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Abstract. The gauge invariant electromagnetic Wigner equation is taken as
the basis of a fluid-like system describing quantum plasmas, derived from the
moments of the gauge invariant Wigner function. The use of the standard,
gauge-dependent Wigner function is shown to produce inconsistencies if a direct
correspondence principle is applied. The propagation of linear transverse waves
is considered and it is shown to be in agreement with the kinetic theory in the
long-wavelength approximation, provided that an adequate closure is chosen
for the macroscopic equations. A general recipe to solve the closure problem
is suggested.
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1. Introduction

The Wigner function is the quantum equivalent of the classical particle distribution function and
can be used to calculate the average values of physical observables [1]. In most cases, the time
evolution of the Wigner function is evaluated considering only scalar potentials, hence without
the inclusion of magnetic fields. One reason for this is the considerable analytic complexity
of the electromagnetic Wigner equation. Indeed, even the electrostatic Wigner equation is
already a cumbersome integro-differential equation that can hardly be examined except in
the linear limit. However, the emergence of new areas like spintronics [2], where magnetic
effects are crucial, makes it desirable to have quantum kinetic models allowing for nonzero
vector potentials. In this situation, the gauge invariance of the Wigner function should be
ensured from the very beginning in order to avoid inconsistencies, a point somewhat neglected
in previous studies. However, the essential qualities of the gauge invariant Wigner function
(GIWF) have already been detailed in the literature [3]–[5]. In particular, Serimaa et al [4]
provide a compact expression for the evolution equation satisfied by the GIWF; see equation (6)
below. Further, gauge-independent Wigner functions have been applied in describing friction as
a result of radiation reaction [6]. It is the purpose of the present work to stress the relevance and
properties of the GIWF in connection with quantum plasma problems. In addition, we provide
a macroscopic (moments) formulation starting from the electromagnetic Wigner–Maxwell
system, substantially generalizing the recently introduced moments system derived from the
Wigner–Poisson equations [7]. The resulting macroscopic equations are a step towards the
inclusion of spin-dependent variables, postponed to future considerations. In this regard, we
point out the work by Bialynicki-Birula et al [8], where the quantum phase-space equations
have been applied and explicitly solved for spinning particles in a gauge invariant manner for
the first time.

The advantages of macroscopic formulations lie in their relative simplicity, so that the
nonlinear regimes are not necessarily inaccessible apart from numerical simulations. Note,
however, that our fluid approach does not imply any fluid approximations in the sense that
we are not supposing a large collision rate or a short mean free path, for instance. If we are
interested only in basic quantities, such as particle, current or energy densities, nothing prevents
us from computing moments of the Wigner function in order to derive fluid-like equations for
the time evolution of these variables. The roots of the moments descriptions in plasma theory
can be traced back to Grad [9]. The price of replacing the more detailed kinetic models with
macroscopic models is the loss of information about kinetic phenomena like Landau damping,
the plasma echo and many others.

This work is organized as follows. In section 2, we briefly review the definition and
properties of the GIWF. Section 3 develops the corresponding fluid moment hierarchy equations.
Section 4 considers the propagation of transverse waves and the closure problem in this case.
Section 5 is devoted to the conclusions. In addition, we present an appendix where the closure
of the fluid-like system is discussed.

2. The basic properties of the gauge invariant Wigner function

A sensible definition of the gauge invariant one-particle Wigner function f = f (r, v, t) was
introduced by Stratonovich [3]. Since in this work we are not concerned with relativistic
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phenomena, we write it in a non-covariant form,

f (r, v, t)=

(
m

2π h̄

)3 ∫
ds exp

[
is
h̄

·

(
mv + q

∫ 1/2

−1/2
dτ A(r + τ s, t)

)]
×ψ∗

(
r +

s
2
, t

)
ψ

(
r −

s
2
, t

)
, (1)

where r and v are the position and velocity vectors and t the time. The wavefunction is assumed
to be normalized to unity. In addition, h̄ is Planck’s constant divided by 2π , A(r, t) is the
vector potential, and m and q are the mass and charge of a particle in a pure state described
by a wavefunction ψ(r, t). The properties to be discussed in this section hold equally well
in the case of mixed states. In contrast to the original definition of the Wigner function [1]
via the canonical momentum, the object f in equation (1) is written in terms of the kinetic
momentum mv. The extra integral in equation (1) containing the vector potential compensates
for the change in the wavefunction in a local gauge transformation. The use of a non-covariant,
one-time pseudo-distribution renders the interpretation issues of f less obscure than in a four-
dimensional space–time version, as stressed in [8].

Naturally, there are other ways to obtain GIWFs, e.g. through certain path integrals
involving the vector potential [10]. However, the phase factor in equation (1) can be justified [5]
in terms of the minimal coupling principle. Moreover, as discussed in more detail elsewhere, the
function of the phase factor is to convert any gauge into the axial gauge [5]. For our purposes,
the choice of form (1) is due to convenience, as it provides a non-ambiguous way to calculate
averaged quantities. If instead one takes a GIWF in terms of a line integral

∫ r2

r1
A(s, t) · ds,

one introduces the further difficulty of the choice of integration path from r1 to r2 (cf equation
(2.157) of [10]).

The properties of the GIWF have been detailed in [4, 5]. Nevertheless, for completeness we
discuss some of them once again. From f we can compute the very basic zeroth- and first-order
moments ∫

dv f = |ψ |
2, (2)∫

dv v f =
ih̄

2m
(ψ∇ψ∗

−ψ∗
∇ψ)−

q

m
|ψ |

2 A, (3)

with the interpretation of particle and current densities, respectively. By construction, these
quantities are invariant under the local gauge transformation

A → A + ∇3, ψ → ψ exp

(
i q3

h̄

)
, (4)

where 3=3(r, t) is an arbitrary differentiable function.
If the starting point is the usual (gauge-dependent) Wigner function

f GD(r,p, t)=
1

(2π h̄)3

∫
ds exp

(
i p · s

h̄

)
ψ∗

(
r +

s
2
, t

)
ψ

(
r −

s
2
, t

)
, (5)

which is written in terms of the canonical momentum p = mv − qA, one obtains gauge-
independent results for the zeroth-, first- and second-order moments, but gauge-dependent
quantities when considering higher order moments. Of course, implicitly we assume that all
physical objects should be gauge independent. Serious discrepancies occur when calculating the
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evolution equation for the second-order moment of the usual Wigner function and the GIWF, as
will be shown in the next section. In all cases it is safer to work with f as given in equation (1).

The time evolution of the GIWF has already been considered by Stratonovich [3], but a
particularly illuminating form to express it was provided by Serimaa et al [4] according to{

∂

∂t
+ (v +1ṽ) ·

∂

∂r
+

q

m

[
Ẽ + (v +1 ṽ)× B̃

]
·
∂

∂v

}
f (r, v, t)= 0. (6)

Here, we introduced the operators

1ṽ =
ih̄q

m2

∂

∂v
×

∫ 1/2

−1/2
dτ τB

(
r +

ih̄τ

m

∂

∂v
, t

)
, (7)

Ẽ =

∫ 1/2

−1/2
dτE

(
r +

i h̄ τ

m

∂

∂v
, t

)
, (8)

B̃ =

∫ 1/2

−1/2
dτ B

(
r +

i h̄ τ

m

∂

∂v
, t

)
, (9)

where B = B(r, t) and E = E(r, t) are the magnetic and electric fields, respectively. The kinetic
equation (6) follows from the Schrödinger equation for the wavefunction or, alternatively, from
the von Neumann equation solved by the density matrix.

As is apparent from equation (6), the kinetic equation satisfied by f is formulated in
terms of the physical fields, unlike the equation solved by f GD, which is written in terms
of the scalar and vector potentials [11] and which can be shown to be not gauge invariant, a
serious drawback. Moreover, equation (6) is almost in the form of a Vlasov equation, with two
differences: the electromagnetic fields are replaced by Ẽ and B̃ defined in equations (8) and (9);
and the velocity vector is displaced by the intrinsically quantum mechanical perturbation 1ṽ
defined in equation (7). Note that this perturbation 1ṽ vanishes in the electrostatic case.
In calculating equations (7)–(9), it is assumed that the electromagnetic fields are analytic, so
that the integrals are evaluated after Taylor expanding and then replacing r with the indicated
argument r + ih̄(τ/m) ∂/∂v. A further difference in comparison to the Vlasov equation is that
no function f on phase space can be taken as a Wigner function. Too spiky functions violating
the uncertainty principle should be ruled out. And, of course, the Wigner function is not strictly
a probability distribution, since in general it is negative in certain regions of phase space.

To sum up, the pseudo-distribution in equation (1) provides a practical and non-ambiguous
recipe for a GIWF, and equation (6) is the associated kinetic equation. In the next section, we
derive a system of partial differential equations satisfied by macroscopic quantities obtained by
taking moments of the GIWF.

3. The fluid moments hierarchy

In spite of the apparent simplicity, actually equation (6) becomes quite complicated after
developing the operators Ẽ and B̃. In practice, nonlinear problems are inaccessible in
this formulation, especially remembering that the electromagnetic field should be self-
consistently determined through Maxwell equations. Hence, apart from linear problems, this
Wigner–Maxwell system can be helpful only by means of numerical simulations, which are
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themselves not evident due to the complexity of the system. This motivates the creation of
alternative models capturing the essentials of the quantum plasma dynamics.

In this context, recently [7], a fluid moments hierarchy was derived from the electrostatic
Wigner equation. As is usual in moments theories [9], a set of macroscopic variables (particle
density, current, etc) was defined in terms of integrals of the Wigner function. The time evolution
of these quantities was then deduced from the Wigner equation. No assumptions were made
about the particular local equilibrium Wigner function. In the linear limit, a quantum version
of the Bohm–Gross dispersion relation was derived. Also, certain nonlinear traveling wave
solutions were obtained.

The central purpose of this work is to extend the results of Haas et al [7] to the
electromagnetic case. Hence, we define the moments

n =

∫
dv f, (10)

nu =

∫
dv f v, (11)

Pi j = m

(∫
dv f viv j − nui u j

)
, (12)

Qi jk = m
∫

dv (vi − ui)(v j − u j)(vk − uk) f, (13)

Ri jkl = m
∫

dv (vi − ui)(v j − u j)(vk − uk)(vl − ul) f (14)

and so on, as if f were a classical distribution function. Since all quantities are postulated in a
gauge invariant way, we can safely interpret n, u, Pi j , etc, respectively, as a particle density, a
velocity field, a second rank stress tensor and so on. In particular, a scalar pressure p = (1/3) Pi i

and a heat flux vector qi = (1/2) Q j j i can be deduced, where the summation convention is
employed. Now the task is to obtain from the Wigner equation the equations of motion for the
several moments, which will compose an infinite coupled hierarchy.

We also note that, for the case of an isotropic distribution function, i.e. dependence of f on
the magnitude of the velocity only, all the odd moments must vanish from symmetry constraints,
while the even moments are expressible in scalar quantities (by decomposition in terms of δi j ).
Moreover, for the case of local rotational symmetry, i.e. the existence of one preferred direction
(say, ẑ) due to an external magnetic field or an initial temperature anisotropy, we have the form

Pi j = P⊥hi j + P‖ ẑi ẑ j (15)

and

Qi jk = Q⊥h(ik ẑk) + Q‖ ẑi ẑ j ẑk, (16)

and similarly for higher order moments. Here, we have introduced the projection tensor hi j =

δi j − ẑi ẑ j . These algebraic forms also solve the constraint equations (see below) that occur when
assuming a stationary and homogeneous (but possibly anisotropic) equilibrium distribution.3

3 We note that we can always decompose a moment of any order into its irreducible parts by picking an arbitrary
direction and forming the projection operator orthogonal to that direction.
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For the sake of calculating the moments hierarchy equations, it is convenient to expand1ṽ,
B̃ and Ẽ according to

1ṽi = −
qh̄2εi jk

12m3
∂m Bk

∂2

∂v j ∂vm
+

qh̄4εi jk

540m5
∂3

mnl Bk
∂4

∂v j∂vm∂vn∂vl
+ · · · , (17)

Ẽ i = Ei −
h̄2

24m2
∂2

jk Ei
∂2

∂v j ∂vk
+

h̄4

1920m4
∂4

jkmn Ei
∂4

∂v j∂vk∂vm∂vn
+ · · · , (18)

B̃ i = Bi −
h̄2

24m2
∂2

jk Bi
∂2

∂v j ∂vk
+

h̄4

1920m4
∂4

jkmn Bi
∂4

∂v j∂vk∂vm∂vn
+ · · · , (19)

disregarding higher order quantum corrections. The notation ∂i ≡ ∂/∂ri is used whenever there
is no risk of confusion.

Assuming decaying boundary conditions, as far as the moment hierarchy is closed
at the third-rank stress tensor, only the leading quantum corrections (the terms ∝ h̄2 in
equations (17)–(19)) are needed. This is due to the structure of the higher order corrections.
Indeed, these terms always involve at least fourth-order velocity derivatives and, for instance,∫

dv vi v j vk
∂4 f

∂va∂vb∂vc∂d
= 0. (20)

Therefore, only the semiclassical Wigner equation is needed, which does not mean that the
quantum effects are necessarily small; it just happens that higher order quantum corrections
would appear only for higher order moment evolution equations.

Following equation (6), the semiclassical electromagnetic Wigner equation then reads[ ∂
∂t

+ v ·
∂

∂r
+

q

m
(E + v × B) ·

∂

∂v

]
f (r, v, t)

=
qh̄2

24m3
∂2

jk Ei
∂3 f

∂vi∂v j∂vk
+

qh̄2εi jk

12m3
∂m Bk

∂3 f

∂ri∂v j ∂vm
+

qh̄2εi jkv j

24m3
∂2

mn Bk
∂3 f

∂vi∂vm ∂vn

+
q2h̄2

12m4

(
Bi∂ j Bk

∂3 f

∂vi∂v j∂vk
− Bi∂ j Bi

∂3 f

∂v j∂vk∂vk

)
.

(21)

Note that apparently the semiclassical electromagnetic Wigner equation, which is of some
interest in itself, has not been discussed previously in the literature.

Calculating the moments, the result is

Dn

Dt
+ n∇ · u = 0, (22)

Dui

Dt
= −

∂ j Pi j

mn
+

q

m
(E + u × B)i , (23)

DPi j

D t
= −Pik ∂ ku j − Pjk ∂ kui − Pi j∇ · u +

q

m
εimn Pjm Bn +

q

m
ε jmn Pim Bn

+
qh̄2

12m2
εikl∂l(n∂ j Bk)+

qh̄2

12m2
ε jkl∂l (n∂i Bk)− ∂ k Qi j k, (24)
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DQi jk

D t
= −Qi jr ∂ r uk − Q jkr ∂ r ui − Qkir ∂ r u j − Qi jk∇ · u − ∂ r Ri j kr

+
1

mn
(Pi j∂r Pkr + Pjk∂r Pir + Pki∂r Pjr)+

q

m
(εirs Qr jk + ε jrs Qrki + εkrs Qri j)Bs

−
qh̄2n

12m2
(∂2

i j Ek + ∂2
jk Ei + ∂2

ki E j)+
q2h̄2n

12m3
(δi j∂k + δ jk∂i + δki∂ j) B2

−
qh̄2n

12m2

[
(u × ∂2

jkB)i + (u × ∂2
ki B) j + (u × ∂2

i j B)k
]

+
qh̄2 n

12m2

[
εirs(∂ j Br∂suk + ∂k Br∂su j)+ ε jrs (∂k Br∂sui + ∂i Br∂suk)

+εkrs(∂i Br∂su j + ∂ j Br∂sui)
]
−

q2h̄2n

12m3

[
∂i(B j Bk)+ ∂ j(Bk Bi)+ ∂k(Bi B j)

]
. (25)

When B = 0, equations (22)–(25) recover the electrostatic equations [7]. In the limit h̄ → 0,
it reproduces the classical electromagnetic moment hierarchy equations [12]–[14]. Quantum
effects are already explicit in the transport equation for the pressure dyad, through the magnetic
field.

Previous approaches [15] derived quantum transport equations for charged particle
systems assuming a local semiclassical Wigner function corresponding to a perturbed
Maxwell–Boltzmann equilibrium. Here, however, the treatment includes magnetic fields and
is not semiclassical. A further approach for the derivation of quantum effects in macroscopic
equations is through the eikonal decomposition of the wavefunctions of the quantum statistical
ensemble and adequate simplifying assumptions [16]. In both cases [15, 16], the pressure dyad
Pi j would be expressed as the sum of a classical part and a quantum part, the latter associated
with a Bohm potential term in the force equation (23).

If we have used the gauge-dependent Wigner function, it would not be possible to proceed
exactly as in the classical case in the definition of the moments. Indeed, it would be natural to
postulate them as

n =

∫
dp f GD, (26)

nu =

∫
dp

(
p − qA

m

)
f GD, (27)

Pi j = m

(∫
dp
(pi − q Ai)(p j − q A j)

m2
f GD

− nui u j

)
, (28)

QGD
i jk =

1

m2

∫
dp (pi − q Ai − mui)(p j − q A j − mu j)(pk − q Ak − muk) f GD. (29)

The same symbols n, u and Pi j are used on purpose since equations (26)–(28) produce the same
expressions as from the GIWF, in spite of the fact that f GD itself is a gauge-dependent object.
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However, from the equation satisfied by the usual Wigner equation [11] one would obtain

DPi j

D t
= −Pik ∂ ku j − Pjk ∂ kui − Pi j∇ · u +

q

m
εimn Pjm Bn +

q

m
ε jmn Pim Bn

−
q h̄2

4 m2
∂2

i j A · ∇n − ∂ k Q G D
i j k , (30)

containing gauge-dependent quantum terms. The reason is that

QGD
i jk = Qi jk −

qh̄2 n

12m2
(∂2

i j Ak + ∂2
jk Ai + ∂2

ki A j) (31)

is not gauge invariant. If QGD
i jk from equation (31) is inserted into equation (30), one re-

derives equation (24) for the pressure dyad on taking into account the Coulomb gauge that
is assumed [11] in the evolution equation for f GD.

Similarly, the transport equations for the higher order moments are not gauge invariant.
The conclusion is that, to derive consistent equations from the usual Wigner function, we would
be obliged to modify the definition of moments. However, in this case there is the loss of one of
the key advantages of using Wigner functions, namely the strict resemblance with the classical
formalism. Also note that, if the heat flux triad is set to zero, the quantum term in equation (30)
is nonlinear for unmagnetized homogeneous equilibria, unlike equation (24), where a quantum
contribution survives in this situation.

In principle, one could use the gauge-dependent Wigner function to consistently calculate
the higher order moments such as Qi jk, Ri jkl and so on. However, due to the fact that operators
in quantum mechanics in general are non-commuting, this cannot be done in practice. To see
how this comes about, we consider calculating the second-order moment using the gauge-
dependent Wigner function. Calculating the second-order moment Pi j(r, t) involves finding the
expectation value of the operator, given by4

5̂i j =
1

4 m
[ p̂i − q Ai(r̂, t), [ p̂ j − q A j(r̂, t), δ(r̂ − r)]+]+, (32)

where [â, b̂]+ = âb̂ + b̂â denotes the anti-commutator. In order to calculate the expectation value
using the Wigner formalism, it is necessary to map the operator into a phase-space function
using the Weyl correspondence [17]. This is done in practice by ordering the operators into a
symmetric product of the position and momenta operators by using the commutation relations
and then making the substitutions r̂ → r and p̂ → p. It turns out that the correct phase-space
function is obtained by just making the substitution in the operator above without first Weyl
ordering it. Hence, we may calculate the pressure dyad using the gauge-dependent Wigner
function as

Pi j(r, t)=

∫
dr′ dp

m
[pi − q Ai(r′, t)][p j − q A j(r′, t)]δ(r′

− r) f G D(r′,p, t)− mnui u j . (33)

However, for the third-order moment Qi jk , the correct phase-space function is not obtained
simply by making the substitution r̂ → r and p̂ → p. Hence, calculating the correct third-order
moment using the gauge-dependent Wigner function is complicated and involves Weyl ordering
the corresponding operator so as to obtain the correct phase-space function.

4 The definition of the pressure operator in quantum mechanics is motivated by considering the Heisenberg
evolution equation for the probability current operator, which will be coupled to the divergence of the pressure
operator.
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The GIWF has a modified Weyl ordering rule, discussed in [4], and calculating the
moments is done in complete analogy with the classical case; see equations (10)–(14).

4. The transverse dispersion relation

As an application of the fluid equations (22)–(25), we now consider linear transverse waves.
Considering a one-component plasma, where the ions act only as a homogeneous neutralizing
background with number density n0, the moment equations can be linearized around the
equilibrium n = n0,u = 0, Pi j = P (0)

i j , Qi jk = 0, Ri jkl = 0,E = 0,B = 0. To consider waves
propagating in the z-direction with transverse polarization, we let all fluctuations have the
space–time dependence eikz−iωt and set Ez = 0. Moreover, we decompose the zeroth-order
pressure dyad as P (0)

i j = P⊥(δi xδ j x + δiyδ j y)+ P||δi zδ j z, where P⊥ and P‖ are constants.
It turns out that, if we use the closure assumption Ri jkl = 0, the quantum corrections to the

transverse modes will not be retained so that to display the lowest-order quantum corrections
it is necessary to take into account also the contribution from the fourth-order moment. As a
closure assumption, we use

Ri jkl = −
qh̄2

4m3ω2
(P (0)

im ∂
3
jkl + P (0)

jm ∂
3
kli + P (0)

km ∂
3
li j + P (0)

lm ∂
3
i jk) Em, (34)

adapted to the transverse wave case. The closure (34) is deduced systematically from the
linearized equations satisfied by the fourth- and fifth-order moments; see the appendix. Note
that, in principle, the fourth-order moment Ri jkl can have a nonzero equilibrium contribution
R(0)

i jkl ∼ v4
T, where vT =

√
(2P⊥ + P‖)/(mn0) is the thermal velocity, but we will neglect this since

we are looking only for the lowest-order correction. Likewise for the terms ∼ h̄4. Finally, it is
worth remarking that in the classical limit the fourth-order moment could be set to zero.

The linearized equations can then be solved by first writing the magnetic field in terms of
the electric field and then eliminating all quantities except the velocity so that we obtain the
velocity in terms of the electric field. Coupling the resulting equation with Faraday’s law via the
current density J = qn0u, the dispersion relation

ω2
− k2c2

= ω2
p

[
1 +

k2 P⊥

n0 mω2
+

h̄2k6 P⊥

4n0 m3ω4

]
(35)

is obtained. Here, ωp =
√

n0 q2/(mε0) is the plasma frequency. If, instead, the closure Ri jkl = 0
was used, the term proportional to h̄2 would be absent in the dispersion relation.

In the simultaneous long wavelength and semiclassical limits, equation (35) can be shown
to admit an approximate solution:

ω2
' ω2

p + c2k2 +
P⊥ k2

m n0
+

h̄2k6 P⊥

4m3n0ω2
p

. (36)

To check the consistency, we need to compare it to the results from kinetic theory. Here
we are not concerned with Landau damping issues so that all integrals can be interpreted in the
principal value sense. Assume that

E = E1 exp[i(kz −ωt)], (37)

B = B1 exp[i(kz −ωt)], (38)

f = f0(v)+ f1(v) exp[i(k z −ω t)], (39)
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where k · E = 0 as before and with the subscript 1 denoting first-order quantities. The
equilibrium Wigner function satisfies∫

dv f0 = n0 ,

∫
dv v f0 = 0. (40)

Further, we assume an equilibrium Wigner function such that f0 = f0(v⊥, vz), where v2
⊥

=

v2
x + v2

y . Note that, since there is no zeroth-order magnetic field, the perturbation velocity 1ṽ
is also of first order. Hence 1ṽ does not contribute to the linearized Wigner equation (6). Using
equations (8) and (9), we obtain

Ẽ = EL , B̃ = BL , (41)

defining the operator

L =
sinh θ

θ
, θ =

h̄k

2m

∂

∂vz
. (42)

We note that

L

(
∂ f0

∂vz

)
=

m

h̄k

[
f0

(
v +

h̄k
2 m

)
− f0

(
v −

h̄k
2m

)]
, (43)

where k = k ẑ. Moreover, L → 1 in the classical limit, since

L =

∞∑
j=0

1

(2 j + 1)!

(
h̄k

2m

∂

∂vz

)2 j

= 1 +
1

24

(
h̄k

m

)2
∂2

∂v2
z

+ · · · . (44)

Then linearizing the Wigner equation (6) and from the Maxwell equations with charge and
current densities q(

∫
dv f − n0) and q

∫
dv v f , respectively, the result is

ω2
= ω2

p + c2 k2 +
k2 ω2

p

2n0

∫
dv

v2
⊥

L f0

(ω− k · v)2
, (45)

where c is the speed of light and ωp is the plasma frequency. In comparison to the classical
transverse dispersion relation, the only change is the replacement f0 → f̃ 0 = L f0. In a classical
picture, it is as if the particle velocities were reorganized through the diffusive operator L .
Also note that still f̃ 0 = f̃ 0(v⊥, vz). Moreover, the quantum diffusion induced by the
operator L preserves the number of particles, since

∫
dv f̃ 0 =

∫
dv f0 due to equation (44)

under decaying boundary conditions. Figure 1 shows the effect of L on the equilibrium
f0 = fT(v⊥) exp[−v2

z /(2v
2
0)], for different values of the non-dimensional parameter H =

h̄ k/(2 m v0). In the simultaneous long wavelength and semiclassical limits and retaining only
the leading ∼ v2

T thermal corrections, equations (36) and (45) give the same result via the natural
identification P⊥ = (m/2)

∫
dv v2

⊥
f0. This concludes the equivalence between the moments and

kinetic theories, in the fluid limit.
To compare, the transverse dispersion relation following from the gauge-dependent Wigner

function [18, 19] can be expressed as

ω2
= ω2

p + c2k2
−

mω2
p

2n0h̄

∫
dv

v2
⊥

ω− k · v

[
f0

(
v +

h̄ k
2 m

)
− f0

(
v −

h̄ k
2 m

)]
(46)

or, using equation (43), as

ω2
= ω2

p + c2k2
−
ω2

p k

2n0

∫
dv

v2
⊥

ω− k · v
L

(
∂ f0

∂ vz

)
. (47)
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vz
v0

0.2

0.4

0.6

0.8

1

fII

Figure 1. Quantum diffusion on the equilibrium Wigner function f0 =

fT (v⊥) exp[−v2
z /(2 v

2
0)]. Here, f̃|| = L (exp[−v2

z /(2 v
2
0)]). Values of the para-

meter H = h̄ k/(2mv0) are H = 0, 1 and 2, so that f̃‖(0)= 1, 0.86 and 0.60,
respectively.

An integration by parts then shows the equivalence with the gauge invariant transverse
dispersion relation equation (45). Therefore the gauge choice issues tend to be crucial
only for the nonlinear regimes, as also manifest in the gauge-dependent nonlinear term in
equation (30) for the pressure dyad. However, in the case of non-homogeneous equilibria, the
use of a gauge-independent electromagnetic Wigner equation is advisable even for linear waves.

5. Conclusion

The moment hierarchy equations derived from the GIWF electromagnetic evolution equation
are obtained. The advantages over the gauge-dependent Wigner formalism are stressed.
Discrepancies tend to be prominent in the nonlinear regimes and for higher order moments of the
Wigner function. The fluid-like equations (22)–(25), closed at the transport equation for the heat
flux triad, are applied to the propagation of linear transverse waves. Good agreement is found
when comparing with the results from kinetic theory, in the long wavelength approximation.
A key ingredient of a successful macroscopic theory is an adequate closure of the moment
equations and a recipe for solving this question is proposed; see the appendix. The approach
is not restricted to particular local equilibrium GIWFs and is not based on a Madelung
decomposition of the quantum statistical ensemble wavefunctions. The moment equations
(22)–(25) are an adequate starting point for studying the nonlinear aspects of quantum plasma
problems involving magnetic fields, e.g. via numerical simulations.
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Appendix. The closure problem

The closure (34) can be deduced systematically from linearized higher order moment equations.
Let Si jklm be the fifth-order moment defined in analogy to the third- and fourth-order moments;
see equations (13) and (14). The sixth-order moment will be set to zero. The evolution equations
for the fourth- and fifth-order moments are derived following the same steps as those performed
when equations (22)–(25) were derived starting from equation (21). Since they are quite
complicated, we here include only the linear terms, which gives

∂t Ri jkl = −
qh̄2

12 m3
[εinm(P

(0)
jn ∂

2
kl + P (0)

kn ∂
2
l j + P (0)

ln ∂
2
jk + P (0)

jk ∂
2
ln + P (0)

kl ∂
2
jn + P (0)

l j ∂
2
kn)

+ ε jnm(P
(0)
kn ∂

2
li + P (0)

ln ∂
2
ik + P (0)

in ∂
2
kl + P (0)

kl ∂
2
in + P (0)

li ∂
2
kn + P (0)

ik ∂
2
ln)

+ εknm(P
(0)
ln ∂

2
i j + P (0)

in ∂
2
jl + P (0)

jn ∂
2
li + P (0)

i j ∂
2
ln + P (0)

jl ∂
2
in + P (0)

li ∂
2
jn)

+ εlnm(P
(0)
in ∂

2
jk + P (0)

jn ∂
2
ki + P (0)

kn ∂
2
i j + P (0)

i j ∂
2
kn + P (0)

jk ∂
2
in + P (0)

ki ∂
2
jn)]Bm − ∂m Si jklm,

(A.1)

∂t Si jklm = −
qh̄2

12 m3
[(P (0)

i j ∂kl + P (0)
jk ∂li + P (0)

kl ∂i j + P (0)
li ∂ jk + P (0)

ik ∂ jl + P (0)
jl ∂ik)Em

+ (P (0)
jk ∂lm + P (0)

kl ∂mj + P (0)
lm ∂ jk + P (0)

mj ∂kl + P (0)
jl ∂km + P (0)

km ∂ jl)Ei

+ (P (0)
kl ∂mi + P (0)

lm ∂ik + P (0)
mi ∂kl + P (0)

ik ∂lm + P (0)
km ∂li + P (0)

li ∂km)E j

+ (P (0)
lm ∂i j + P (0)

mi ∂ jl + P (0)
i j ∂lm + +P (0)

jl ∂mi + P (0)
li ∂mj + P (0)

mj ∂li)Ek

+ (P (0)
mi ∂ jk + P (0)

i j ∂km + P (0)
jk ∂mi + P (0)

km ∂i j + P (0)
mj ∂ik + P (0)

ik ∂mj)El]. (A.2)

After Fourier transforming and inserting Si jklm from equation (A.2) into equation (A.1),
equation (34) is derived using Faraday’s law. The procedure is adapted to the present equilibrium
(homogeneous, no streaming particles, no heat flux and negligible higher order thermal effects).

It turns out that, due to a cancellation arising from Faraday’s law in the transverse case,
the result in equation (34) is correct even if equations (A.1) and (A.2) were extended to include
∼ h̄4 terms. To obtain the next order quantum effects dispersion relation using the fluid theory, it
is therefore necessary to include higher order moments. In this example, the sixth-order moment
is disregarded in equation (A.2).

From the above we can infer a general recipe for the closure of the fluid-like system up
to the N th moment: Fourier transform the linearized evolution equations for the (N + 1)th and
(N + 2)th moments, setting the (N + 3)th moment to zero. In this way we derive an expression
for the (N + 1)th moment, so as to close the system for the N moments. The form of the
linearized equations depends on the particular equilibrium. Naïve closures like setting the
(N + 1)th moment directly to zero tend to produce fake results when compared to kinetic theory.
This is in sharp contrast to the simplicity of the electrostatic case, where faithful equations are
obtained already defining the fourth-order moment to be zero [7].

New Journal of Physics 12 (2010) 073027 (http://www.njp.org/)

http://www.njp.org/


13

References

[1] Wigner E P 1932 Phys. Rev. 40 749
[2] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[3] Stratonovich R L 1956 Dok. Akad. Nauk. SSSR 1 72

Stratonovich R L 1956 Sov. Phys.—Dokl. 1 414 (Engl. Transl.)
[4] Serimaa O T, Javanainen J and Varró S 1986 Phys. Rev. A 33 2913
[5] Levanda M and Fleurov V 2001 Ann. Phys., NY 292 199
[6] Javanainen J, Varró S and Serimaa O T 1987 Phys. Rev. A 35 2791
[7] Haas F, Marklund M, Brodin G and Zamanian J 2010 Phys. Lett. A 374 481
[8] Bialynicki-Birula I, Górnicki P and Rafelski J 1991 Phys. Rev. D 44 1825
[9] Grad H 1949 Commun. Pure Appl. Math. 2 331

[10] Carruthers P and Zachariasen F 1983 Rev. Mod. Phys. 55 245
[11] Haas F 2005 Phys. Plasmas 12 062117
[12] Goswami P, Passot T and Sulem P L 2005 Phys. Plasmas 12 102109
[13] Siregar E and Goldstein M L 1996 Phys. Plasmas 3 1437
[14] Ramos J J 2005 Phys. Plasmas 12 052102
[15] Gardner C L 1994 SIAM J. Appl. Math. 54 409
[16] Manfredi G and Haas F 2001 Phys. Rev. B 64 075316
[17] Weyl H 1927 Z. Phys. 46 1
[18] Klimontovich Yu L and Silin V P 1952 Zh. Eksp. Teor. Fiz. 23 151
[19] Kuzelev M V and Rukhadze A A 1999 Phys.-Usp. 42 603

New Journal of Physics 12 (2010) 073027 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/PhysRevA.33.2913
http://dx.doi.org/10.1006/aphy.2001.6170
http://dx.doi.org/10.1103/PhysRevA.35.2791
http://dx.doi.org/10.1016/j.physleta.2009.11.011
http://dx.doi.org/10.1103/PhysRevD.44.1825
http://dx.doi.org/10.1002/cpa.3160020403
http://dx.doi.org/10.1103/RevModPhys.55.245
http://dx.doi.org/10.1063/1.1939947
http://dx.doi.org/10.1063/1.2096582
http://dx.doi.org/10.1063/1.871733
http://dx.doi.org/10.1063/1.1884128
http://dx.doi.org/10.1137/S0036139992240425
http://dx.doi.org/10.1103/PhysRevB.64.075316
http://dx.doi.org/10.1007/BF02055756
http://dx.doi.org/10.1070/PU1999v042n06ABEH000486
http://www.njp.org/

	1. Introduction
	2. The basic properties of the gauge invariant Wigner function
	3. The fluid moments hierarchy
	4. The transverse dispersion relation
	5. Conclusion
	Acknowledgments
	Appendix.  The closure problem
	References

