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Abstract. Bi2Se3, Bi2Te3 and Sb2Te3 compounds have recently been predicted
to be three-dimensional (3D) strong topological insulators. In this paper, based
on ab initio calculations, we study in detail the topological nature and the surface
states of this family of compounds. The penetration depth and the spin-resolved
Fermi surfaces of the surface states are analyzed. We also present a procedure
from which a highly accurate effective Hamiltonian can be constructed based on
projected atomic Wannier functions (which keep the symmetries of the systems).
Such a Hamiltonian can be used to study the semi-infinite systems or slab-type
supercells efficiently. Finally, we discuss the 3D topological phase transition in
the Sb2(Te1−xSex)3 alloy system.
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1. Introduction

Topological insulators (TIs) [1]–[5] are interesting not only because of their fundamental
importance but also because of their great potential for future applications [6]–[8]. The TI is
a new state of quantum matter and is distinct from a simple metal or insulator in the sense that
its bulk is insulating (with a bulk band gap), while its surface (or edge) is metallic due to the
presence of gapless surface (edge) states. Those surface states are spin split but with double
degeneracy at the Dirac point, which is protected by the time-reversal symmetry. The surface
states, consisting of an odd number of massless Dirac cones, are robust against time-reversal-
invariant perturbations, and also are very different from graphene where spin degeneracy is
reserved (the concept of pseudo-spin describing the sublattice degeneracy is used for graphene).
In early studies of TIs, due to the absence of realistic materials, most discussions were based
on the model Hamiltonians [1]–[5]. However, within the last couple of years this field has been
strongly motivated by the discovery of several real compounds.

The two-dimensional (2D) TI (also called the quantum spin Hall insulator) has been
proposed and realized in the HgTe/CdTe quantum well structure by varying the well
thickness [9]–[11]. The three-dimensional (3D) topological nature of the Bi1−xSbx alloy has
been demonstrated by fine-tuning the alloy concentration [12]–[14]. In both cases, the bulk
band gap is of the order of 10 meV, too small for the potential applications. In our recent
studies, however, we predicted that the Bi2Se3 family of compounds [15] (i.e. Bi2Te3, Bi2Se3 and
Sb2Te3), which are well-known thermoelectric materials [16]–[18], are strong TIs, with surface
states consisting of a single Dirac cone at the 0 point. In particular, for Bi2Se3 a bulk band gap
of 0.3 eV is predicted, much larger than the energy scale of room temperature. The compounds
are stoichiometric, chemically very stable, and easy to synthesize, and yet their surface states
are very simple. The existence of such surface states in this family of compounds has been
experimentally confirmed on samples ranging from bulk to thin film [19]–[24].
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More and more studies are now in progress on the Bi2Se3 family of compounds, and
quantitative studies and comparison with experiments are of increasing importance. However,
fully self-consistent ab initio calculations are quite limited due to the large system size. In
order to study both the bulk and the surface behavior simultaneously, which is necessary to
identify its topological nature, a large slab-type supercell is needed, and demanding calculations
are involved. To simplify future studies, it is therefore desirable to have a highly accurate
effective Hamiltonian, which is one of the main purposes of this paper. It is well known
that the maximally localized Wannier functions (MLWF) method introduced by Marzari and
co-workers [25, 26] has played an important role in constructing the effective Hamiltonian.
However, the algorithm involved does not hold symmetry when the MLWF are constructed
from Bloch functions. To solve this problem we introduce a set of projected atomic Wannier
functions (PAWF), whose symmetry can be easily controlled while maintaining high accuracy.
With this set of PAWF bases, a highly accurate effective Hamiltonian can be constructed. Using
this Hamiltonian, we demonstrate that the topological nature as well as the details of surface
states can all be well reproduced.

The organization of the present paper is as follows. In section 2, we describe the crystal
structure and symmetries of the Bi2Se3 family of compounds. Section 3 is devoted to the
construction of the effective Hamiltonian from PAWF. In section 4, this Hamiltonian is applied
to the Bi2Se3 system, and the topological nature and surface properties are analyzed. In section 5,
we discuss the 3D topological phase transition by doping Se into Sb2Te3. Final remarks are
summarized in section 6.

2. Crystal structure and symmetries

The Bi2Se3 family of compounds has a rhombohedral crystal structure with space group D5
3d

(R3̄m); we take Bi2Se3 as an example in the following. As shown in figure 1(a), the system has
a layered structure with five atomic layers as a basic unit (cell), named a quintuple layer (QL).
The inter-layer bonding within the QLs is strong because of the dominant covalent character,
but the bonding between the QLs is much weaker due to the van der Walls-type interaction.
The binary (with twofold rotation symmetry), bisectrix (appearing in the reflection plane) and
trigonal (with threefold rotation symmetry) axes are taken as the x , y and z axes, respectively,
and the primitive translation vectors t1,2,3 shown in figure 1 are

t1 = (−a/2,−
√

3a/6, c/3),

t2 = (a/2,−
√

3a/6, c/3), (1)

t3 = (0,
√

3a/3, c/3).

Here, a and c are lattice constants in the hexagonal cell. The corresponding reciprocal vectors
s1,2,3, defined by si · tj = 2πδij, are given as

s1 = (−1,−
√

3/3, b)h,

s2 = (1,−
√

3/3, b)h, (2)

s3 = (0, 2
√

3/3, b)h,
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Figure 1. Crystal structure of the Bi2Se3 family of compounds. (a) The hexagonal
supercell containing 15 atomic layers and primitive translation vectors t1,2,3.
(b) The top view of a QL in the triangle lattice. Three sets of different sites,
labeled as A, B and C sublattices, respectively, are presented. Owing to the D5

3d
symmetry, the stacking of atomic layers along the z-direction is in the order
of . . . –C(Se1)–A(Se1)–B(Bi)–C(Se2)–A(Bi)–B(Se1)–C(Se1) . . . . (c) The first
BZ. Four nonequivalent TRIM points 0 (0, 0, 0), L(π, 0, 0), F(π, π, 0) and
Z(π, π, π) are denoted in the 3D BZ. The corresponding surface 2D BZ is
represented by the dashed blue hexagon, and 0, M and K are the corresponding
TRIM special k points in the surface BZ.

with

b = a/c,
(3)

h = 2π/a.

As shown in figure 1(a), we take Se2 to be at the origin (0, 0, 0); then two Bi sites are at
(±µ, ±µ, ±µ), and two Se1 are at (±ν, ±ν, ±ν), defined in the unit of primitive translation
vectors. All the experimental lattice parameters and internal parameters µ and ν are listed in
table 1. Figure 1(c) shows the 3D first Brillouin zone (BZ) and the 2D surface BZ of Bi2Se3.
0(0, 0, 0), L(π, 0, 0), F(π, π, 0) and Z(π, π, π) are four time-reversal invariant momentum
(TRIM) points in the 3D BZ. 0(0, 0, 0) and Z(π, π, π) are projected as 0, and L(π, 0, 0) and
F(π, π, 0) are projected as M in the surface BZ. For the choice of our cell, Bi2Se3 has the
inversion symmetry with inversion center at Se2. The space group R3̄m can be constructed
from three symmetry generators: I (inversion), c3z (threefold rotation around z) and σx (mirror
plane with its normal along x).
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Table 1. Experimental lattice parameters and the internal parameters of the
Bi2Se3 family of compounds [27].

Sb2Te3 Bi2Te3 Bi2Se3

Lattice constant a (Å) 4.250 4.383 4.138
c (Å) 30.35 30.487 28.64

Inner coordinates µ 0.400 0.400 0.399
ν 0.211 0.212 0.206

3. The effective Hamiltonian from projected atomic Wannier functions (PAWF)

The construction of the PAWF basis and the effective Hamiltonian is a post-process of
ab initio calculations. The fully self-consistent ab initio calculations are performed for
the bulk compounds in the framework of density functional theory (DFT) [28] using the
BSTATE (Beijing Simulation Tool for Atom Technology) package [29] with the plane-wave
ultra-soft pseudo-potential method [30]. Generalized gradient approximation (GGA) of the
Perdew–Burke–Ernzerhof (PBE) type is used for the exchange-correlation potential [31]. To
guarantee the convergence, we use 340 eV for the cut-off energy of wave-function expansion
and a 10 × 10 × 10 K-points mesh in the BZ. All structure parameters of Bi2Se3, Sb2Te3 and
Bi2Te3 are chosen from the experimental data listed in table 1.

After completing the self-consistent ab initio calculations two steps are followed to
construct the PAWF basis and the effective Hamiltonian. First, we disentangle an isolated group
of bands through minimizing the invariant part of the spread functional of wave functions
(�I) [26]. In the second step, the Hilbert space of this isolated group of bands is directly
projected on to atomic p orbitals (keeping the angular symmetry). Finally, a set of unitary
rotation matrices U(k) can be obtained, which can be used straightly to construct the PAWF and
the effective Hamiltonian. The details are elucidated in the following.

3.1. Extracting the isolated group of bands

For a simple band insulator, the disentangling procedure is, typically, unnecessary, and it is
straightforward to choose a set of Wannier bases expanding the identical space of occupied
Bloch states. However, in our case, aiming to describe the electronic characters near the Fermi
level, both occupied and unoccupied bands are necessary, which are not detached from higher
bands. By partial density of states (PDOS) analysis, we know that the states near the Fermi
level mainly come from the contribution of p orbitals of both Bi and Se atoms. Since each
atom has three p orbitals, the total number of orbitals of interest is N = 15, consisting of nine
valence bands and six unoccupied bands. Following the procedure described in MLWF [26],
we introduce a big enough outer energy window (−20 eV, 20 eV), and a small inner window
(−6 eV, 2 eV). A smooth subspace (of N bands) can then be constructed by optimizing the
spread functional, namely �I, as suggested in [26].

3.2. The PAWF basis and the effective Hamiltonian

The Bloch functions ψmk of the isolated group of N bands are directly projected on to
the atomic p orbitals, and the unitary rotation matrices U(k) can be obtained by proper
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orthonormalization [25, 32]. With these unitary rotation matrices U(k), we can obtain well-
localized PAWF by rotating the original Bloch functions in the following way:

|ψ̃nk〉 =

N∑
m=1

Umn(k)|ψmk〉, (4)

|W R
n 〉 =

1

Nk

∑
k

e−ik R
|ψ̃nk〉, (5)

where n and m = 1, 2, . . . , N are band indices, Nk is the total number of k-points and
W R

n denotes the nth PAWF orbital, which is centered at the lattice vector R.
Using the PAWF as the basis, the effective Hamiltonian H W (k) can be obtained

correspondingly by rotating the original Hamiltonian,

H W (k)= U† H(k)U . (6)

Because our PAWF are constructed from atomic orbitals, which have atomic symmetry, we can
further symmetrize the Hamiltonian using their atomic characters. Using Fourier transformation,
the PAWF effective Hamiltonian in real space can be given by

H W (R)=
1

Nk

∑
k

e−ik·R H W (k). (7)

The Hamiltonians at any other k-point can be now obtained by transforming H W (R) back into
k space,

H W (k)=

∑
R

eik·R H W (R). (8)

All the hopping matrix elements in the effective Hamiltonian are calculated directly by
constructing the PAWF. This approach differs considerably from the conventional Slater–Koster
TB method [33], where hopping integrals up to certain neighbors are obtained by a fitting
method. The present method has several special advantages. Firstly, it is not necessary to
maximize the localization of Wannier functions (WF). Such a step will usually break the local
symmetry of WF. In our case, the WF can be constrained to satisfy local crystal symmetry, and
the PAWF effective Hamiltonian can be symmetrized while keeping the necessary accuracy.
Secondly, the atomic spin–orbit coupling (SOC) can be easily implemented. Since the WF
are constructed from atomic orbitals, they are already quite localized although not maximally
localized by definition. The PAWF effective Hamiltonian is expected to be useful for large
supercell calculations without extra errors from the symmetry problem.

3.3. The spin–orbit coupling

The SOC is important for the topological nature of the Bi2Se3 family of compounds, and
should be included in all analyses. Since SOC is mostly local atomic physics and has little
k-dependence, the simplest way to supplement SOC on top of our PAWF effective Hamiltonian
(denoted as H 0 from now on) is to include an additional local term H soc in the total
Hamiltonian [34],

H tot
= H 0 + H soc, (9)

New Journal of Physics 12 (2010) 065013 (http://www.njp.org/)

http://www.njp.org/


7

where

H soc
= (h̄/4m2c2)[∇V × P] · σ. (10)

H soc comes from the SOC interaction, while V and σ represent total potential and Pauli spin
matrices, respectively.

As discussed above, our PAWF are constructed from atomic p orbitals (having atomic
angular symmetry); the SOC Hamiltonian can be straightforwardly written down, in terms of
those PAWF bases,

|px ,↑〉, |py,↑〉, |pz,↑〉, |px ,↓〉, |py,↓〉, |pz,↓〉, (11)

where ↑ (↓) indicates the spin. With this basis set for each atom, the H soc part can be
expressed as

H soc
=
λ

2


0 −i 0 0 0 1
i 0 0 0 0 −i
0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 i 0 0 0 0

 , (12)

where λ denotes the SOC parameter. We take the SOC parameters of Bi, Se, Sb and Te atoms
from Wittel’s spectral data (λBi = 1.25 eV, λSe = 0.22 eV, λSb = 0.4 eV, λTe = 0.49 eV) [35].

3.4. Accuracy of the effective Hamiltonian: results for bulk

To demonstrate the quality of the PAWF effective Hamiltonian, we compare here several
important properties calculated from the PAWF Hamiltonian with those obtained from the
ab initio calculations. The first property to be compared is the calculated bulk band structure.
As shown in figure 2(a), for Bi2Se3 without SOC the band structures obtained from the PAWF
effective Hamiltonian almost exactly reproduce the ab initio band structures. After taking into
account the SOC interaction (as shown in figure 2(b)), the quality is slightly reduced, but it
is still reasonably high since only the k-independent SOC interaction is implemented in the
effective Hamiltonian. For Bi2Te3 and Sb2Te3, the PAWF effective Hamiltonian shows similar
quality (shown in figures 3(a) and (b)).

Parity is another important quantity to distinguish the topological character of the Bi2Se3

family of compounds. Because the present systems possess inversion symmetry, the method
proposed by Fu and Kane [5] is used here. For all three systems we calculate the parity
eigenvalues of nine occupied bands and the first conduction band at the TRIM points 0, L ,
F and Z . The results for the 0 point, obtained from the effective Hamiltonian, are listed in
table 2. As can be clearly seen, the parity products of occupied bands are −1 for the 0 points.
For the other TRIM points, L , F and Z , the detailed numbers are not listed here, but our results
give +1 for three of the compounds. From the parity numbers, we can therefore identify the
corresponding Z2 invariants [1, 4, 5] as 1 for all the three compounds. This means that they
have a nontrivial topological nature, in good agreement with our previous studies [15]. From
the above comparisons we conclude that the quality of the PAWF effective Hamiltonian is as
good as that obtained from the ab initio calculations.
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Figure 2. Comparison of PAWF bands (red dashed lines) with the ab initio band
structures (black solid lines) of Bi2Se3. (a) The results without SOC. The PAWF
effective Hamiltonian almost exactly reproduces the ab initio band structures.
(b) The results with SOC for Bi2Se3.
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Figure 3. The comparison of PAWF bands (red dashed lines) with the ab initio
band structures (black solid lines) of (a) Bi2Te3 and (b) Sb2Te3. Only the results
obtained after including the SOC interaction are shown here.

4. The properties of surface states

Once the effective Hamiltonian has been constructed from the above procedures, we are able
to calculate the surface states of semi-infinite systems from the iterative Green’s function
method [36], as described in our previous work [15]. The existence of gapless spin-filter surface
states is the direct manifestation of the topological nature. The crystal structure of the Bi2Se3

family of compounds can be understood as the stacking of QLs along the z-direction. The inter-
layer bonding between two QLs is much weaker than that inside the QL; it is natural to expect
that the cleavage plane should be between two QLs. This fact has been well confirmed by recent
experiments on the layer-by-layer MBE growth of ultra-thin film [21]–[24]. We therefore focus
on this type of surface termination (with Se1 atomic layer as the top most layer). Our previous
work has shown that gapless surface states with a single Dirac point (located at 0) exist for
all three compounds, Bi2Se3, Bi2Te3 and Sb2Te3, but not for Sb2Se3. The dispersion of surface
states around the Dirac point is highly linear, and these surface states can be described by a
simple continuous model [15]. We will not repeat those results here; however, we focus on
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Table 2. The parity eigenvalues of the energy bands of the Bi2Se3 family of
compounds at 0 point, obtained from the effective Hamiltonian. The parity
numbers of nine occupied bands and the first conduction band are shown (the
corresponding band energy increases from left to right). The parity products of
nine occupied bands are given in parentheses.

Parity

Bi2Se3 (−1) −1 1 −1 −1 1 1 −1 −1 1; −1
Bi2Te3 (−1) −1 1 1 −1 −1 1 −1 −1 1; −1
Sb2Te3 (−1) 1 −1 −1 1 −1 1 −1 −1 1; −1

some other details of surface states, including the penetration depth, the spin-resolved Fermi
surface and the chiral spin texture of the surface states.

4.1. The penetration depth of surface states

The spread of surface states, in other words the spatial penetration depth into the bulk, is an
essential quantity for the potential applications of these surface states, if any. In order to clarify
this point, a free standing slab model is constructed using our PAWF effective Hamiltonian. We
use a slab consisting of 25 QLs, which is thick enough to avoid the direct coupling between the
two surfaces, i.e. the top and the bottom surfaces of the slab. In order to make the calculations
more realistic, we further take into account the surface correction. The bulk PAWF effective
Hamiltonian is used to construct the Hamiltonian of the slab; however, for those layers close
to the surface, the on-site energies of PAWF should be modified from the bulk counterparts
due to the presence of vacuum (i.e the surface potential). By comparison with the fully self-
consistent ab initio calculations of thin slab, all the correction of on-site energies for PAWF
(1En = E surface

n − Ebulk
n ) can be obtained.

The calculated band structures of our 25-QLs Bi2Se3 slab along 0 → K and 0 → M lines
are shown in figures 4 and 5. Clearly, within the bulk energy gap, there exist two surface bands
(marked by61 and62), which are degenerate at 0 point (where the so-called Dirac cone exists).
The two surface bands (61 and 62) are sampled by several k-points (with ki , i = 1, 2, 3).
The real space distribution of eigen wavefunctions for those sampling k-points are plotted in
figures 4(b) and (c) and figures 5(b) and (c), respectively. For those k-points close to the Dirac
point (such as k1 and k2), the distribution of wavefunctions are very localized to the surface
region, with a typical spread of about 2 QLs (about 2 nm in thickness). By moving away from
the Dirac point, the penetration depth increases, and finally for k3 point, where the surface state
almost merges with the bulk states, the eigen wavefunction becomes an extended state. For
both 0–M and 0–K lines, the same behaviors are observed. To further observe the oscillating
behavior of surface state distribution over atomic layers, we plot the distribution for k1 in the
inset. Finally, we can conclude that surface states are very localized to the surface region, and
the penetration depth is about 2 or 3 QLs.

To make further comparison, we perform fully self-consistent ab initio calculations for
a three-QL slab. The real space charge distribution of surface states can thus be obtained by
integrating the states within an energy window of 10 meV around the Dirac point. As shown
in figure 6, the charge distribution is localized at the surface region. Furthermore, the charges
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Figure 4. (a) The calculated band structures of the Bi2Se3 slab with a film
thickness of 25 QLs. The bands along the0 → K direction are shown. The Fermi
level is located at energy zero. The two surface bands in the bulk gap (around the
0 point) are denoted as 61 and 62. (b, c) The real-space distribution of eigen
wavefunctions (|ψnk(r)|2) for different k-points (k1, k2 and k3 as indicated in
(a)). (b) and (c) are for k-points along the 61 or 62 lines, respectively. The inset
of (c) is the zoomed-in picture for the k1 point eigen wavefunction, where the
atomic layer resolution is visible.
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Figure 5. The same as figure 4, but for bands along the 0 → M direction.

are not centered at the atom, but rather distributed mostly between the Bi and Se atoms, where
strong covalent bonding is expected.

4.2. The spin-resolved Fermi surface

Probing the π Berry phase enclosed by the Fermi surface of surface states is one of the most
direct methods for distinguishing TIs. We now analyze the spin-resolved Fermi surfaces around
the Dirac point of the semi-infinite Bi2Se3 system. With the Green’s functions calculated from
the effective Hamiltonian, the spin-filter surface states and the corresponding Fermi surfaces
can be obtained directly.

As shown in figure 7, when the Fermi level is close to the Dirac point the corresponding
Fermi surface is nearly a perfect circle, while if the Fermi level is away from the Dirac point the
properties of the surface states are significantly affected by the bulk states and thus satisfy the
crystal symmetry. For example, the Fermi surface for Ef = 0.1 eV (shown in figure 7(a)) looks
like a small circle, while the Fermi surface for Ef = 0.25 eV (shown in figure 7(b)) looks like
a hexagon satisfying c3z symmetry. The spin orientation for states around the Fermi surface is
marked as well by arrows. The magnitude of the spin z-component is very small, only about
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Figure 6. The spatial charge distribution within an energy window of 10 meV
around the Fermi level. The top atomic layer means the surface of the slab. It is
clearly seen that electrons are mainly localized at the surface of the slab.

Figure 7. The spin-resolved Fermi surface of surface states. (a, b) The Fermi
surfaces for Fermi energy at 0.1 and 0.25 eV, respectively. The Fermi surfaces
are denoted by a red circle, and the in-plane spin orientation is indicated by
green arrows.

1/40 of the in-plane component. Thus the spin lies almost completely in the plane. Moving
around the Fermi surface, the spin orientation rotates simultaneously, forming a spin–orbit ring,
which carries a π Berry phase. This signifies the topological nontrivial properties of Bi2Se3. In
addition, as shown in figure 7, the spin orientation of the ring belongs to the left chirality (the
normal direction of the semi-infinite system is defined as the z-direction), which is again one of
the important manifestations of nontrivial topological characters.

4.3. The linear dispersion of surface states

The gapless surface states that connect the bulk valence and conduction bands have almost linear
energy dependence near the Dirac point. A linear band structure in 2D should lead to linear
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Figure 8. (a) Energy bands of a three-QL slab. (b) The corresponding DOS. The
DOS near the Fermi level is highly linear to energy due to the presence of Dirac
cone-type surface states.

density of states (DOS). To be specific, in the bulk energy gap the energy bands are mostly
from the surface states, so the DOS in the bulk energy gap are expected to be highly linear.
Figure 8(a) shows the band structures of a three-QL slab. Its corresponding DOS (presented in
figure 8(b)) shows very nice linear energy dependence within the bulk energy gap, as expected.
This type of DOS can be easily measured by low-temperature scanning tunneling spectroscopy
(STS), which will provide an indirect method to probe the existence of linear surface states.

5. Three-dimensional topological phase transition

The above discussions presented in sections 2 and 3 concentrate on the effective Hamiltonian
and detailed understanding of the properties of surface states. In such a way, we can
analyze the topological nature of a specific compound. However, the topological nature can
be also understood from simple bulk studies, where a gap close–reopening transition (a
topological phase transition) can be obtained by tuning some parameters [37]. We show
in this section that such a phase transition may be obtained in the Sb2(Te1−xSex)3 alloy
system.

The virtual crystal approximation (VCA) method proposed by Bellaiche [38] is used here
to simulate the doping process. The solid solution elements are treated as different atomic
species with their own weights, rather than being treated as a whole virtual atom. With this
method we investigate the Se doping dependence of the band structure of Sb2(Te1−xSex)3. We
assume that crystal parameters and positions of inner atoms change linearly with doping, and
they are obtained by linear interpolation in calculation. The evolution of the gap energy of
Sb2(Te1−xSex)3 as a function of Se concentration is calculated and illustrated in figure 9. With
increasing Se doping, the valence band maximum and conduction band minimum gradually
become closer (0< x 6 0.94), which is attributed to the gradually decreasing SOC strength.
Consequently, the two bands cross at the critical point x = 0.94, resulting in a 3D topological
quantum phase transition. A band inversion appears when the doping concentration further
increases. Experimentally, the most stable crystal structure of Sb2Se3 is orthorhombic (with
space group D16

2h), which is a structure distorted from the rhombohedral structure of Sb2Te3;
this makes the realization of the topological phase transition discussed above difficult. A wide
range of solid solutions of Sb2(Te1−xSex)3 having rhombohedral structure (identical to Sb2Te3)
have been reported experimentally for 0< x < 0.67 in the literature [39]; however, to realize
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Figure 9. The gap energy of Sb2(Te1−xSex)3 at the 0 point as a function of Se
concentration x . TI denotes the TI, whereas SI means the simple insulator.

the topological phase transition, further solid solutions (with x around 0.94) are needed. This
is of course a difficult condition; however, it is worthy of being tried, particularly for samples
prepared in thin film form or under pressure. At the topological phase transition point, the 3D
Dirac cone can be expected in the bulk band structure [37].

6. Conclusions

Bi2Se3, Bi2Te3 and Sb2Te3 systems are a new class of TI. In the present paper, we construct the
effective Hamiltonian for this family of compounds based on the PAWF method. The effective
Hamiltonian can well reproduce the ab initio band structures and their topological nature. The
penetration depth and the spin-resolved Fermi surfaces of surface states are calculated and
analyzed in detail. At the end of the paper, we discuss the 3D topological phase transition in
Sb2(Te1−xSex)3 and suggest that the 3D Dirac cone can be obtained by doping Se in Sb2Te3.
Finally, we hope that our effective Hamiltonian can lead to further understanding of these
materials in future.
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