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Abstract. A transport model for quantum cascade lasers based on density
matrix formalism that incorporates the laser optical field is confronted with
experiment. For a typical mid-infrared laser, very good agreement is found
for both the current–voltage and current–optical power characteristics. Forcing
thermal distribution with a unique temperature in all subbands was found to lead
to an overestimate of electron heating in the injector. The model can then be used
further to optimize and design new structures.
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1. Introduction

Since their invention [1], quantum cascade lasers have been modelled in various ways, from
rate equations [2, 3], density matrix [4]–[7] and Monte-Carlo [8]–[11] simulations to pure
quantum mechanical models [12]–[15] that account fully for the in-plane dynamics. The
simplest models, based on a few fundamental parameters [16], were able to predict the threshold
current density accurately but not the light–current–voltage curves. It turns out that innovation
in design requires predictive simulation tools. Between a simple scattering model and full
quantum mechanical simulations, there is room to develop effective models that enable both
quantum effects, with sequential resonant tunnelling [6], and account for the scattering of
electrons through rate equations. These models have the advantage of being light enough to
allow computation of the laser optical field and its effect on the transport.

2. Density matrix model

2.1. Choice of an eigenbasis

In quantum cascade lasers, the choice of a basis of eigenstates on which transport can be
computed is crucial. Indeed, the Fermi golden rule will only hold if the energy spacing between
eigenstates 1E is much larger than broadening γ of the states themselves. While traditionally
the eigenstates were computed on a one period length, in our model in order to keep a large
enough 1E , we use a basis that spans a portion of each period of the structure. As shown in
figure 1, the period is divided into two sub-periods: the active wells region that includes the laser
doublet and the two depletion states, and the injector region designed to ensure the extraction
and the relaxation of the electrons to the next stage. At the splitting barriers, the transport is
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Figure 1. Two active periods shown at the injection resonance (44 kV cm−1). The
coupling between the sub-periods, achieved by resonant tunnelling (coupling
energy matrix � for injection and �̃ for extraction), is shown through
injection/extraction barriers. The rate equations from the upper laser state are
represented in the active wells of the second period. Light pink layers are doped.

modelled by sequential resonant tunnelling. A simplified model that explicitly incorporates the
resonant nature of the transport has been successfully applied in terahertz quantum cascade
lasers [5]. Another important aspect is the second-order contributions to tunnelling that have
been outlined for the gain [17, 18] and current [6] between subbands.

2.2. Structure of the model

We have developed and numerically implemented a general density matrix model that allows
splittings at any barriers in the structure. In each sub-period, the Fermi golden rule is applied
to compute scattering between subbands. We do not solve the problem completely in k-space,
but we average the scattering time with a Fermi–Dirac distribution. We can therefore reduce
the electron dynamics to a set of rate equations by computing the averaged intersubband
broadening [19] 〈0inter〉 with interface roughness [20], LO-phonons, alloy disorder and ionized
impurities (dopants).

2.3. Resonant-tunnelling contribution to rate equations

The density matrix problem [5, 6, 10] can be summarized into two main equations, firstly for
the populations ρi i = ni and secondly for the coherences ρi j :

ṅi =

∑
k

Wiknk +
∑
k 6=i

i�ik(ρik − ρki), (1)

ρ̇i j = i�i j(σi j ni − σ j i n j) − (i1i j + τ−1
||,i j)ρi j , (2)
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where Wik is the averaged transition rate from state k to state i , h̄�ik is the coupling energy
between state i and state k (it is nonzero only when the doublet spans a coupling barrier), h̄1ik

is the detuning between these states and τ||,i j is the dephasing time. The effective parameters σi j

account for electrons tunnelling at a constant energy rather than at a constant wavevector [6],
which effectively implements the second-order scattering in the current calculation. These
equations can be solved in steady-state ṅi = ρ̇i j = 0, and after some algebraic manipulations
the equation of motion can be cast into the form

0 =

∑
k

Wiknk, where Wik = Wik + Rik. (3)

The resonant-tunnelling contribution to rate equations reads

Rik =
2�2

ikτ||,ik

1 + 12
ikτ

2
||,ik

σki . (4)

The dephasing time that relates the loss of the phase correlation between two states is
computed using equation (11) in [10]. It has two contributions. The first one comes from
intersubband transitions, when an electron is scattered from a state of the resonant doublet to
another subband. The second one is a pure phase contribution that we identify as intrasubband
broadening using equation (4) in [19]. We have evaluated 0intra at the characteristic energy of the
electron distribution kBT, where kB is the Boltzmann constant and T the electronic temperature.

2.4. Current

The current in the model is computed at the coupling barrier. It has two contributions. Firstly, the
coherent current arises from resonant tunnelling between the states across the barrier. Secondly,
direct scattering between these states achieves an incoherent current. As we work in a basis
localized at least to one period, the incoherent current is a marginal contribution owing to the
weak overlap of the subband wavefunctions. For the structure investigated here, the incoherent
current is about 1–3% of the total current.

2.5. Computation of the population and electronic temperature

The transport populations and the corresponding shape of the potential are computed through
a few self-consistent iterations starting from an initial subband configuration where electrons
are uniformly distributed. The electronic temperature is computed by solving a global kinetic
energy balance equation [21]. We implicitly assumed that the electron–electron interaction is
sufficiently strong to thermalize all the subbands to the same temperature as some authors
did [22].

2.6. Introduction of the optical field

A photon flux density S at a fixed energy h̄ω0 is then included in the model. To simplify, we
consider two levels i and j in a sub-period; their equations of motion are modified by simulated
emission and absorption:

ṅi = (. . .) − gi j(h̄ω0)S + g j i(h̄ω0)S, (5)

ṅ j = (. . .) + gi j(h̄ω0)S − g j i(h̄ω0)S, (6)
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where gi j is the total net gain between levels i and j . If we assume that gi j is a linear form in the
population distributions f i(k) of the subbands—this is the case for the first-order (Lorentzian)
and the second-order [17] gain formula—with ni = Dk

∑
k f i

k , where Dk is the density of states,
we can write

gi j [ f i
; f j ] = gi j [ f i

; 0] + gi j [0; f j ], (7)

where the notation gi j [·; ·] denotes the functional dependence of the gain in the population
distributions. This property allows us to define gain cross sections gc,i

i j and gc, j
i j as

gc,i
i j =

gi j [ f i , 0]

ni
and gc, j

i j =
gi j [0, f j ]

n j
, (8)

when ni 6= 0 and n j 6= 0, and gc,i
i j = 0, gc, j

i j = 0 otherwise. The gain between upper subband i
and lower subband j can therefore be rewritten as

gi j = gc,i
i j ni + gc, j

i j n j . (9)

This linear form is particularly suited for rate equations and we can write(
ṅi

ṅ j

)
= (. . .) + S

(
−gc,i

i j + gc,i
j i −gc, j

i j + gc, j
j i

gc,i
i j − gc,i

j i gc, j
i j − gc, j

j i

)(
ni

n j

)
. (10)

If we make the assumption that gc,i
i j , gc, j

i j , gc,i
j i and gc, j

j i are computed for initial populations
n0

i and n0
j , we can estimate the deviation of the initial populations, owing to photon flux density,

by solving these rate equations. In particular, if this system is embedded into a self-consistent
routine on the populations, it will converge to the exact solution. The main advantage of using
this technique is to avoid an inhomogeneous term in the general rate equations.

Practically, the gain curve is first computed with populations found with non-radiative
processes only. If we decide to let the laser work at the peak gain gp, given optical losses α

for the empty waveguide and for the mirrors, we obtain a threshold condition 0gp − α = 0,
where 0 is the modal overlap. We then match this condition by varying S.

3. Comparison with experiment

In the present work, we apply the model to a reference two-phonon quantum cascade laser [23];
lattice heating can be neglected as all measurements were taken in pulsed mode. Concerning
the simulation, we have taken typical parameters for the various scattering mechanisms; the
interface roughness is modelled [19] with a value of 3 = 90 Å for the correlation length of
the steps, 1 = 1.2 Å for the step height and [20] κ = 15 Å for the correlation length between
interfaces. These values are not empirical but were deduced from measurements in [20, 23].
They weakly influence the current–voltage characteristic, but can be crucial in the threshold
current determination as interface roughness is the main broadening mechanism in mid-infrared
quantum cascade lasers. The LO-phonon energy is h̄ωLO = 32 meV. The computation time for
the current and the photon flux density is about 150 s per point (at a given electric field) on
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Figure 2. Simulated light–current–voltage curves (full lines) for the kinetic
balance model and the electron–lattice thermalization versus experiment (dashed
line) at 300 K. The losses were measured to 5 cm−1 and the modal overlap is
0 ≈ 0.67.

current hardware2. We have parallelized the computation of the light–current–voltage curves
and we actually run it on a cluster.

In order to validate our model, we simulated the temperature dependence of the threshold
current. The threshold current follows Ith = I0 exp(T/T0). As a first step, we simulated the
current–voltage curve using the global kinetic balance model. The result is shown in figure 2; as
in [6], excellent agreement exists between experiment and theory. But the simulated threshold
current is slightly higher than the experimental value. The optical power is also lower. The
discrepancy increases with temperature.

3.1. Failure of the kinetic balance model

The global kinetic balance model is too pessimistic because it overestimates the electronic
temperature of most subbands: at the injection resonance (J = 5.2 kA cm−2) with a lattice
temperature of 300 K, the electronic temperature is found near 600 K. This can be explained by
looking closer at the laser transition. An electron injected in the upper laser state with no excess
kinetic energy will perform a non-radiative transition to the lower laser state by emitting an
optical phonon (inelastic) or by elastic scattering. In any case, it will end up in the lower subband
with a high in-plane momentum. The model will then try to represent these hot electrons
with a thermal distribution, forcing a strong heating of all the subbands. The overestimation
of the electronic temperature of the injector subbands causes backfilling in the active wells
while it enables optical phonon absorption from the upper laser state to excited states. Both
processes reduce the population inversion and therefore explain the increase in the threshold
current.

2 Intel Core Duo at 2 GHz.
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the distribution found by solving the kinetic balance model.

3.2. Equilibrium between the lattice and the electrons

In figure 3, we show electron distribution versus energy at the injection resonance for two
opposite cases: when the global kinetic balance is solved, and when the electronic temperature
is forced to the lattice temperature.

The latter case considers that the electron–lattice interaction is strong enough to thermalize
the electrons—these ones essentially reside in the injector region—to the lattice temperature.
This reproduces plausibly the situation of the structure shown here. In fact, we can estimate the
average time τ̄ spent by an electron in the active wells region. For an applied electric field of
34 kV cm−1 in the middle of the dynamic range, we compute the sum of the carrier density in
the subbands of the active wells region na ≈ 0.26 × 1011 cm−2 and the corresponding current
density J ≈ 2.6 kA cm−2. Using J = q0na/2τ̄ in [24], we have τ̄ ≈ 1.6 ps. During this time, the
electron can emit approximatively eight optical phonons [25, 26], using 200 fs as the emission
rate of bulk optical phonons. It allows the electron to lose ≈256 meV of kinetic energy, covering
largely the energy gap formed by the optical transition and the phonon resonances designed
between the lower states of the active wells. Therefore, most electrons have no excess kinetic
energy when extracted to the injector region. In the injector itself, the transport is achieved by
direct scattering between a dense collection of states that allows an efficient thermalization.
Therefore, we kept the subbands to the lattice temperature as shown in figure 2, at 300 K.
Very good agreement is found. It is important to note that no fit parameters were used.

3.3. T0 characteristics

Now we test the model on a larger range of temperatures by computing the T0 parameter. The
latter is robust and will show us if we have chosen the right thermal model. In figure 4(a),
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Figure 4. (a) Threshold current versus lattice temperature. Simulated values are
represented with circles for the electron–lattice thermalization and with triangles
for the kinetic balance model. The squares represent the experimental values.
The solid lines are fits with the T0 function. (b) Comparison between theory and
experiment of light–current curves for the two extreme temperatures.

threshold current was plotted versus lattice temperature and then fitted with the I0eT/T 0 function.
The value extracted from measurements is T0 = 174 K. The simulated value with the kinetic
balance model is T0 = 111 K while the result for equal lattice and electron temperatures is
T0 = 155 K, which is in better agreement with the experiment. We expect a different situation
in strained compensated structures where the electronic temperature was measured [27] clearly
above the lattice temperature. The simplification made here does not hold anymore as the energy
gap between the upper laser state and the injector ground state is much larger. In figure 4(b),
we show the light–current curves for the lowest and the highest temperatures. The agreement is
excellent in terms of threshold current and slope efficiency.

3.4. Comparison with luminescence measurements

We have successfully confronted the model with luminescence measurements at 300 K. It
is important to mention that the discrepancy between the kinetic balance model and the
equilibrium model does not arise from a broadening of the optical transition. We have computed
the linewidth without the simplifications made in [23]: we included all scattering channels and
kept the correlation terms in intrasubband calculations.

3.5. Injection efficiency

With the validation of the model, quantities that are not accessible directly by the experiment,
such as injection efficiency, can be predicted. The latter can be readily computed as ηinj =

Jupper/Jtotal, where Jupper is the current flowing into the upper laser state from the injector region
and Jtotal is the net current through the injection barrier. A value of ηinj ≈ 0.86 is found.
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4. Conclusion

We have presented a model based on density matrix formalism that enables the simulation
of light–current–voltage characteristics in mid-infrared quantum cascade lasers. An important
issue was the computation of the T0 parameter. It has been found that the validity of the T0

curve is intimately linked with the thermal model used for electrons. Our first model included
subbands at the same temperature, by assuming that electron–electron interaction is strong
enough to provide a thermal distribution in each subband and ensure a unique electronic
temperature. Such a model was a failure, at least for the considered structure. Then we turned
to an opposite model in which the subbands are in equilibrium with the lattice, yielding much
better results. Anyway, to go past this model, the transport needs to be solved in k-space. This
is moreover required for treating the case of local population inversion [28].

One advantage of the model is its numerical lightness, enabling automated optimization.
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