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Abstract. Strongly interacting, dilute Fermi gases exhibit a scale-invariant,
universal thermodynamic behavior. This is notoriously difficult to understand
theoretically because of the absence of a small interaction parameter. Here,
we present a systematic comparison of theoretical predictions from different
quantum many-body theories with recent experimental data of Nascimbne
et al (2010 Nature 463 1057). Our comparisons have no adjustable parameters,
either theoretically or experimentally. All the model approximations seem to
fluctuate rather than converge on the experimental data. It turns out that a simple
Gaussian pair fluctuation theory gives the best quantitative agreement, except
at the critical superfluid transition region. In the normal state, we also calculate
the equation of state by using a quantum cluster expansion theory and explore
in detail its applicability to low temperatures. Using the accurate experimental
result for the thermodynamic function S(T ), we determine the temperature T of
a trapped Fermi gas at unitarity as a function of a non-interacting temperature Ti,
which can be obtained by an adiabatic sweep to the free gas limit. By analyzing
the recent experimental data, we find a characteristic temperature (T/TF)0 =

0.19 ± 0.02 or (Ti/TF)0 = 0.16 ± 0.02 in a harmonic trap, below which there
are deviations from normal Fermi-liquid-like behavior that may be attributed
to pairing effects. Here, TF is the Fermi temperature for a trapped ideal, non-
interacting Fermi gas. Our thorough comparison may shed light on the further
theoretical development of strongly interacting fermions.
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1. Introduction

The recent discovery of broad Feshbach resonances in two-component atomic Fermi gases
has opened up a new era in the study of strongly interacting fermions [1]–[7]. By tuning
an external magnetic field across the Feshbach resonance, the interatomic attractions can be
changed precisely from weak to infinitely strong, leading to the observation of a crossover
from a Bardeen–Cooper–Schrieffer (BCS) superfluid to a Bose–Einstein condensation (BEC).
At resonance, the s-wave scattering length as diverges (as = ±∞) and the two-body scattering
amplitude reaches the maximum value allowed by quantum mechanics due to unitarity. Many
unique properties are anticipated in this strongly interacting limit, including a high superfluid
transition temperature and an exotic normal state with a pseudogap.

The most interesting of all is fermionic universality. This means that all strongly
interacting, dilute Fermi gases behave identically, irrespective of the details of the interaction.
Their properties depend only on temperature, together with a scaling factor equal to the average
particle separation [8]–[11]. This limit promises to bring a new rigor and simplicity to the
understanding of strongly correlated Fermi gases. Because of universality, it should be feasible
to understand other strongly interacting Fermi superfluids from experiments in the highly
controlled environment of an atomic physics laboratory. Possible examples include neutron stars
and high-Tc superconductors.

Intense experimental investigations have been carried out to understand fermionic
universality, in particular, its implications for thermodynamic properties [12]–[20]. Pioneering
observations were carried out at Duke University [12]–[15], which made the first attempt
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to reach the unitarity limit in 6Li gas in 2002 [12]. The stability of atomic Fermi gases
with strongly attractive interactions was observed. The ground state energy was found to be
reduced significantly compared to its ideal, non-interacting limit. The reduction factor β (or
ξ = 1 + β) has now been determined accurately to within a few per cent (β ' −0.59 ± 0.01)
after substantial experimental effort [20].

In this paper, we show that recent highly accurate measurements [19] on strongly
interacting 6Li give the most stringent test to date of fermionic strongly coupling many-
body theories. In fact, these experiments determine the whole set of universal thermodynamic
functions for a trapped Fermi gas at unitarity. Besides measuring bulk thermodynamic
properties, the data can also be used to determine the energy and entropy, E(T ) and S(T ), of a
trapped gas. Due to the use of larger samples, the accuracy is even better than that achieved
at Duke. With unprecedented precision, these new universal functions therefore provide an
unbiased test of theoretical predictions. This comparison, without any fitting parameters,
indicates that, while a BCS-type mean field theory is certainly incorrect, an extension using
a simple Gaussian pair fluctuation (GPF) theory provides the best overall agreement with
experiment, except at the critical superfluid transition region.

To give some background to these developments, the first energy and heat capacity
measurements as a function of temperature were performed by Kinast et al [13]. However, due
to the lack of reliable thermometry in the strongly interacting regime, an empirical thermometry
was used. Conversion of measured results to real temperatures required a particular strong-
coupling theory, and was therefore model dependent. This difficulty of model dependence
was overcome at the end of 2006 [14, 15] by means of direct measurements of entropy
instead of temperature. In this way, both the energy E and the entropy S were determined
without invoking any specific theoretical model. These pioneering and very important model-
independent measurements had an accuracy at the level of only a few per cent.

In the same period, the potential energy of a strongly interacting 40K gas was also
measured at JILA [17]. The temperature was characterized in terms of the non-interacting
temperature of an adiabatically equivalent ideal Fermi gas. This is therefore equivalent to an
entropy measurement. These sets of experimental data, together with the results of another
6Li experiment at Rice, were analyzed by the present authors [11]. The result was that all the
thermodynamic data lie in a single universal curve. This gave the first, very strong evidence for
the universal thermodynamics of a strongly interacting Fermi gas [11].

In parallel with these groundbreaking experiments, there have been numerous theoretical
studies of the thermodynamics of a strongly interacting Fermi gas. In the absence of exact
solutions, the methods used were either strong-coupling perturbation theories [21]–[40] or
ab-initio quantum Monte Carlo (QMC) methods [41]–[50]. However, a deeper understanding
is made difficult by the absence of a controllable small interaction parameter [51]. The use of
standard perturbation theories thus requires infinite order expansions. These typically require
truncations of sets of diagrams that cannot be fully justified a priori. Numerically exact QMC
calculations are very helpful and can provide unbiased benchmarks, provided that there is an
appropriate extrapolation of the lattice results to large lattice size or, in the diagrammatic MC
case, to zero range potentials.

The first theoretical explanation of the heat capacity at unitarity was given by Chen and
co-workers [13] using a pseudogap theory. In this study, an empirical temperature was converted
to an approximate real temperature. We subsequently gave a theoretical prediction for both
the homogeneous and the trapped equations of state at unitarity [30]. This used a GPF theory
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below threshold, thus extending an approach proposed initially by Nozires and Schmitt-Rink
(NSR) [21, 29] for the above threshold case. We showed that the conversion of empirical
temperature to actual temperature is strongly model dependent.

Thus, in principle, one cannot obtain accurate information about the real temperature from
these empirical temperature measurements without a reliable strong-coupling theory. The model
independent measurement of energy as a function of entropy, E(S), by Luo et al [14, 15] was
therefore a crucial experimental advance. This provided the first data that could be used to
quantitatively compare different strong-coupling theories without any free parameters. One such
comparison was performed by the present authors [38] by using different perturbation theories
and available QMC results [46]. Even so, it was still impossible to determine the dependence
of the energy on temperature E(T ) and of the entropy on temperature S(T ), due to difficulties
in determining the absolute temperature T . Moreover, the measurements and comparisons were
restricted to the case of a trapped Fermi gas.

Most recently, a general method was developed by Nascimbne et al at ENS to measure
the bulk equation of state of a homogeneous Fermi gas of lithium-6 atoms [19], following a
theoretical proposal by Ho and Zhou [52]. The local pressure P(µ(z), T ) or the local thermo-
dynamic potential �(µ(z), T ) = −P(µ(z), T )δV (δV is the volume of a cell at position z)
of the trapped gas was directly probed using in situ images of the doubly integrated density
profiles along the long z-axis. The temperature was then determined using a new thermometry
approach employing a 7Li impurity. The chemical potential could also be determined using the
local density approximation, with µ(z) = µ0 − Vtrap(z) and the central chemical potential µ0

being determined appropriately. By introducing a universal function4

h [ζ ] =
�(µ, T )

�(1)(µ, T )
, (1)

experimentalists were able to determine h(ζ ) with very low noise. Here, ζ ≡ exp(−µ/kBT ),
�(µ, T ) is the interacting thermodynamic potential and �(1)(µ, T ) is the thermodynamic
potential of an ideal two-component Fermi gas. This precise measurement allows a direct
comparison with many-body theories developed for a uniform Fermi gas [19].

Our main results may be summarized as follows. Firstly, although the theoretical
predictions from all the model approximations seem to fluctuate around the experimental data, it
turns out that the simplest GPF theory gives the best description of the observed thermodynamic
properties, except in the vicinity of the superfluid transition point. Secondly, using the measured
universal functions as a benchmark, we examine the applicability of a quantum cluster (virial)
expansion method [53, 54]. We find that, for a trapped gas, up to the leading interaction effect
(second order), the expansion is quantitatively reliable down to T ' 0.7TF. This limit can be
decreased further to T ' 0.4TF, with inclusion of higher order virial coefficients (i.e. up to
fourth order). Thus, we demonstrate clearly the usefulness of quantum cluster expansion in the
study of a normal, but strongly interacting, quantum gas.

Finally, we note that the temperature of a trapped Fermi gas at unitarity is often
characterized by a non-interacting temperature Ti obtained by an adiabatic sweep to the ideal
gas limit. Using the accurate experimental data for S(T ), we calculate the relation T (Ti), which
shows an apparent kink at low temperatures. We therefore determine a characteristic temperature

4 We use local thermodynamic potential to define the universal function h(ζ ). Also, h(ζ ) defined in the
experimental paper [19] is renormalized by the pressure of an ideal, single-component Fermi gas. It is therefore a
factor of 2 larger than our universal function defined in equation (1).
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(T/TF)0 = 0.19 ± 0.02 or (Ti/TF)0 = 0.16 ± 0.02 for a trapped Fermi gas at unitarity, below
which the thermodynamic functions start to deviate from normal Fermi-liquid-like behavior
due to pairing effects.

This paper is organized as follows. In section 2, we briefly review different strong-coupling
perturbation theories and the high temperature quantum virial expansion theory. A comparison
for the bulk universal function h(ζ ) of a homogeneous Fermi gas at unitarity is presented
in section 3. The validity of the quantum virial expansion in the uniform case is discussed.
In section 4, we explain how to reconstruct the trapped universal thermodynamic functions
from h(ζ ), and present a systematic comparison of different strong-coupling theories with
the accurate experimental data, for various thermodynamic functions. We also examine the
applicability of the quantum virial expansion to a trapped Fermi gas at unitarity. In section 5,
we calculate the actual temperature as a function of the non-interacting temperature at the same
entropy. A summary and outlook are given in section 6.

2. Theoretical review

In this section, we review two types of strongly interacting Fermi theories: the strong-coupling
perturbation theories and a controllable quantum cluster expansion theory. We consider a two-
component Fermi gas with equal spin populations. At ultracold temperatures (<100 nK), the
interatomic interactions between atoms with unlike spins can be well described by an s-wave
scattering length as. For the case of molecule formation with a broad Feshbach resonance, a
simple two-species model that neglects the molecular field is very accurate; otherwise a full
three-species model is necessary [55, 56]. The Hamiltonian of the system can then be written as

H=

∑
kσ

(εk − µ) c+
kσ ckσ + U

∑
kk′q

c+
k+q↑

c+
k′−q↓

ck′↓ck↑, (2)

where εk = h̄2k2/(2m) is the fermionic kinetic energy at wavenumber k and

1

U
=

m

4π h̄2as

−

∑
k

1

2εk
(3)

is the bare contact interaction renormalized in terms of the s-wave scattering length as.

2.1. Strong-coupling perturbation theories

We start with a brief overview of the most commonly used strong-coupling theories for a
Fermi gas at unitarity. These are approximate many-body T-matrix theories [57, 58], since no
exact results are known in three dimensions. Such theories typically go beyond BCS theory by
including an infinite set of higher order Feynman diagrams. The diagrams included, known as
the ladder sum in the particle–particle channel, are still not the complete set of all possible terms
in perturbation theory. However, it is generally accepted that a ladder sum is necessary in order
to include the strong pair of fluctuations in the strongly interacting regime. This is expected to
be the leading class of these infinite sets of diagrams [57, 58]. However, there are differences in
the procedures used to obtain the relevant diagrams that are included.

In more detail, we show in figure 1(a) the diagrammatic structure of the T-matrix [57, 58],
t (Q), where the successive two-particle scattering between fermions with unlike spins is
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t(Q) =

δ(Q) =

Figure 1. Diagrammatic representation of T-matrix and pair fluctuation
contribution to the thermodynamic potential. The solid line represents the
single-particle Green’s function, while the dashed line shows the bare contact
interaction. Note that these diagrams are valid at all temperatures, both below
and above the normal–superfluid transition. However, below the transition, the
single-particle Green’s function should be a 2 × 2 matrix.

taken into account to infinite order. This forms a ladder structure, with the solid line and dashed
line representing, respectively, the single-particle Green’s function G and the interaction U .
Consequently, as an effective interaction, the T-matrix can be diagrammatically represented by

t (Q) = U + U GGU + U GGU GGU + · · · , (4)

by summing all the successive scattering process. In the normal state with contact interactions,
the ladder sum can be conveniently calculated as

t (Q) =
U

[1 + Uχ (Q)]
. (5)

Here and throughout, Q = (q, iνn), K = (k, iωm), and q and k are wavevectors, while
νn = 2nπkBT and ωm = (2n + 1)πkBT (n = 0, ±1, ±2, . . .) are bosonic and fermionic
Matsubara frequencies, respectively.

Different T-matrix theories differ in their choice of the particle–particle propagator χ(Q),

χ (Q) =

∑
K

Gα (K ) Gβ (Q − K ) , (6)

and the associated self-energy,

6 (K ) =

∑
Q

t (Q) Gγ (Q − K ) , (7)

where we have introduced an energy-momentum summation,
∑

K = kBT
∑

ωm

∑
k. The

subscripts α, β and γ in the above equations may either be set to ‘0’, indicating a non-interacting
Green’s function

G0(K ) =
1

iωm − h̄2k2/2m + µ
, (8)

or be absent, indicating a fully dressed interacting Green’s function. In the latter case, the Dyson
equation,

G (K ) =
G0 (K )

[1 − G0 (K ) 6 (K )]
, (9)
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is required to self-consistently determine G and 6. The only free parameter, the chemical
potential µ, is fixed by the number equation, N = 2 limτ→0+

∑
K G(K )eiωmτ .5 By taking

different combinations of α, β and γ , there are six distinct choices of the T-matrix, for which
a notation of (GαGβ)Gγ will be used. As noted earlier, there is no known a priori theoretical
justification for which T-matrix approximation is the most appropriate.

It is important to note that, while having the same diagrammatic structure, the T-matrices
above and below the superfluid transition temperature Tc are different, due to the use of different
Green’s functions G0 or G. In the superfluid phase below Tc, the Green’s function has to be a
2 × 2 matrix, accounting for U (1) symmetry breaking. Accordingly, an additional parameter,
the order parameter, appears.

The simplest choice, (G0G0)G0, was pioneered by NSR for a normal interacting Fermi
gas [21], with a truncated Dyson equation for the Green’s function, i.e.

G (K ) = G0 (K ) + G0 (K ) 6 (K ) G0 (K ) . (10)

This was shown to be equivalent to including the GPFs in the grand thermodynamic
potential [22, 24], which is shown diagrammatically in figure 1(b). The NSR theory was
extended recently to the broken-symmetry superfluid phase by several authors [25, 26, 29,
59, 60]6. However, some of these approaches involved additional assumptions to reduce
computational difficulties.

A full extension of the original idea of NSR to the below-threshold regime was reported by
the present authors [29], with the use of a mean-field (2 × 2 matrix) BCS Green’s function
as ‘G0’ in the thermodynamic potential in figure 1(b). In the following, we shall refer to
this extension as a GPF or GPF approach. Numerical calculations were then performed at the
BEC–BCS crossover for the equation of state of a homogeneous Fermi gas. Compared to the
zero-temperature QMC simulation for ground state energy [42], we found that the extended
GPF approach works extremely well in the superfluid phase. It provides a quantitatively
reliable description of the low-temperature thermodynamics of a strongly interacting fermionic
superfluid.

In greater detail, in our theory below the critical temperature, the contribution of T-matrix
pair fluctuations to the thermodynamic potential takes the form (see, for example, figure 1(b)

δ� =
1

2

∑
Q

ln det

[
χ11 (Q) χ12 (Q)

χ12 (Q) χ11 (−Q)

]
, (11)

where

χ11 =
m

4π h̄2as
+

∑
K

G11(Q − K )G11(K ) −

∑
k

1

2εk
,

χ12 =

∑
K

G12(Q − K )G12(K ) (12)

5 The sum is formally divergent at high Matsubara frequencies at τ = 0. To overcome the divergence, we rewrite
the Green’s function, G(K ) = G0(K ) + 1G(K ). The Matsubara frequency sum for the free Green’s function G(K )

can be calculated analytically in the correct limit of τ → 0+, and the sum for the residue difference 1G(K ) is
numerically convergent.
6 Different realizations of the NSR approaches in the superfluid phase below Tc are reviewed by Taylor and Griffin;
see [59].

New Journal of Physics 12 (2010) 063038 (http://www.njp.org/)

http://www.njp.org/


8

are, respectively, the diagonal and off-diagonal parts of the pair propagator. Here, G11 and G12,
used in figure 1(b) for the single-particle line, are BCS Green’s functions with a variational
order parameter 1. Together with the mean-field contribution

�0 =

∑
k

[
εk − µ +

12

2εk
+ 2kBT f (−Ek)

]
−

m12

4π h̄2as

, (13)

where the excitation energy Ek = [(εk − µ)2 + 12]1/2 and the Fermi distribution function
f (x) = 1/(1 + ex/kBT ), we obtain the full thermodynamic potential � = �0 + δ�.

All the thermodynamic functions, including the total energy E and total entropy S, can
then be calculated straightforwardly by following thermodynamic relations. For consistency, in
our formalism we determine the order parameter using the gap equation ∂�0/∂1 = 0. Together
with the number equation, n = −∂�/∂µ, we solve iteratively the two parameters µ and 1.
This theory with bare BCS Green’s functions in the pair propagators constitutes the simplest
universal description of strongly interacting fermions, including the essential contribution from
the low-lying collective Bogoliubov–Anderson modes. As such, this type of theory may have
useful applications to other types of strongly interacting fermionic superfluids.

The GPF and NSR approximation does not attempt to be self-consistent. More
sophisticated strong-coupling theories can be obtained by using dressed Green’s functions as
pair propagators. For example, one may consider a (GG)G approximation, with a fully self-
consistent propagator. This was investigated in detail by Haussmann et al [23, 32], both above
and below the superfluid transition temperature. One advantage of the self-consistent (GG)G
approximation is that the theory satisfies the so-called 8-derivable approach to the many-body
problem due to Luttinger and Ward, in which the exact one-particle Green’s functions play the
role of an infinite set of variational parameters. The (GG)G theory is thus conserving.

An intermediate scheme with an asymmetric form for the particle–particle propagator, i.e.
(GG0)G0, has been discussed in a series of papers by Levin and co-workers [27], based on the
assumption that the treatment of fluctuations should be consistent with the simpler BCS theory
at low temperatures. Although the (GG0)G0 theory has been explored numerically to some
extent [61], a complete numerical solution is difficult. A simplified version was introduced
based on a decomposition of the T-matrix t (Q) in terms of a condensate part and a pseudogap
part, leading to the so-called ‘pseudogap’ crossover theory [27]. In the present comparative
study, we will include both the pseudogap modification and the full (GG0)G0 theory. Due
to numerical difficulties, we shall consider the full (GG0)G0 theory in the normal phase
only.

It is clear that, in the GPF approximation, one omits infinite diagrams that are responsible
for the multiparticle interactions. The fully self-consistent (GG)G theory and partially self-
consistent (GG0)G0 theory attempt to correct for this by modifying one or more single-
particle Green’s functions in the diagrams. However, the more crucial interaction vertices remain
unchanged. For brevity, hereafter we shall refer to the fully self-consistent (GG)G theory and
partially self-consistent (GG0)G0 theory as GG and GG0 theory, respectively.

To close the subsection, we emphasize again that there are currently no general grounds
for deciding which strong-coupling theory is the most appropriate, due to the absence of a small
controllable interaction parameter. However, as we shall see, these approaches do give distinct
predictions that can be tested experimentally.
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2.2. Scale invariance and universal relation at unitarity

In the unitarity limit, due to the infinitely large scattering length, the interatomic distance
becomes the only relevant length scale in the problem. The internal energy and entropy of the
system therefore scale like

E = NεF fE

[
T

TF

]
, (14)

S = NkB fS

[
T

TF

]
, (15)

where TF = εF/kB is the Fermi temperature, and fE and fS are two dimensionless universal
functions. The scaling form leads to a well-known scaling identity in free space:

� = −
2

3
E, (16)

which holds as well for any ideal, non-interacting quantum gases. To show this, we note that at
unitarity the pressure of the gas can be readily determined from P = −[∂ E/∂V ]N ,S. From the
expression of entropy (15), it is easy to see that holding the entropy invariant is equivalent to
fixing the reduced temperature T/TF. Hence, the only dependence of the energy on volume is
through the Fermi energy, i.e. E ∝ V −2/3. Taking the derivative with respect to the volume,
one finds that P = 2E/(3V ) or � = −2E/3. This simple equation relates the pressure or
thermodynamic potential and energy for a strongly interacting Fermi gas at unitarity in the same
way as for its ideal, non-interacting counterpart, although the energy would be quite different.

The scaling identity equation (16) follows naturally from the thermodynamic relations. At
this point, only the GPF (NSR) approach and the fully self-consistent GG theory satisfy it, since
in both theories we can write down a well-defined thermodynamic potential and then derive from
it other thermodynamic quantities in a consistent way. Other strong-coupling theories, more or
less, run into the thermodynamic inconsistencies, and therefore violate equation (16). We note
that, in the superfluid phase, an ad-hoc renormalization of the interaction strength is required in
the fully self-consistent GG theory, in order to obtain a gapless phonon spectrum [32]. Hence,
the GG theory in the superfluid phase does not appear to be universal without modification.
In the calculations with the pseudogap theory and GG0 theory, we shall obtain the energy and
entropy from the chemical potential by integrating the thermodynamic relation n = −∂�/∂µ,
in order to satisfy equation (16). The detailed procedure was outlined in [38].

In the experimental situation with a harmonic trapping potential V (x), potential energy
enters into the total energy. Thus, the scaling identity should be modified accordingly:

� = −
1

3
E . (17)

This is because the potential energy N 〈V 〉 equals the internal energy (3/2)
∫

dxP(x) in
harmonic traps and then the internal energy is half of the total energy. The prefactor of 2/3
in equation (16) is therefore reduced by a factor of 2.

To prove the equality, we may treat the gas as a collection of many local equilibrium
uniform cells (i.e. using the local density approximation). The local force balance arising from
the pressure P(x) and the trapping potential V (x) gives rise to

∇ P (x) + n (x) ∇V (x) = 0. (18)
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Taking an inner product of the above equation with x and integrating over the whole space, we
readily obtain N 〈V 〉 = (3/2)

∫
dxP(x), after the use of x · ∇V (x) = 2V (x) for a harmonic trap

and the integration by part for x · ∇ P(x). Hence, the strongly interacting Fermi gas at unitary
obeys the same virial theorem as an ideal quantum gas.

2.3. High-temperature quantum cluster expansion

At high temperatures there is a controllable, small parameter, given by the fugacity z =

exp(µ/kBT ) � 1. This is small because the chemical potential µ diverges to −∞ at high
temperatures T . In principle, all the thermodynamic properties of an interacting Fermi gas can
be cluster expanded in powers of fugacity [53, 54], even in the strongly interacting limit.

The thermodynamic potential �(1) of an ideal, non-interacting uniform Fermi gas takes the
form

�(1)

V
= −

2kBT

λ3

[
z + b(1)

2 z2 + · · · + b(1)
n zn + · · ·

]
, (19)

where λ ≡ [2π h̄2/(mkBT )]1/2 is the thermal wavelength and b(1)
n = (−1)n+1/n5/2 is the nth virial

coefficient. We use the superscript ‘1’ to indicate non-interacting systems. While at first glance
equation (19) may be valid at z < 1 only, its applicability is actually much wider. The expansion
is meaningful for arbitrary positive values of fugacity through an analytic continuation across
the point z = 1. It is then possible to show that, as expected for a non-interacting Fermi gas,

�(1)

V
= −

(
2kBT/λ3

)
(2/

√
π)

∫
∞

0
t1/2 ln

(
1 + ze−t

)
dt. (20)

In the presence of interactions, the virial coefficients are modified. The thermodynamic
potential can instead be written as

� − �(1)

V
= −

2kBT

λ3

[
1b2z2 + · · · + 1bnzn + · · ·

]
, (21)

where 1bn = bn − b(1)
n . Our key assumption in using the quantum cluster expansion is that the

expansion of � − �(1) might be applicable near the critical temperature, despite the fact that the
fugacity may already be much larger than unity close to the superfluid transition. It is possible
to test this conjecture in either the BCS or the BEC limit by analytically calculating the virial
coefficient 1bn and hence the radius of convergence of the expansion. We leave this possibility
to a future study.

At unitarity, the virial coefficients are temperature independent and are known up to the
fourth order: 1b2 = 1/

√
2, 1b3 = −0.355 012 98 and 1b4 ' 0.096 ± 0.015. The second virial

coefficient was already known 70 years ago [53]. The third coefficient was calculated recently
by the present authors [54]. This theoretical prediction was confirmed experimentally in the
accurate thermodynamic measurements of Nascimbne et al [19]. These recent experiments also
determined the fourth coefficient empirically [19]. With these coefficients, using ζ = z−1, the
universal function h(ζ ) at high temperatures may be written as

h(ζ ) = 1 +
1b2ζ

−2 + 1b3ζ
−3 + 1b4ζ

−4(
2/

√
π

) ∫
∞

0 t1/2 ln
(
1 + ζ−1e−t

)
dt

. (22)
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The above discussion for a uniform gas can easily be extended to the case with a harmonic
trap, Vtrap(r) = mω2r 2/2, or the general case of a trap with cylindrical symmetry,

Vtrap(r) = mω2
⊥
ρ2/2 + ω2

z z2/2, (23)

with ω ≡ (ω2
⊥
ωz)

1/3. Within the local density approximation, the thermodynamic potential
becomes position dependent through a local chemical potential µ(r) = µ0 − Vtrap(r) or a local
fugacity z(r) = eβµ(r). Using the fact that the virial coefficients are constant at unitarity, the total
(integrated) thermodynamic potential �trap(µ0, T ) =

∫
dr�(r) takes the form

�trap = −
2 (kBT )4

(h̄ω)3

[
z0 + · · · +

(
bn

n3/2

)
zn

0 + · · ·

]
, (24)

where z0 = eβµ0 is the fugacity at the trap center. It is easy to see that the nth virial coefficient
in a trap, bn,trap = bn/n3/2, is much reduced with respect to its uniform counterpart.

The thermodynamic potential of an ideal trapped Fermi gas is now given by

�(1)
trap = − (kBT )4 / (h̄ω)3

∫
∞

0
t2 ln

(
1 + z0e−t

)
dt. (25)

In analogy with the uniform case, we may define a universal function htrap(ζ0) =

�trap(µ0, T )/�
(1)
trap(µ0, T ), where ζ0 = e−βµ0 is the inverse fugacity at the trap center. Using

the expansion at high temperatures, we find explicitly that

htrap(ζ0) = 1 +
2
√

21b2ζ
2
0 + 81b3ζ0/

(
3
√

3
)

+ 1b4

4ζ 4
0

∫
∞

0 t2 ln
(
1 + ζ−1

0 e−t
)

dt
. (26)

This expression will be used later on in a comparison for a trapped Fermi gas at unitarity.

3. Comparisons for a uniform Fermi gas at unitarity

We consider now the comparison between theory and experiment for a uniform Fermi gas at
unitarity. For this purpose, we calculate the universal function h(ζ ) using different perturbation
theories and compare the results to the experimental measurement (figure 3(a) in [19]). This can
easily be done with the known equation of state of the uniform unitarity gas, that is, µ(T ) =

εF fµ(T/TF) and E(T ) = NεF fE(T/TF), where fµ and fE are two dimensionless functions that
depend on the reduced temperature τ = T/TF only. Numerically, for a fixed reduced temperature
τ , we calculate the inverse fugacity ζ and �(1)(ζ )/(NεF). We then obtain

ζ = exp

[
−

fµ(τ )

τ

]
,

h(ζ ) =
4

9

fE(τ )

τ 5/2
∫

∞

0 t1/2 ln
(
1 + ζ−1e−t

)
dt

. (27)

3.1. Perturbation theories

The universal functions h(ζ ) obtained in this manner are shown in figure 2 for different
perturbation theories and are compared to the experimental data (red squares) [19] without
any adjustable parameters. We indicate the experimentally determined superfluid regime by
thin cross lines, where ζc ' 0.042. The GG theory and the NSR theory above Tc were already
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Figure 2. Universal thermodynamic function h(ζ ) (squares), in a uniform gas,
compared with predictions from different strong-coupling theories: the GPF or
NSR theory (black solid line), partially consistent GG0 theory (red dashed line),
fully self-consistent GG theory (blue dotted line), pseudogap theory (cyan dash-
dotted line) and the BCS mean-field theory (black dash-dot-dotted line). For an
ideal Fermi gas, h(ζ ) ≡ 1, as shown by a thin dashed line. The cross region
indicates the superfluid phase. The upper x-axis shows the temperature.

compared with experiment by Nascimbne et al in their experimental paper [19]. The comparison
presented here is much more complete. We find that the agreement between experiment and the
three T-matrix perturbation theories is very good for a large range of temperatures.

In particular, the simplest GPF theory gives the best quantitative description, although it
has a possibly unphysical discontinuity at the superfluid phase transition. In the GPF theory, the
universal function does not have values between [ζc−]GPF ' 0.15 and [ζc+]NSR ' 0.22. This non-
overlap region is mostly caused by the breakdown of the original NSR theory in the vicinity of
transition [30], which predicts a smaller chemical potential and hence a larger inverse fugacity ζ.

In addition, the critical inverse fugacity predicted by GPF, ζc ' 0.2, is significantly larger
than the experimental observation [19], ζc ' 0.042. Instead, the self-consistent GG theory
and partially self-consistent GG0 theory predict more reasonable values for ζc, although their
agreement with the experimental data of h(ζ ) is worse than the GPF (NSR) theory. The
prediction of available QMC simulations is also in close agreement with the experimental
data [48, 49]. Clearly, it would be useful to have more accurate experimental data at this point,
to better understand the nature of the phase transition.

On the other hand, the pseudogap theory, as a simplification of the partially self-consistent
GG0 theory, deviates significantly from the experimental data. It is therefore not able to capture
the strong fluctuations at unitarity. However, it is certainly better than the BCS mean-field
theory, which completely ignores pairing fluctuations.
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As the temperature decreases to zero (T → 0 and ζ → 0), the universal function h(ζ →

0) → ξ−3/2, where ξ = 1 + β is the universal parameter. Different theories predict different
universal parameters, i.e. ξBCS ' 0.59, ξGPF ' 0.401 and ξGG ' 0.36. Thus, we find that
hBCS(ζ = 0) ' 2.17, hGPF(ζ = 0) ' 3.94 and hGG(ζ = 0) ' 4.65.

3.2. Virial expansion comparisons

Let us now focus on the high-temperature regime of ζ > 1 or z < 1. A comparison of
experimental data to the virial expansion in equation (22) has already been carried out by
Nascimbne et al [19]. This led to the confirmation of our theoretical prediction of the third virial
coefficient 1b3 ' −0.35 as well as an experimental determination of the fourth virial coefficient
1b4 ' 0.096 ± 0.015. The third virial calculation requires an exact solution of a quantum three-
body problem, which is known. However, the exact solution of the quantum four-body problem
needed for the fourth coefficient is yet to be theoretically obtained.

Here, we show that these accurate experimental data can serve as a benchmark to determine
to what extent the virial expansion is quantitatively reliable. To be concrete, we shall define the
criterion of ‘quantitative’ applicability as an agreement within 10% relative error for the function
h(ζ ) − 1, that is, after the non-interacting background is removed from the universal function
h(ζ ). For a ‘qualitative’ applicability, we relax the criterion on the relative error to 50%.

Figure 3 compares the virial expansion predictions (up to the fourth virial coefficient) for
h(ζ ) − 1 with the experimental data, using artificial 50% (a) and 10% (b) relative errors for
comparison purposes. We are then able to estimate a critical fugacity, below which the nth-
order virial expansion is either qualitatively or quantitatively valid. The result is tabulated in
table 1, where the critical fugacities have also been converted to critical temperatures by using
the NSR equation of state, which provides an excellent description of the experimental data.
For the 2nd virial expansion that accounts for the leading interaction effect, we determine that,
for a homogeneous Fermi gas at unitarity, it is quantitatively and qualitatively reliable above
T/TF = 1.3 and T/TF = 0.9, respectively.

To close this section, we emphasize that, although the experimental data for the universal
function h(ζ ) are very accurate, without any prior knowledge of the bulk equation of state we
still cannot determine the temperature from the discrete data. However, for a trapped Fermi
gas at unitarity, using the bulk h(ζ ) we can indeed determine all the universal thermodynamic
functions, such as E(T ) and S(T ). This is discussed in detail in the next section.

4. Comparisons for a trapped Fermi gas at unitarity

Let us now turn to the experimental determination of the equation of state of a Fermi gas in a
harmonic trap at unitarity, and a comparison of these data with theory. The basic idea has already
been outlined by Nascimbne et al in the supplementary discussion part of their paper [19].

4.1. Local density approximation

Consider, for example, the total number of atoms, N =
∫

dr n(r). Within the local density
approximation, we may consider the trap to be an isotropic trap with a trapping frequency
ω ≡ (ω2

⊥
ωz)

1/3, without loss of generality. Using n(r) = ∂ P(r)/∂µ(r) and ∂µ(r)/∂r = −mω2r ,
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Figure 3. Plot of universal function h(ζ ) − 1 as a function of fugacity, compared
with the experimental data (empty squares). The error bars in (a) and (b) indicate,
respectively, the 50% and 10% relative errors of h(ζ ) − 1, in accord with the
‘qualitative’ and ‘quantitative’ criteria, as described in the text.

Table 1. Qualitative (50%) or quantitative (10%) ranges of reliability for different
order virial expansions in free space, as indicated by the subscript.

Order z50 z10 (T/TF)50 (T/TF)10

Virial2 0.7 0.4 0.87 1.30
Virial3 1.5 0.7 0.52 0.87
Virial4 2.2 1.7 0.40 0.48

we find that

N =

∫
∞

0
dr4πr 2[∂ P (r) /∂µ (r)] = −4π/(mω2)

∫
∞

0
r dP(r). (28)

Noting that P = P (1)h(ζ ), and integrating by parts, we obtain

N =
4π

mω2

∫
∞

0
dr P (1) [ζ (r)] h [ζ (r)] . (29)
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Using ζ(r) = e−βµ(r)
= ζ0 exp[mω2r 2/(2kBT )], the integration over radius r can be converted

to an integration over the inverse fugacity. One sees that

N =
4

√
π

(
kBT

h̄ω

)3 ∫
∞

ζ0

dζ
d
√

ln(ζ/ζ0)

dζ
f (ζ ) h (ζ ) , (30)

where f (ζ ) ≡ (2/
√

π)
∫

∞

0 t1/2 ln
(
1 + ζ−1e−t

)
dt . Recalling that the Fermi energy of a zero-

temperature trapped ideal Fermi gas is EF = kBTF = (3N )1/3h̄ω, we may rewrite the above
equation in dimensionless form

T 3
F

T 3
=

12
√

π

∫
∞

ζ0

dζ
d
√

ln(ζ/ζ0)

dζ
f (ζ ) h (ζ ) . (31)

The total energy of the system may be conveniently calculated by using the scaling relation,
equation (17). Thus, the total energy in a trap is given by

E = −3� = 12π

∫
∞

0
drr 2 P(r) = 12π

∫
∞

0
drr 2 P (1) [ζ (r)] h [ζ (r)] . (32)

Converting to the variable ζ , we find that

E

N EF
=

72

π 1/2

T 4

T 4
F

∫
∞

ζ0

dζ
d
√

ln(ζ/ζ0)

dζ
ln

ζ

ζ0
f (ζ ) h (ζ ) . (33)

The entropy follows directly from the thermodynamic relation S = (E − � − µ0 N )/T . Using
the fact that µ0/EF = −(T/TF) ln ζ0, we obtain straightforwardly

S

NkB
=

4

3

TF

T

E

N EF
+ ln ζ0. (34)

The coupled equations (31), (33) and (34) determine, respectively, the temperature, energy
and entropy of a trapped Fermi gas at unitarity as a function of the inverse fugacity ζ0. In
the calculations, we discretize the integral over ζ and take the values of h(ζ ) solely from the
experimentally measured data. In this way [19], we avoid the use of any interpolating or fitting
function to the experimental data h(ζ ). In addition, the statistical error of the experimental
data of h(ζ ) is reduced. The detailed procedure for these numerical calculations is given in
appendix A. For convenience, we shall refer to this trapped equation of state, reconstructed
from h(ζ ), as the ‘experimental’ measurement or data for the equations of state of a trapped
Fermi gas at unitarity.

It is readily seen that we can calculate the theoretical prediction for the trapped equation
of state by using exactly the same local density approximation procedure, combined with
a theoretical universal function h(ζ ) generated from different strong-coupling theories for a
uniform Fermi gas. We note that our numerical procedure of calculating the trapped equation of
state is an average procedure integrating over the trap and is quite insensitive to the smoothness
of h(ζ ). Therefore, even though there is a discontinuity in the theoretical universal function, as
in our GPF theory, we obtain a much smoother trapped equation of state. As can be seen from
appendix A, in that case, we simply join linearly between [ζc−]GPF and [ζc+]NSR to remove the
discontinuity of the universal function in the non-overlap region ([ζc−]GPF, [ζc+]NSR).
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Figure 4. E(S) of a strongly interacting atomic Fermi gas of either 6Li or 40K
atoms in different trapping potential scales into a single theoretical curve, which
is predicted by the GPF and NSR theory. The lower panel highlights the low
temperature regime. The cross region indicates the superfluid phase below an
experimental critical entropy (S/NkB)c ' 1.56. The determination of the critical
entropy is described in section 5. The upper x-axis in (a) plots the temperature.

4.2. Trapped universal thermodynamics: E(S)

In previous work [11], we gave experimental evidence that any strongly interacting Fermi gas
at unitarity has universal thermodynamics. The energy and entropy relation E(S) measured on
6Li and 40K atomic clouds in three different trapping potentials all fall precisely on a single
curve. The trapped equation of state E(S) deduced from the experimental data of h(ζ ) by
Nascimbne et al [19] provides an independent check of universality, with a much improved
accuracy, in a fourth different set of experimental conditions. This is illustrated in figure 4,
where we plot the new measurements using green circles. All four sets of experimental data
follow the theoretical prediction given by the simplest GPF approximation. In particular, the
difference between our theory and the new measurement is nearly indistinguishable, as shown
clearly in figure 4(b) for the low temperature regime. This gives so far the strongest evidence
for fermionic universality.
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Figure 5. Interaction energy as a function of entropy for a strongly interacting
Fermi gas in a harmonic trap. The experimental data (symbols) are compared
with the predictions of three different strong-coupling theories. The cross region
indicates the superfluid phase below the critical entropy (S/NkB)c ' 1.56. The
temperature at different entropies is plotted on the upper x-axis.

To better visualize the difference between theory and experiment, we follow the strategy
used in our previous comparative study [38] and calculate the interaction energy Eint = E − EIG,
which is the difference in energies between an interacting Fermi gas (E) and an ideal Fermi gas
(EIG) at the same entropy. Figure 5 shows the interaction energy versus entropy in a harmonic
trap as predicted by different strong-coupling theories, in comparison with the experimental
data reported at Duke [14] and ENS [19]. It is impressive that, at this much reduced scale, the
new experimental data obtained by Nascimbne et al at ENS (green empty circles) still appear to
be very smooth, suggesting an absolute statistical error of about 0.01N EF or a relative error of
1% in energy, although there may be systematic errors at this level.

This error bar is already much smaller than the difference among different T-matrix
approximations of GPF, GG0 and GG, which is roughly of the order 0.05N EF. It is clear
that, below threshold, the GPF approach provides the closest prediction to the new accurate
measurement below threshold, with a difference of, at most, 0.01N EF. However, well above
the threshold the fully self-consistent GG theory gives better agreement. We note here that the
above threshold GG theory is also universal, without ad-hoc renormalizations.

4.3. Trapped universal function htrap(ζ0)

In analogy with the comparison between theory and experiment for the universal function h(ζ )

for a homogeneous Fermi gas at unitarity, we consider now the comparison for the trapped
universal function htrap(ζ0) = �trap/�

(1)
trap. Because of the proportionality between energy and

thermodynamic potential at unitarity (i.e. the scaling relation), it is convenient to calculate
htrap(ζ0) using the expression

htrap(ζ0) =
E/(N EF)

9 (T/TF)
4
∫

∞

0 t2 ln
(
1 + ζ−1

0 e−t
)

dt
, (35)
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Figure 6. The universal function htrap(ζ0) in a harmonic trap. Here, ζ0 is the
inverse fugacity at the center of the trap. Different theoretical predictions (lines,
as indicated) are compared with the experimental measurement (squares). The
cross region indicates the superfluid phase below a critical inverse fugacity
(ζ0)c ' 0.042. The upper x-axis shows the temperature.

where the denominator is simply E (1)/(N EF) at a given inverse fugacity ζ0 and tempe-
rature T .

Figure 6 compares the theoretical predictions for the trapped universal function from
different strong-coupling theories, compared with the experimental measurement at ENS (empty
squares) [19]. Both the experimental data and the theoretical GPF (NSR) predictions for the
trapped universal function htrap(ζ0) are now much smoother after integrating over the trap. Thus,
the discontinuity of the normal–superfluid transition in the GPF prediction of h(ζ ) disappears
completely in htrap(ζ0), due to trap-averaging. Comparing the different T-matrix fluctuation
theories in a trap, one sees that the fully self-consistent GG theory gives slightly better
agreement with the experimental results than the GPF and GG0 theories at high temperatures,
with an inverse fugacity ζ0 > 2. At low temperatures, where ζ0 � 1, however, the simplest GPF
approach provides the best description.

We note that, in harmonic traps, the trapped universal function htrap(ζ0 = 0) = ξ−3/2 is ex-
actly the same as the uniform universal function at zero temperature. Therefore, htrap,BCS(ζ0 = 0)

' 2.17, htrap,GPF(ζ0 = 0) ' 3.94 and htrap,GG(ζ0 = 0) ' 4.65. However, these limiting values
seem to be difficult to reach, compared to the uniform case.

4.4. Quantum virial comparisons: h(ζ )

We now examine the applicability of the quantum virial expansion for a trapped Fermi gas at
unitarity, by using equation (26) for the trapped universal function. We use the same idea as
in figure 3 and the same criterion for ‘qualitative’ and ‘quantitative’ reliability. In figure 7, we
report the successive virial expansion as a function of fugacity up to the fourth order, compared
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Figure 7. Examination of the reliability of the quantum virial expansion for a
trapped Fermi gas at unitarity. This is basically the same as what is shown in
figure 3, but now the plotted curves are computed for a trapped Fermi gas.

Table 2. Qualitative (50%) or quantitative (10%) ranges of reliability for different
order virial expansions in trapping potentials, as indicated by the subscript.

Order z50 z10 (T/TF)50 (T/TF)10

Virial2 1.5 0.5 0.45 0.66
Virial3 2.7 1.4 0.36 0.46
Virial4 3.7 2.1 0.33 0.39

with the experimental data. The estimates of the critical fugacity and of the critical temperature
for different orders are given in table 2. To the leading second order, we find that the expansion
is quantitatively reliable for temperatures down to T ' 0.7TF, much smaller than what we found
for a homogeneous Fermi gas at unitarity.

This much wider applicability is due to the significantly reduced higher order virial
coefficients in a harmonic trap, i.e. b2,trap = b2/(2

√
2). It is readily seen that, with inclusion

of higher order virial coefficients, the accuracy of virial expansion can be improved. Up
to the known fourth virial coefficient, we find that the bound for quantitative applicability
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Figure 8. The universal thermodynamic function E(T ). Different theoretical
predictions (as indicated) are compared with the experimental data (empty
squares). The cross region indicates the superfluid phase below a critical
temperature (T/TF)c ' 0.19. This experimental critical temperature of a trapped
Fermi gas at unitarity is determined in section 5.

decreases further to T ' 0.4TF, which is a typical experimental temperature for a Fermi gas
in its normal state. We thus show that the quantum virial expansion method is a very useful tool
for understanding the properties of a normal, strongly interacting Fermi gas in a harmonic trap.

4.5. Thermodynamic functions E(T ) and S(T )

As we mentioned earlier, in addition to the energy–entropy relation E(S), the measurement
by Nascimbne et al [19] was able to reconstruct a complete set of thermodynamic functions
in harmonic traps, such as E(T ) and S(T ). This provides us with a unique opportunity for
a systematic comparison between theory and experiment for a trapped Fermi gas at unitarity,
without the use of any fitting functions or adjustable parameters.

Figure 8 shows the comparison for the total energy as a function of temperature. As
anticipated, the simplest GPF approach provides the best quantitative agreement with the
experimental data. However, the GPF theory predicts a larger normal–superfluid transition
temperature, (T/TF)c ' 0.27, as indicated by a small bump. In contrast, the less accurate self-
consistent GG theory and partially self-consistent GG0 theory predict that (T/TF)c ' 0.21,
which is much closer to the experimental observation of (T/TF)c ' 0.19.

It is interesting to note that the GPF curve in the figure was first calculated by the present
authors [30]7 and was compared to the heat capacity measurement reported by Kinast et al [13].
However, at that time, the temperature was not independently calibrated, due to the absence of
a reliable thermometry in the strongly interacting regime. An empirical temperature was used,

7 Note that, in our earliest work [30], in order to calculate the trapped equation of state, we adopted a
phenomenological interpolation to remove the spurious discontinuous structure around Tc for the uniform NSR
equation of state. For the purpose of avoiding any adjustable parameters, this strategy is not used in the current
calculations. The interpolation strategy only leads to a small difference of around Tc.
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Figure 9. The universal thermodynamic function S(T ). Different theoretical
preditions (as indicated) are compared with the experimental data (empty
squares). The cross region indicates the superfluid phase.

obtained by fitting the integrated one-dimensional density profile to an ideal Thomas–Fermi
distribution.

In this earlier comparison, empirical temperatures were converted to actual temperatures
using the pseudogap theory [13]. As a consequence, the resulting experimental data of E(T )

appeared to agree well with the pseudogap theory [13]. This is in sharp contrast to what is shown
in figure 8, where the pseudogap theory clearly fails to account for the strong pairing fluctuations
at either low temperatures (T< 0.1TF) or high temperatures (T> 0.3TF). We therefore conclude
that, while the empirical temperature approach provides a rough thermometry, its model
dependence and insensitivity to the actual temperature makes it less useful as a tool for accurate
comparison of theory with experiment.

Figure 9 shows the comparison between theory and experiment for the entropy as a function
of temperature. We find again that the GPF approach gives an overall best fit to the experimental
data. Compared to the case of total energy, however, the effect of pairing fluctuations on the
entropy is less significant. As a result, all the perturbation theories predict a similar entropy
curve. Their difference from the ideal Fermi gas prediction (thin dashed line) is also small.
This provides a justification for a recent calibration strategy used for determining the entropy
of a weakly interacting Fermi gas [14], in which the entropy of a 6Li cloud at a magnetic field
B = 1200G is assumed to be close to that of an ideal Fermi gas.

4.6. Quantum virial expansion for E(T ) and S(T )

Finally, we may check the applicability of quantum virial expansion by using the
thermodynamic functions E(T ) and S(T ). This is illustrated in figure 10, where the theoretical
predictions of a virial expansion up to fourth order for E(T ) and S(T ) are compared with the
experimental data. We may determine directly from the figures the critical temperature related
to the reliability of virial expansion. These are in agreement with the values listed in table 2.
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Figure 10. E(T ) and S(T ) for a trapped Fermi gas compared to the quantum
virial expansion predictions. The cross region indicates the superfluid phase.

5. Thermometry of a trapped Fermi gas at unitarity

We have noted that the temperature of a strongly interacting Fermi gas is difficult to measure
experimentally in ultra-cold atom experiments. Unlike the situation with cryogenic experiments
in the past, ultra-cold atoms are completely insulated by a high vacuum from any external
reservoir at a known temperature. A useful way to quantify the temperature is to measure a non-
interacting temperature Ti of an ideal, non-interacting Fermi gas. This can be easily measured
from the density profile, before a slow, adiabatic sweep to the Feshbach resonance. Since the
entropy of a non-interacting Fermi gas is known, and is unchanged in an adiabatic sweep,
this is essentially an entropy measurement. This procedure was first adopted by Regal et al
at JILA [17].

The accurate determination of the universal thermodynamic function S(T ) in the last
section presents a model-independent way to recalibrate the Ti thermometry for a trapped Fermi
gas at unitarity. By equating S(T ) and SIG(Ti), where SIG is the entropy of an ideal Fermi gas,
we can express the temperature T of strongly interacting Fermi gases as a function of the
non-interacting temperature Ti. The result is reported in figure 11. The inset emphasizes the
normal–superfluid transition regime. Note that the isentropic conversion to resonance tends to
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Figure 11. T is shown as a function of a non-interacting temperature Ti, which
can be measured before the adiabatic sweep to the Feshbach resonance. The blue
dashed line denotes equal temperatures. The inset shows clearly a kink at the
low temperature regime in an enlarged scale. By linear-fitting separately the data
around the kink, we determine a characteristic temperature (T/TF)0 ' 0.19 ±

0.02 or (Ti/TF)0 ' 0.16 ± 0.02. The cross region indicates the experimentally
determined superfluid phase.

decrease the temperature so that Ti is always somewhat below the temperature T at unitarity.
This can be seen from the dashed line for which T = Ti.

We may identify three different temperature regimes from the figure. At temperatures
Ti > 0.3TF, the calibration curve is nearly parallel to the equal temperature line. To a good
approximation, we find that T ' Ti + 0.04TF. Below Ti = 0.3TF, the unitarity temperature
seems to decrease slightly faster with decreasing non-interacting temperature. However, at a
characteristic temperature (Ti/TF)c ' 0.16 ± 0.02, this trend changes suddenly and we observe
that the unitarity temperature now tends to saturate with any further decrease of the non-
interacting temperature. This interesting feature is clearly seen in the inset, where we linearly
fit the data above and below (Ti/TF)c.

We can identify the sudden change as the deviations of thermodynamic properties away
from the normal Landau–Fermi-liquid behavior [19, 48] and therefore determine a characteristic
temperature (T/TF)0 ' 0.19 ± 0.02. This value agrees very well with the one deduced from
the homogeneous critical temperature by Nascimbne et al [19] and the condensate fraction
measurement by Horikoshi et al [18]. The characteristic non-interacting temperature (Ti/TF)0 '

0.16 is also in very good agreement with the measurement at JILA [17] and the recent moment
of inertia measurement at Innsbruck [62]. Using the experimental thermodynamic functions
E(T ) and S(T ) in figures 8 and 9, we obtain (E/N EF)0 ' 0.68 and (S/NkB)0 ' 1.56.

6. Conclusions and outlooks

In conclusion, from the experimental data, measuring a uniform universal function h(ζ ) we
have deduced a complete set of universal thermodynamic functions for a trapped Fermi gas
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at unitarity. These accurate experimental results provide a unique opportunity to test quantum
many-body theories of strongly interacting Fermi gases. We have presented such a study by
systematically comparing the theoretical predictions from typical strong-coupling theories with
the experimental data. The comparison has no fitting functions or adjustable parameters. All the
model approximations seem to be fluctuating around and not converging towards the accurate
experimental data. We have found that the simple GPF theory pioneered by NSR [21, 29]
provides the best quantitative description for the universal thermodynamic properties of energy
and entropy. Our comparison also includes a quantum virial expansion theory (or quantum
cluster expansion theory) [53, 54]. We have investigated in detail the applicability of the
expansion in the quantum degenerate regime.

The experimental universal thermodynamic functions calculated in this work are extremely
useful. For instance, the temperature dependence of entropy S(T ) can be used to calibrate
accurately the endpoint temperatures obtained from an adiabatic sweep of the magnetic field
between the ideal and strongly interacting regimes. Therefore, by measuring an ideal Fermi gas
temperature before the sweep and using the curve T (Ti) shown in figure 10, one can solve the
troublesome thermometry problem for a strongly interacting Fermi gas. From these universal
thermodynamic functions, we are also able to determine a characteristic temperature (T/TF)0 '

0.19 or (Ti/TF)0 ' 0.16 for a trapped Fermi gas at unitarity, which is responsible for the
deviations of thermodynamic properties away from the normal Landau–Fermi-liquid behavior
due to pairing effects. At these points, our analysis of the experimental universal function h(ζ )

provides a new insight into the superbly precise experimental work of Nascimbne et al [19].
These thorough comparisons between theory and experiment provide a motivation for

further developing the challenging many-body theory of strongly interacting Fermi gases. It is
impressive that the simplest GPF approach gives such excellent agreement with the experimental
data, especially in the below threshold regime characterized by long-range superfluid order. Yet,
it fails to predict the correct normal–superfluid transition temperature. More work is needed to
understand the reason for this, but at this stage we feel that the GPF approximation serves as a
good starting point for further theoretical work. Recalling that the GPF approximation includes
only the two-body correlations (see, for example, figure 1(a)), a natural way to extend this may
be to consider three-body or four-body correlations, in which three or four fermions interact
with each other in the scattering process. The thermodynamic potential may be worked out
with inclusion of all three-body or four-body scattering matrices. In this manner, we would
recover correctly the equation of state predicted by the higher-order (i.e. third and fourth order)
quantum virial expansion theory at high temperatures. We believe that it will also lead to a
more reasonable critical temperature and remove the spurious bend-back structure close to Tc,
as shown in the GPF theory.

On the other hand, the quantum virial expansion gives us another means of theoretical
development, from a very different point of view. We have already shown the wide applicability
of this expansion for the equation of state of a strongly interacting Fermi gas in harmonic traps,
down to temperatures as low as ∼ 0.4TF. We have conjectured that it may be applicable down
to the superfluid transition temperature, with the inclusion of higher-order virial coefficients.
Here, we can also develop a virial expansion for more crucial dynamical properties, such
as the dynamic structure factor and single-particle spectral function, as measured recently
at Swinburne [63] and at JILA [64]. The quantum virial expansion may therefore solve the
troublesome problem of understanding a normal yet strongly interacting Fermi gas, although
theoretical predictions beyond third order are not yet available.
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Finally, we note that there is huge interest in determining the detailed behavior of a strongly
interacting Fermi gas near the normal–superfluid transition. Our comparative study, based on the
most recent theoretical and experimental results, may provide useful insights for future research
on this.
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