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Abstract. We prepare arbitrary patterns of neutral atoms in a one-
dimensional (1D) optical lattice with single-site precision using microwave
radiation in a magnetic field gradient. We give a detailed account of the current
limitations and propose methods to overcome them. Our results have direct
relevance for addressing planes, strings or single atoms in higher-dimensional
optical lattices for quantum information processing or quantum simulations with
standard methods in current experiments. Furthermore, our findings pave the way
for arbitrary single-qubit control with single-site resolution.
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1. Introduction

Neutral atoms trapped in optical lattices form a promising paradigm of quantum simulation [1]
and quantum information processing [2]. Numerous proposals in these fields require the ability
to coherently address and manipulate atoms on a single site of the lattice. This ability, however,
still poses a challenge in these systems. While detection of atoms in optical lattices with
single-site resolution has been reported [3]–[7], single-site manipulation in lattices with a site
separation in the optical wavelength domain has so far only been demonstrated by removing
atoms using a focused electron beam [8].

A convenient method for spatially resolved coherent manipulation and detection of atoms
using only global techniques originates from nuclear magnetic resonance (NMR). Originally
developed for solid state systems, the basic tools and concepts have found their way also into
quantum optics experiments using cooled trapped atoms [9]. Achievements include control of
internal states on a micrometer scale [10] or robust global control of atomic samples [11].
In large systems, where a Bose–Einstein condensate is loaded into an optical lattice, periodic
patterned loading was achieved by using superlattice potentials [12, 13]. In an array of double
wells, recently one well out of each double-well system could be selectively manipulated by an
optically induced effective magnetic field, while the qubit was stored in field-insensitive internal
states [14]. Finally, in a Mott-insulating state, NMR techniques were used to extract slices from
the system with a spatial resolution of a few micrometers [15].

Here, we demonstrate the use of NMR techniques to prepare arbitrary patterns of atoms in
a one-dimensional (1D) optical lattice with single-site precision, which can be used as a starting
point for quantum information processing, and can be extended to higher-dimensional systems.
These techniques overcome several restrictions posed on atom string preparation using moving
optical lattices [16], such as the limited resolution of the order of the beam diameter or the
limited selectivity for closely spaced atoms. In principle, the NMR techniques can be realized
with standard methods already used in current quantum gas experiments and can be extended to
yield arbitrary quantum state manipulation of qubits with single-site resolution. We discuss the
challenges of this extension in the context of our 1D optical lattice.
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2. Experimental setup

2.1. Cooling and trapping of atoms

We capture neutral caesium (Cs) atoms from the background gas in a three-beam magneto-
optical trap (MOT). The atoms are transferred into a far detuned standing wave optical dipole
trap (1D optical lattice) formed by the interference of two counterpropagating laser beams
with a wavelength of λlat = 866 nm. By superposing the two traps for a duration of 500 ms
and subsequently switching off the MOT, depending on the parameters, between a single and up
to 100 atoms can be loaded into the optical lattice. For our parameters, atoms occupy a region of
approximately 100 µm length of the lattice (see figure 2), corresponding to roughly 200 lattice
sites.

During the loading and fluorescence imaging phases (see below) the dipole trap has a
depth of kB × 0.4 mK, whereas for manipulation of the atoms with microwaves in a magnetic
field gradient, it is adiabatically lowered within 50 ms to a depth of kB × 80 µK. Here, in each
dipole trap beam, approximately 20 mW of laser beam power is focused down to a waist radius
of 20 µm. This corresponds to vibrational frequencies of ωax = 2π × 115 kHz along the optical
lattice axis (axial direction, z-axis) and ωrad = 2π × 1.2 kHz perpendicular to the optical lattice
axis (radial direction, xy-plane). The atoms have a final temperature of 10 µK, corresponding
to mean vibrational quantum numbers of n̄ax = 1.2 axial and n̄rad = 200.

The atomic sample is probed by fluorescence imaging. We typically illuminate the trapped
atoms between 200 ms and 1 s by a near-resonant optical molasses using the MOT laser beams,
and image the fluorescence onto an electron-multiplying CCD (EMCCD) camera. The particular
exposure time is chosen depending on the required precision for the determination of atomic
positions [6]. For our imaging system and the fluorescence wavelength of 852 nm, the diffraction
limit is 1.8 µm ≈ 4 × λlat/2. However, for a sparsely filled lattice, even in unresolved clusters
of less than eight atoms, numerical post-analysis allows high-precision, real-time determination
of the atomic position with down to nearest-neighbor distances [6].

2.2. Internal state manipulation and detection

We initialize the atoms in state |0〉 ≡ |F = 4, m F = +4〉 by optical pumping with a σ +-polarized
laser beam, which is resonant with the F = 4 → F ′

= 4 transition, where throughout the
manuscript primed (non-primed) quantum numbers refer to the 6 2P3/2 (6 2S1/2) electronic state
of Cs. Here F is the total atomic angular momentum and m F its projection onto the quantization
axis, determined by a weak (|B0| = 3 G) guiding magnetic field along the z-axis. An equally
polarized repumping laser beam, frequency stabilized on the F = 3 → F ′

= 4 transition, is used
to transfer the atoms back to the optical pumping cycle, whenever they decay to the F = 3
ground state.

As information is stored in our experiment in the hyperfine states |0〉 and |1〉 ≡ |F = 3,

m F = +3〉, we have to selectively probe the populations of these states. This is done using
the so-called ‘push-out’ technique [17], which removes the atoms in F = 4 (including state
|0〉) from the optical lattice while leaving those in F = 3 unaffected. For this, we apply an
intense laser beam operating on the F = 4 → F ′

= 5 transition, perpendicular to the optical
lattice axis. The power Ppush = 40 µW and the pulse duration τpush = 250 µs of the push-out
beam are optimized so that its radiation pressure force overcomes the radial dipole force and
quickly pushes the atoms in F = 4 out of the lattice within less than half a radial oscillation
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period. Thereby, we largely prevent off-resonant excitations to F ′
= 4, from where the atoms

can spontaneously decay into the F = 3 ground state, which would cause erroneous detection
of F = 3. We verified that the mean survival probability of atoms prepared in F = 4 is smaller
than 1%, whereas for atoms prepared in F = 3, it is larger than 99%, imposing lower limits of
the push-out efficiency.

The two internal states |0〉 and |1〉 are coupled using microwave radiation around 9.2 GHz.
The microwave field is created by mixing a fixed frequency signal from a phase-locked dielectric
resonator oscillator (PLDRO) around 9.0 GHz with a tunable frequency from a signal generator
around 200 MHz in an upconverter. Both sources are locked onto a rubidium clock. The resulting
sum frequency is amplified up to 12 W and directed onto the atoms using a commercial
waveguide that supports linear polarization, while the carrier and difference frequencies are
suppressed by at least −30 dB.

We thereby achieve Rabi frequencies of approximately �0 = 2π × 60 kHz for the |0〉 ↔ |1〉

transition. The coherence time of the system has been measured by a Ramsey-type pulse
sequence to be T2 ≈ 200 µs and can be increased to T ∗

2 ≈ 0.8 ms by a spin echo sequence. The
coherence is mainly limited by magnetic field fluctuations and small polarization fluctuations
of the dipole trap affecting the atomic coherence via the vector light shift [10, 18].

2.3. Magnetic gradient field

In order to create a spatially varying resonance frequency along the optical lattice, we apply
a quadrupole magnetic field Bquad(r, I ). The field originates from two coils in anti-Helmholtz
configuration, where the symmetry axis of the coils coincides with the optical lattice axis. At
the center of the trapping region, the axial field gradient along the z-axis is thus twice as large
as the gradient in the xy-plane. The magnetic field in the trapping region including the offset
field B0 êz then reads

B(r, I ) =

 0
0
B0

+ B ′(I )

−x/2
−y/2

z

 , (1)

where B ′(I ) denotes the magnitude of the gradient field along the z-axis for a chosen current I
running through the coils. Due to the linear Zeeman effect, the |0〉 ↔ |1〉 transition frequency
depends linearly on the modulus of B(r, I ), yielding

ω0(r, I ) = 1HFS + γ |B(r, I )|

≈ 1HFS + γ

(
B0 + B ′(I )z +

B ′(I )2

8B0
ρ2

)
= 1HFS + δ0 + ω′(I )z +

ω′(I )2

8δ0
ρ2 , (2)

where the gyromagnetic ratio γ = (3g3 − 4g4)µB/h̄ ≈ 2π × 2.5 MHz G−1, δ0 = γ B0 denotes
the contribution of the guiding field, ω′(I ) = γ B ′(I ) the position-dependent shift and
ρ =

√
x2 + y2 the radial distance from the axis of symmetry of the coils. Finally, |B(r, I )| has

been approximated to second order in ρ, valid for (B0 + B ′(I )z)2
� B ′(I )2ρ2/4. Note that, due

to misalignment, the optical lattice axis can be radially offset by a small amount ρ0 relative to
the axis of symmetry. While the linear dependence of ω0(r, I ) on the axial position z is still
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Figure 1. (a) Zeeman splitting of magnetic sublevels in the 62S1/2 ground state
manifold of Cs. The degeneracy of the magnetic sublevels is lifted by an external
guiding field due to the linear Zeeman effect. State |0〉 = |F = 4, m F = 4〉

and state |1〉 = |F = 3, m F = 3〉 define the states of the qubit. (b) Geometrical
arrangement of laser beams and coils producing the magnetic fields needed for
preparation and detection of arbitrary patterns of atoms. The coils producing the
magnetic field gradient have 162 windings each with a center radius of 8.1 cm
and a center distance of 8 cm.

maintained, this offset imposes a significant obstacle to single-site addressability, as is shown in
section 3.3.4.

From a calibration measurement tracking the shift of the microwave frequency in the lattice
when certain magnetic gradient fields have been applied (see the next section), we infer the
position-dependent frequency shift of

ω′(I )

2π I
= (291 ± 2)

Hz

(λ/2) A
= (671 ± 3)

Hz

µm A
. (3)

This frequency shift corresponds to a strength of magnetic field gradient along the lattice
axis of B ′(I )/I = −(274 ± 1) µG/(µm A−1), in good agreement with the expected gradient
of −266 µG (µm A−1), estimated from our (simplified) coil geometry, see figure 1. For the
maximum current of 45 A, we find a frequency separation for two neighboring lattice sites
of ω′/(2π) × λ/2 = 13 kHz, corresponding to a magnetic field gradient of approximately
120 G cm−1.

3. Single-particle operations with spatially varying resonance condition

3.1. Position-dependent spectroscopy

When a magnetic field gradient is applied during the microwave pulse, the atomic resonance
condition is fulfilled only in small regions along the lattice axis. In order to illustrate this,
we apply a rather weak magnetic field gradient of B ′

= 27.4 G cm−1. For an atomic sample
that has been initialized to the |0〉 state, a subsequent microwave pulse with rectangular
amplitude envelope of duration tpulse = 10 µs and a center frequency of 9.2 GHz is applied. As a
consequence, the frequency spectrum with its characteristic sinc-type side peaks is mapped onto
the position distribution of atoms in |1〉. This is directly observable in the fluorescence images,
taken after the push-out has been applied, see figure 2. The averaged intensity distribution
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Figure 2. (a) Superposition of 50 fluorescence images after a rectangular
microwave pulse has been applied to a filled optical lattice in a magnetic gradient
field to flip the internal state from |0〉 to |1〉 and a subsequent laser pulse
has removed atoms in |1〉. (b) Vertically binned intensity distribution of the
images shown in (a). The solid line shows a fit with the expected sinc-like
frequency profile. The inset shows the atom distribution without application of
the microwave pulse and push-out laser.

of several images thus directly illustrates the shape of the microwave pulse in the frequency
domain. Microwave spectroscopy in position space is therefore a useful tool, which immediately
and quickly reveals information encoded in the frequency domain with a high resolution,
controlled by the strength of the field gradient. This method is much faster than a usual scan in
frequency across the resonance in a homogeneous field to map out the full spectrum. The time
to obtain a spectrum with a compatible signal-to-noise ration is reduced from approximately
3 h for the homogeneous field method to 12 . . . 20 s for the gradient method. Further, using
microwave pulses with a narrow-band spectrum, it allows us to monitor the evolution of the
transition frequency arising from changes and drifts of experimental parameters from shot to
shot. We stress that the shape of the microwave spectrum in position space is broadened due
to the optical imaging when the features in frequency space become smaller than the optical
diffraction limit. A further broadening may exist due to a radial offset of the lattice axis with
respect to the axis of symmetry of the coils. This effect, however, only becomes significant for
narrow-band pulses with a high spectral selectivity as we discuss in section 3.3.4.

3.2. Patterned atomic string preparation

The preparation of convenient initial atom configurations is an important first step toward
the application of neutral atoms for quantum information technology, such as the creation of
entangled states through coherent collisions; the tailoring of atom strings for efficient interaction
with the field of a high-finesse resonator; or the extraction of a selected plane or string of
atoms from a Mott-insulating state of atoms [19]–[21]. The concepts presented above provide
a toolbox that offers this capability: In the presence of a magnetic field gradient, only those

New Journal of Physics 12 (2010) 065027 (http://www.njp.org/)

http://www.njp.org/


7

17 /2 – /2 +2 /2

a

b

12λ/2 22λ/2

c

d

Figure 3. Strings of atoms in an optical lattice: Grayscale images show a
single image acquired after the application of the patterning sequence (a) for
a predefined string of equidistant atoms with separations of 17λ/2 and (c) for a
predefined string of four ‘atom pairs’ with an atom separation of 12 lattice sites
within each pair. Corresponding averages over 50 acquired images are shown as
false color images, (b) and (d), respectively. Atoms deviating from predefined
positions are indicated by an arrow, the deviation by a boxed value. Missing
atoms in (b) are mostly attributed to the limited preparation efficiency (see text).

lattice sites remain occupied after the state-selective push-out at which atoms have been shifted
resonant to the microwave π -pulse.

In order to generate a predefined pattern structure, a pulse train of N successively applied
π -pulses with different frequencies ωi is used instead of a single pulse. By incorporating the
periodicity of the optical lattice using

|ωi − ω j |

ω′(I )λ/2
∈ N with i, j = 1, . . . , N , i 6= j , (4)

these frequencies define the pattern structure. To ensure high selectivity in the position-
dependent population transfer, we use the gradient providing the maximum frequency shift
of ω′(I )/(2π) × (λ/2) = 13 kHz. Furthermore, Gaussian π -pulses with a 1/

√
e spectral half-

width down to σω/2π = 6 kHz are employed rather than rectangular pulses in order to suppress
side lobes. For this maximum available frequency shift, these pulses are in principle capable of
manipulating individual atoms with almost single-site resolution. To increase the selectivity
in the preparation of the pattern structures, we optionally use several iterations of state
initialization, application of π -pulses and the state-selective push-out.

In figure 3, two exemplarily generated patterns are shown: a string of eight equidistant
atoms (figures 3(a) and (b)), for instance, is ideally suited for a quantum register. Such a register
has previously been implemented using atoms randomly distributed over the lattice sites [10],
in which case the position of each atom had to be determined and fed back to the microwave
source prior to the quantum state manipulation of the atoms. For a predefined string of atoms,
this feedback is not required, since the frequency of each individual atom of the string is defined
by the preparation sequence itself.

Compared to rearranging atoms in crossed movable 1D lattices [16, 22], our method allows
us to prepare strings of atoms separated by an arbitrary number of lattice sites, even down
to two (see figures 5(a) and (b) below). These small separations are essential for an efficient
implementation of controlled collisions of two individual atoms [23]–[26] using, e.g., state-
selective transport [27, 28].
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3.3. Limitations

3.3.1. Filling factor. The first restriction of our method is given by the initial loading from a
MOT. For high densities as in an optical lattice, light-induced collisions [29, 30] lead to high loss
rates. In our case, any doubly occupied lattice site illuminated by the near-resonant molasses is
quickly depleted [31]. Near-resonant illumination of atoms in the dipole trap thus depletes all
sites with an even occupation number, while in sites with an odd initial occupation number
a single atom remains. Thus the resulting steady-state distribution of atoms in the lattice will
show either only one or no atoms, resulting in a filling factor of about 0.5, yielding a probability
of finding an atom at one selected lattice site of pa ≈ 50%. This probability imposes an upper
limit for the efficiency of generating the entire pattern structure: for a pattern of N atoms, the
probability that all desired lattice sites are initially populated is given by pini = pN

a , yielding
pini ≈ 0.4% for a string of eight atoms. Since our atom detection is restricted to sparsely filled
lattices, a detailed investigation of the loading process with high atom densities could not be
performed so far. Further investigations aiming at the increase of the filling factor are required
in the future.

3.3.2. Selectivity of microwave pulses. For an atom at a predefined lattice site, the selective
microwave operation, a π -pulse for instance, should fulfill two conditions. First, it should
operate on the selected atom with high fidelity. The selectivity of this π -pulse, in turn,
specified by its spectral width and its shape in the frequency domain, determines to what extent
neighboring atoms are affected by this pulse and whether neighboring atoms are completely
removed from the lattice or remain trapped with a certain probability. For efficient preparation
of pattern structures, this probability should ideally be zero.

However, the selectivity cannot be infinitely improved by increasing the pulse duration.
We observe experimentally that for pulse durations longer than 15 µs the maximally achievable
population transfer in the pulse center decreases together with the spectral width. We attribute
this to decoherence stemming from, e. g., technical noise or inhomogeneous broadening due to
radial motional dynamics in combination with the differential ac Stark shift due to the lattice
light [18]. For this reason, we employ a simple technique, which at least for the generation of
patterned structures presented in this work, effectively improves the selectivity of the Gaussian
π -pulses. The underlying idea is to utilize the probabilistic and destructive nature of our state-
selective push-out.

Suppose that a single application of the microwave spectroscopy sequence with a Gaussian
π -pulse provides a spectrum given by

P|1〉(δ) = Pmax exp

(
−

δ2

2σ 2
ω

)
, (5)

with a certain maximum population transfer Pmax. Then, by repeatedly applying the inner loop
comprising state initialization, application of the π -pulse and the push-out by a total of M times
(see figure 4), we expect again a Gaussian-shaped spectrum

P M
|1〉

(δ) =

[
Pmax exp

(
−

δ2

2σ 2
ω

)]M

= (Pmax)
M exp

(
−

δ2

2(σω/
√

M)
2

)
, (6)

with a 1/
√

e spectral half-width σω(M) = σω/
√

M , however, with a reduced maximum
population transfer Pmax(M) = (Pmax)

M .
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Figure 4. (a) Sequence for the preparation of pattern structures involving
multiple application of the inner loop of state transfer and push-out (blue shaded
blocks); the time duration for one sequence is between 2 and 4 s, limited by the
MOT loading time, switching time of the frequency synthesizers, and camera
exposure time. (b) Microwave spectra in the frequency domain for different
numbers of applications M of the inner loop. Solid lines show Gaussian fits,
from which (c) the dependence of the inferred maximum transfer efficiency
Pmax(M) (logarithmic plot) and (d) the 1/

√
e spectral half-width σω(M) (double-

logarithmic plot) on the number of applications is inferred. Both dependences
perfectly agree with the expected trend.

In figure 4, the scaling behavior of both quantities is exemplarily shown for a Gaussian
pulse with σt = 20 µs, where the spectra have been taken in the frequency domain rather than
by position-dependent spectroscopy. The scaling is perfectly reproduced by the measured data,
for both quantities inferred from a fit. Comparing the performance of a sequence repeating the
inner loop with a less selective π -pulse of σt = 15 µs a total of two or three times with a single
application of a more selective pulse of σt = 20 µs, we conclude that, for the efficient generation
of patterns, the repeated application is more advantageous.

To investigate the efficiency, resolution and possible imperfections of our patterning
method, we generate a pattern of three pairs of next nearest neighbors, see figure 5. Each atom
pair is separated by 16 lattice sites from another, to reliably determine the distances of the
atoms using numerical post-processing as presented in [6]. The internal sequence core employs
a pulse train of six subsequent applied Gaussian π -pulses with σt = 20 µs. The inner loop is
repeated a total of M = 2 times. Consequently, we expect a maximum population transfer of
Pmax(2) = (71 ± 2)% at the predefined sites. The corresponding 1/

√
e half-width in position

space is σz,exp(2) = (0.34 ± 0.01)λ/2 , specifying the selectivity region for a single atom.
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Figure 5. Pattern of three trapped atom pairs with nearest-neighbor distance
(a) in a single and (b) the average of several fluorescence images, similar to
the patterns shown in figure 3. (c) Histogram of distances between two atoms
forming the pairs, where the distance has been extracted by the method presented
in [6]. The solid line shows a Gaussian fit to the histogram, from which the 1/

√
e

half-width of the distances and the selectivity region of a single atom are inferred.

The entire patterning sequence is repeatedly recorded 500 times. From the final
fluorescence images of the atoms, each acquired with an exposure time of 800 ms, the positions
and distances of the atoms are determined. For our parameters, the number of pairs correctly
prepared with the predefined distance is expected to be Nexp ≈ 170 ± 17. In figure 5, a histogram
of the measured distances between atoms forming the pairs is shown. It reveals a Gaussian-
shaped distribution centered at the predefined separation of two lattice sites. From the histogram,
we infer Nmeas = 40 correctly prepared pairs. From the fitted width of the distribution σdist, we
infer a selectivity region of a single atom as σmeas = σdist/

√
2 = (0.60 ± 0.06) λ/2.

Both the number of correctly prepared pairs and the 1/
√

e half-width of the selectivity
region deviate from the expected values. These deviations can be attributed to the axial drift of
the optical lattice and the radial offset of the lattice axis relative to the axis of symmetry of the
coils, as discussed below.

3.3.3. Axial drift of the lattice. The standing wave field of the optical lattice is susceptible to
drifts and fluctuations of the optics, effectively changing the position of the potential minima
over the course of a measurement. To infer the drift of the optical lattice relative to the imaging
optics, we track the position of a single atom over a long time period from successively acquired
images with 1 s exposure time each, see figure 6(a). We observe small fluctuations of the atom
position around an approximately linear trend, indicating a slow drift of the optical lattice of
about 10 nm s−1. We attribute this drift to thermal expansion of the optical table and opto-
mechanics of the lattice.

Because the total measurement time, i.e. the time for measuring a full data set including up
to 100 individual experimental sequences (see figure 4(a)), is much longer than the time interval
in which the lattice axially drifts over a distance of λ/2, the effect of this drift on the spectrum
in position space can be described by a convolution equation

P|1〉,drift(z) =

∫ + λ
4

−
λ
4

2

λ
P|1〉(z − z′) dz′ , (7)

where we have included the fact that only drifts modulo λ/2 are distinguishable and relevant. By
solving the convolution equation, we infer a ‘drift-free’ 1/

√
e half-width of the selectivity region
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Figure 6. (a) Drift of the optical lattice with respect to the imaging system over
long times. (b) New coordinate system for an offset between the symmetry axes
of optical lattice and the center of the quadrupole magnetic field. (c) Measured
quadratic dependence of the position of the microwave resonance frequency with
increased offset r0 along the x ′-direction. The offset is changed by applying a
homogeneous offset field along the x ′-direction.

of σz,df = (0.52 ± 0.07)λ/2. This value explains part of the deviation between measurement and
expectation mentioned above.

3.3.4. Radial offset of the lattice. According to equation (2), the transition frequency changes
quadratically with increasing radial offset between the coil axis and the lattice axis. In the
following, we calculate the effect of a radial offset of the lattice axis with respect to the axis
of symmetry of the coils on the maximum population transfer and the selectivity region of a
Gaussian π -pulse as used above.

To calculate the position-dependent detuning, the origin of the lattice coordinate system
for r′, which so far was located at the center of the lattice site where the magnetic quadrupole
field vanishes, is shifted by the offset of the gradient field r0 (see figure 6(b)). For a position
vector r in this new coordinate system, the spatial detuning is given by

δ(r′, r0) = ω0(r′ + r0, I ) − ω0(r0, I ), (8)

with ω0(r, I ) from equation (2).
In figure 7, we show the calculated regions addressed by the pulse (addressed regions) for

which |δ(r′, r0)|6 σω and |δ(r′, r0)|6 2σω in the presence of the field gradient for different
values of radial offset ρ0. Atoms located in these regions experience a minimum population
transfer of Pmin > 0.6Pmax and Pmin > 0.13Pmax, respectively, whenever the Gaussian π -pulse
is applied. Because of the quadratical dependence of δ(r′, r0) on the radial component, see
equations (8) and (2), the addressed regions are extending over neighboring lattice sites for
increasing values of ρ0. This yields a decrease of the spatial selectivity of the Gaussian
π -pulses. Furthermore, we observe a decreasing intersection of the Gaussian thermal wave
packet of a trapped atom and the addressed region. This leads to a decreased effective population
transfer at desired lattice sites. We quantify both observations by calculating the expected
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Figure 7. Addressed regions, defined by |δ(r′, r0)|6 σω and |δ(r′, r0)|6 2σω in
the presence of the field gradient for different values of radial offsets ρ0 (lower
contour plots). The displayed plane is the common plane of the lattice axis and
the symmetry axis of the coils. The horizontal axes are expressed in units of
lattice periodicity λ/2. Ellipses indicate the 1/

√
e (solid lines) and 1/e2 (dashed

lines) spread of the Gaussian thermal wave packets of atoms trapped in the
potential wells (sites) of the optical lattice. Upper graphs show the corresponding
effective spectra in position space, i.e. the population transfer as a function of
axial displacement z′ from the resonance position r′

= 0 for a Gaussian π -pulse
with σω/2π = 6.4 kHz and Pmax = 100%.

position-dependent spectra, i.e. the population transfer as a function of axial displacement z′

from the resonance position r′
= 0 for different radial offsets. For this, we average the population

transfer specified by the spectrum of the Gaussian π -pulse (equation (5)) over all position-
dependent detunings, taking into account the axial and radial widths of the atomic thermal wave
packet in the trapping potential of the lattice.

This yields again an approximately Gaussian-shaped spectrum in position space, see
figure 7, from which the effective maximum population transfer P̄max and the effective 1/

√
e

half-width in position space σ̄z can be inferred.
By comparing our measured spectrum to the calculated effective spectra, we deduce a

calculated offset of ρ0 = (64 ± 14) µm. For this offset, we expect a maximum population
transfer of P̄max = (56 ± 8)%, and thus an expected number of correctly prepared atom pairs
of N̄ exp ≈ 40 . This value agrees with the measured number of correctly prepared pairs stated
above.

Moreover, by changing the homogeneous offset field B0, it is possible to infer and to
reduce the offset between the magnetic gradient and optical lattice axes, see figure 6(c). For
this we record the spatial position of the microwave resonance along the gradient as a function
of the radial offset ρ0. This offset is increased by applying a homogeneous field along the
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x ′-direction. We observe the expected quadratic dependence of the resonance position.
Adjusting the magnetic field offset to the measured value of the parabola maximum, the offset
along the scanning direction can be removed. Repeating this for the orthogonal direction we are
able to remove this offset completely from our system.

This effect is also important for the selection of 2D planes from a perfect 3D Mott-insulting
state with unity filling. We estimate that for a spherical symmetric cloud of 25 µm diameter, for
ideal alignment and with our lattice, gradient and pulse parameters, a 2D plane of 2500 atoms
could be prepared by applying the inner loop of figure 4 twice. Here, approximately 3% of the
atoms stem from neighboring planes.

4. Conclusion and outlook

We have created arbitrary patterns of atoms trapped in a 1D optical lattice with single-
site resolution using magnetic resonance techniques. Such patterns can be used as initial
configurations for various purposes, including collisional interaction between nearest neighbors.
The mechanisms limiting the resolution have been identified as being technical in nature and can
be overcome. Specifically, the optical lattice potential can be actively stabilized to avoid long-
term drifts, the magnetic field gradient can be increased and the microwave pulses can be shaped
by methods of optimal control to increase the selectivity of the pulses while preserving maximal
transfer probability. In a further extension of this method, arbitrary single-qubit operations with
single-site resolution—even in massively parallel operation—may become possible by taking
into account off-resonant phase shifts on other qubits.
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