a deeply bound state. However, for some bound states there
exist ranges of rf frequency and magnetic field for which the entrance channel is the lowest,
energetically (green arrow in figure 4). This requires the use of circularly polarized rf, but allows
control without the creation of losses.

We show an example of an rf-induced resonance with a halo state in figure 5. This
resonance is created in the scattering of 6Li atoms in the |a + b, N0〉 channel, with rf coupling
the colliding pair to the bound state that causes a resonance in the energetically closed
|a + c, N0 − 1〉 channel at 690 G. Here, we use a Rabi frequency of 100 kHz, corresponding
to an oscillation amplitude of 0.5 G. The frequency of the σ− rf is allowed to vary from 82 to
83 MHz, which resonantly couples the bound state at magnetic fields in the range 600–620 G.
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are given relative to the a + b threshold. Channel thresholds are shown as dotted
lines, and bound states as solid lines, with colours corresponding to the total
angular momentum MT . From the |a + b, N0〉 entrance channel, absorption of a
σ− photon (red arrow) can create a resonance with the bound state corresponding
to the 690 G a + c resonance. Absorption of a σ + photon can resonantly couple a
deeply bound state belonging to higher channels with MT = 1. The latter case
allows the creation of rf resonances without losses, while the use of a halo
molecule reduces the rf power required (see text).

The two panels of figure 5 show that the resonance can be tuned with rf frequency or magnetic
field. A larger rf frequency resonantly couples the bound state at a higher magnetic field, for
which its energy is closer to the |a + c, N0 − 1〉 threshold. The resonance created is then wider
as a function of both B and ω, as well as providing a larger variation in scattering length and a
higher peak loss rate. These effects are consequences of the bound state having a more halo-like
character, and a larger bound–free overlap with scattering states of all open channels. These
rf-coupled exit channels are the only available means of two-body decay, since in the absence
of rf a + b is the lowest channel with MT = 0.

As can be seen from equations (11) and (12), the extrema of the scattering length in the
vicinity of such a decaying resonance are abg ± ares. The resonance length ares thus provides
a simple indication of how significantly the scattering length can be controlled with a given
resonance. For ω/2π = 82 MHz and B0 = 601.4 G we have ares = 280a0, whereas for ω/2π =

83 MHz and B0 = 620.1 G we have ares = 13 000a0. The use of circularly polarized rf can reduce
the number of available exit channels, and therefore reduce total losses. The dashed lines in
figure 5 illustrate this for the present case, giving the scattering properties for σx rf of the same
modulation amplitude as the solid σ− lines. However, the loss rates could still be too high for
experimentally relevant densities.

For some ranges of magnetic field strength and rf frequency, circularly polarized rf allows
the coupling in of a bound state without creating losses, as indicated by the green arrow in

New Journal of Physics 12 (2010) 083031 (http://www.njp.org/)

http://www.njp.org/


12

200

400

600

a/
a 0

600 605 610 615 620 625

10−15

10−10

K
2

[c
m

3 /s
]

B [G]

82
82.25
82.5
82.75
83

200

400

600

a/
a 0

81.5 82 82.5 83

10−15

10−10

K
2

[c
m

3 /s
]

ω/2π [MHz]

601.4
603.7
606.8
611.3
620.1
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in MHz. On the right plot, they are shown as a function of rf frequency, with
fixed magnetic fields given in G. Lines of the same colour correspond to the
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rf is 100 kHz, and the entrance channel is |a + b, N0〉. The dashed line shows
the effect of using σx rf of the same modulation amplitude. The resonance
positions coincide with the energy of the bound state causing the resonance in
the |a + c, N0 − 1〉 channel at 690 G. The width of the resonance increases as the
bound state moves closer to the threshold, enhancing the Franck–Condon overlap
of bound and scattering states.

figure 4. One such example is shown in figure 6. A deeply bound MT = 1 state supported by
higher channels is degenerate, with the a + b collision threshold close to 543 G. In the vicinity
of this magnetic field it may be coupled to the |a + b, N0〉 entrance channel using σ + radiation
without opening any exit channels. This is illustrated by the dashed lines in figure 6. The
divergence in scattering length characteristic of nondecaying resonances is observed. In contrast
to this, σx rf of the same frequency and power produces a decaying resonance, shown by the
solid lines in figure 6. A maximum in these losses is observed, with a background loss rate
that increases as the rf frequency is brought closer to the atomic transition frequency. Only a
slight difference in the width of the resonance is seen as the rf frequency is varied within the
range shown, as the properties of the bound state are only weakly varying. This calculation uses
�/2π = 1 MHz, corresponding to a modulation amplitude of 5 G. Much lower Rabi frequencies
could be sufficient, provided that the control of the bias magnetic field is good enough. The
frequency of the rf may be used to decide on the location of the resonance for magnetic field
tunability, and the intensity used to choose the strength, analogous to an optical Feshbach
resonance.

As discussed in section 3, creating a resonance with σx rf always gives rise to losses.
However, the ability to control the location and width of the loss feature could make such
resonances useful as a knife for evaporative cooling. This was suggested for magnetically
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tunable resonances by Mathey et al [53]. They found that the width of a resonance limits
the temperature to which it can be used to cool a gas. While the width of a magnetically tunable
resonance is set by molecular properties, the width of an rf resonance can be controlled by
changing the rf power. Figure 7 shows the scattering length and loss rate coefficient as functions
of magnetic field for Rabi frequencies up to 1 MHz. Here, we use an oscillation frequency of
77.5 MHz and σx polarization. The Rabi frequency does not alter the nature of the resonantly
coupled bound state, and therefore does not change the maximum variation in scattering length.
For each of the resonances in figure 7 we calculate a resonance length of approximately 190a0,
close to the background scattering length of 184a0. However, increasing the Rabi frequency
increases the width of the resonance feature. For cooling, the width of the resonance could be
reduced as the temperature is lowered. The lowest achievable temperature would then be set
by technical considerations such as magnetic field control and the amount of time required for
evaporation, which increases as the final temperature decreases. We note that the maximum rate
of evaporation would still be limited by the need for rethermalization of the cloud.

The loss properties of an optical or magnetically tunable Feshbach resonance are set
by the decay rate of the bare bound state. This is typically almost constant in the vicinity
of the resonance. In the optical case, this allows the stimulated coupling to be strengthened
by increasing the laser power and increasing the resonance length. In our calculations, the
losses are also created by stimulated coupling—i.e., γB in equations (11) and (12) has the
same dependence on Rabi frequency as 1. This is why ares for the resonances in figure 7 is
independent of Rabi frequency. However, as shown in figure 5, a significant change in the bound
state wavefunction can lead to a strong change in ares.
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4.2. 87Rb: bound–bound coupling

87Rb has been used in a wide range of studies in ultracold gases. A large number of resonances
has been observed in this system [54], with many studies utilizing the comparatively wide
(1= 0.21 G) resonance in the a + a channel at B0 = 1007 G [55]. There are a number of
resonances grouped close to each other around 9 and 18 G, in channels corresponding to the zero
field ( f1 = 1)+ ( f2 = 2) limit [1, 32, 56, 57]. These resonances were used in the demonstration
and theoretical analysis of rf-dressed Feshbach resonances in [1]. We also note the calculations
presented in [23]. In [1], the primary effect of the rf was to couple the bound states causing each
of the nearby resonances. Bound–bound coupling has a substantially larger Franck–Condon
overlap than bound–free coupling, and so significant control of scattering properties can be
achieved with correspondingly less rf power. For the calculations shown in this section, the
Rabi frequency on the a ↔ b transition is 38 kHz, corresponding to Brf = 0.08 G.

All collision channels of 87Rb have a similar value of abg because of the similarity of
the singlet and triplet scattering lengths. Another consequence of this is that the highest
vibrational bound states for all possible F have approximately the same binding energy at
B = 0. Figure 8(a) shows the F = 1, 2 and 3 bound states closest to the ( f1 = 1)+ ( f2 = 2)
threshold. At zero field, the F = 1 and F = 3 bound states are degenerate, with the F = 2
state approximately h × 1 MHz deeper. The atomic and molecular states are split into their
Zeeman components at nonzero field. At magnetic fields above 1 G, each bound state is strongly
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a + e entrance channel threshold. Resonances occur when a bound state crosses
a collision threshold of the same MT . These are shown with points and labelled
with the entrance channel α +β. Note that we only show the thresholds of
channels containing a resonance. Colours indicate different MT , as labelled. The
Zeeman effect is close to linear in the field range shown, and each bound state
is concentrated in a single channel. This gives rise to the grouping of resonances
around 9 and 18 G. In (b), the bound state spectra of the a + d, a + e and a + f
channels are shown relative to their own thresholds. In (c), the dressed channel
energies are shown relative to that of the |a + e, N0〉 threshold. Here, the rf
frequency is 5.5 MHz. The bound state structure shown in (a) and (b) results in a
number of bound states becoming degenerate with each other and the |a + e, N0〉

threshold near 9 G. The bound state causing the a + e resonance is coupled most
strongly to states in the |a + f, N0 ± 1〉 channels, which are indicated with the
dashed circle in panel (c).

concentrated (> 90 %) in a single channel α +β, and is labelled (αβ). The energy of each bound
state then remains at a constant offset from the threshold energy of its corresponding channel.
Also, the Zeeman effect is close to linear within the range of magnetic field considered here.
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Consequently, for a fixed magnetic field, each pair of adjacent channels or bound states (of the
same f1 and f2) have approximately the same energy gap. This is illustrated in figure 8(b),
which shows the bound states of the a + d, a + e and a + f channels. Here, energies are shown
relative to the threshold of each channel. The three spectra are nearly identical, highlighting the
symmetries inherent in the Zeeman interaction. The combinations of atomic states from which
channels of each MT can be formed, and the bound state energies at B = 0, explain the existence
of the three Feshbach resonances near 9 G and the eight near 18 G shown in figure 8(a) [1].2

Another consequence of the Zeeman effect being predominantly linear is that several
channels can be resonantly coupled by a single rf frequency, as shown by the avoided crossings
in figure 3. It is also possible to couple several bound states, and use the magnetic field to
tune these coupled states through a collision threshold. We consider atoms colliding in the
|a + e, N0〉 entrance channel, and choose an rf frequency close to the atomic Zeeman splitting at
9 G. The resulting energies of the |a + f, N0 + 1〉 and |a + f, N0 − 1〉 bound states relative to the
|a + e, N0〉 threshold are shown in figure 8(c), for an rf frequency of ω = 2π × 5.5 MHz. There
is near-degeneracy between the bound states causing the 9 G resonances in the |a + e, N0〉 and
|a + f, N0 − 1〉 channels, and that causing the 18 G |a + f, N0 + 1〉 resonance. Consequently, a
pair colliding in the entrance channel are linked by spin exchange to a set of strongly rf-coupled
bound states.

Several other bound states contribute to the rf-dressed scattering around 9 G, leading to
complicated variation of scattering properties with magnetic field and rf frequency. These are
not shown in figure 8(c) for reasons of clarity. The real part of the scattering length a(B, ω),
and the two-body loss coefficient K2(B, ω) are plotted in figure 9. The broad, horizontal band
in both plots corresponds to the undressed a + e resonance. Coupling of the underlying bound
state to others creates several secondary features at magnetic fields that depend on the rf
frequency. When this field is close to 9.1 G, the a + e resonance is split. The rf-induced avoided
crossing then changes the magnetic field at which each bound state crosses the entrance channel
threshold. Although it is therefore possible to suppress losses at the centre of a resonance or
to move its location, this will in general also suppress or move the resonant enhancement of
the scattering length. This is shown by the variation in scattering length in figure 9(a), which
follows the same trends as the losses in figure 9(b). Loss rates generally have a peak close to
Feshbach resonances, and are therefore commonly used for deducing resonance locations. In
figure 9(b) we reproduce the experimental data of [1], showing their close agreement with our
calculations. Each point represents the centre of a loss feature. The bound state giving rise to
each feature is identified by the rf-dressed channel |(α1α2), N 〉 in which it is concentrated. The
undressed, magnetically tunable resonances produced by each of these bound states are shown
in figure 8(a).

For the Rabi frequency of 38 kHz used here, the bound–free coupling induced by the rf
is minimal, and bound–bound coupling dominates due to the larger Franck–Condon overlap.
Because of the dominance of bound–bound coupling, the locations of the rf-dressed resonances
can be reproduced well using a simplified Hamiltonian consisting only of the bound states that
are resonantly coupled near 9 G. For this, we assume that the bound state energies are given
simply by the undressed energy shifted by the number of photons that makes it near-resonant
with the |a+e, N0〉 threshold, e.g. E|(bg),N 〉 = E(bg) + (N − N0)h̄ω. This neglects any shifts in the

2 In addition to the six 18 G resonances measured in [1], our calculations show two very narrow resonances in the
b + f and b + g channels at 18.2 G and 18.1 G, respectively.
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Figure 9. (a) The real part of the scattering length and (b) the two-body loss
coefficient, K2, as a function of magnetic field and rf frequency. Black circles
show the experimental data of [1], which identified the rf-dressed resonances by
the centre of loss features corresponding to the maximum of K2. Dashed lines
correspond to the locations predicted using the simple model of section 4.2 which
includes only bound states. The band of sudden changes in the middle of each
figure corresponds to the region in which the resonances of atomic transitions
are crossed. This makes both calculations and measurements impractical.

threshold energies due to the intensity of the light. We also use the atomic Rabi frequencies
to represent the coupling between bound states, e.g. �(bg)↔(cg) =�b↔c. This neglects any
differences in the molecular wavefunctions, the overlap of which should be close to unity for this
case of narrow resonances. We diagonalize the Hamiltonian and find the fields and rf frequencies
for which the dressed bound states become degenerate with the |a + e, N 〉 threshold. These are
shown as dashed lines in figure 9. The good agreement of this simpler calculation confirms the
dominance of bound–bound coupling in the effects of the rf on the scattering properties.

We note that, unlike the losses found for 6Li in section 4.1, which are into exit channels
coupled by the rf, the losses here are due to the properties of the magnetically tunable resonances
themselves. All of these resonances are closed-channel dominated and strongly decaying, due to
ISR loss into lower channels of the same MT [1]. Each has a width of order mG and a resonance
length of ares . abg/2. Consequently, the strongest losses in figure 9 are independent of Rabi
frequency, and a secondary feature due to a bound state from a channel with N photons grows
in strength proportional to �2|N−N 0|.

4.3. 6Li: free–free coupling

It is possible to control scattering properties by creating rf-dressed atomic states. This is done
routinely in the creation of clock states [12]. For rf of a frequency close to an atomic transition,
the dressed atoms have a substantial admixture in the two coupled Zeeman states. A collision
between two dressed atoms then samples the scattering properties of all the corresponding
undressed two-body channels. For such free–free coupling to have an effect requires the
scattering length in each undressed channel to be substantially different. In 87Rb, for example,
all channels have very similar background scattering lengths. This makes the collision of two
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transitions. A two-photon a ↔ c transition is also driven. The loss properties of
each channel change dramatically as the transition frequencies are crossed. Away
from the transition frequencies, small changes in scattering length are achievable
with low loss rates.

atoms in dressed states similar to that of two atoms in the absence of rf. By contrast, in figure 10
we show the example of 6Li scattering. The broad, overlapping Feshbach resonances in the
a + b, a + c and b + c channels make the difference in scattering lengths between the channels
have a nontrivial variation with magnetic field. Large changes in scattering length are produced
for rf frequencies close to the atomic transitions, over a range comparable to the Rabi frequency.

The scheme described in this subsection does not create a Feshbach resonance. It does,
however, sample the scattering lengths in different Zeeman channels, including any Feshbach
resonances those channels support. Very close to the atomic transition frequencies, losses will
be a problem for this scheme, as shown in the lower panel of figure 10. However, such a method
could be useful for creating small changes in the scattering length, and may remain an option
in the absence of bound states suitable for using the methods of the previous two subsections.
In the example given here, a 5% change in scattering length can be achieved with loss rates of
order 10−13 cm3 s−1.

5. Conclusions

We have developed a technique for studying the collisions of cold atoms in the presence of
rf radiation. Building on the three-parameter model of Feshbach resonances presented in [33],
we have incorporated a frame transformation to a basis in which Zeeman states are coupled
together by rf radiation. Our studies have shown that rf provides useful control capabilities
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when used in conjunction with one or more Feshbach resonances—either by coupling together
bound states with which the colliding atoms interact [1], or by directly coupling the colliding
pair to a molecular state. For the latter case, we have found that the use of a halo molecule
reduces the rf power required for control. Also, some ranges of rf frequency and magnetic field
exist for which a bound state can be coupled without causing losses. This requires the use of
circularly polarized rf.

The accuracy and speed with which rf can be controlled, and the potential for tuning
several scattering lengths of a multicomponent gas, make our work relevance to many
current experimental programs in atomic and molecular collisions. Another candidate for
such an enhancement of control possibilities is 40 K, which has broad resonances in the a + b
and a + c channels. Another example, more akin to the 87Rb calculations of section 4.2 is
6Li–40K, which has several narrow resonances around 160 G. The a + a channel could allow
bound–bound coupling without the strong decay inherent to the excited state 87Rb resonances.
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